Interactions among Zinc, Iron, and Paraquat in the Physiological and Toxicological Responses of the Egyptian Cotton Leafworm Spodoptera littoralis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Spodoptera littoralis Rearing and Management
2.2. Source of Metals (Zn, Fe) and Herbicide (PQ)
2.3. Toxicity Tests, Survival Pattern, and Single and Mixed Exposure of Metals (Zn, Fe) and PQ in S. littoralis
2.4. Interactions Between Metals (Zn, Fe) and Herbicide (PQ) and Their Impact on Antimicrobial Activity
2.5. Statistical Analysis
3. Results
3.1. Survival Pattern and Synergistic and Antagonistic Action of Metals (Zn, Fe) and Herbicide (PQ)
3.2. Influence of Single and Co-Exposure to Zn, Fe, and PQ on Larval and Pupal Development
3.3. Effect of Single and Mixed Interactions of Zn, Fe, and PQ on Diet Consumption and Frass Production
3.4. Influence of Single and Mixed Interactions of Zn, Fe, and PQ on Pupal Death, Pupal and Imago Ecdysis, and Metamorphosis-Related Deformity
3.5. Antibiotic Effect: Influence of Zn and Fe Interactions over PQ on Haemolymph Bacteria
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rashid, A.; Schutte, B.J.; Ulery, A.; Deyholos, M.K.; Sanogo, S.; Lehnhoff, E.A.; Beck, L. Heavy Metal Contamination in Agricultural Soil: Environmental Pollutants Affecting Crop Health. Agronomy 2023, 13, 1521. [Google Scholar] [CrossRef]
- Morina, F.; Mishra, A.; Mijovilovich, A.; Matoušková, Š.; Brückner, D.; Špak, J.; Küpper, H. Interaction Between Zn Deficiency, Toxicity and Turnip Yellow Mosaic Virus Infection in. Front. Plant Sci. 2020, 11, 739. [Google Scholar] [CrossRef] [PubMed]
- Morina, F.; Mijovilovich, A.; Mishra, A.; Brückner, D.; Vujić, B.; Bokhari, S.N.H.; Špak, J.; Falkenberg, G.; Küpper, H. Cadmium and Zn hyperaccumulation provide efficient constitutive defense against Turnip yellow mosaic virus infection in Noccaea caerulescens. Plant Science 2023, 336, 111864. [Google Scholar] [CrossRef] [PubMed]
- Franceschini Sarria, A.L.; Matos, A.P.; Volante, A.C.; Bernardo, A.R.; Sabbag Cunha, G.O.; Fernandes, J.B.; Rossi Forim, M.; Vieira, P.C.; da Silva, M.F. das G.F. Insecticidal Activity of Copper (II) Complexes with Flavanone Derivatives. Nat. Prod. Res. 2022, 36, 1342–1345. [Google Scholar] [CrossRef] [PubMed]
- Jin, P.; Chen, J.; Zhan, H.; Huang, S.; Wang, J.; Shu, Y. Accumulation and Excretion of Zinc and Their Effects on Growth and Food Utilization of Spodoptera Litura (Lepidoptera: Noctuidae). Ecotoxicol. Environ. Saf. 2020, 202, 110883. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, H.; Tu, C.; Han, R.; Luo, J.; Xu, L. Enhanced capacity of a leaf beetle to combat dual stress from entomopathogens and herbicides mediated by associated microbiota. Integr. Zool. 2024, 19, 1092–1104. [Google Scholar] [CrossRef]
- Bonilla-Ramirez, L.; Jimenez-Del-Rio, M.; Velez-Pardo, C. Low Doses of Paraquat and Polyphenols Prolong Life Span and Locomotor Activity in Knock-down Parkin Drosophila Melanogaster Exposed to Oxidative Stress Stimuli: Implication in Autosomal Recessive Juvenile Parkinsonism. Gene 2013, 512, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Weber, A.L.; Khan, G.F.; Magwire, M.M.; Tabor, C.L.; Mackay, T.F.C.; Anholt, R.R.H. Genome-Wide Association Analysis of Oxidative Stress Resistance in Drosophila Melanogaster. PLoS ONE 2012, 7, e34745. [Google Scholar] [CrossRef]
- Shukla, A.K.; Pragya, P.; Chaouhan, H.S.; Tiwari, A.K.; Patel, D.K.; Abdin, M.Z.; Chowdhuri, D.K. Heat Shock Protein-70 (Hsp-70) Suppresses Paraquat-Induced Neurodegeneration by Inhibiting JNK and Caspase-3 Activation in Drosophila Model of Parkinson’s Disease. PLoS ONE 2014, 9, e98886. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Del-Rio, M.; Guzman-Martinez, C.; Velez-Pardo, C. The Effects of Polyphenols on Survival and Locomotor Activity in Drosophila Melanogaster Exposed to Iron and Paraquat. Neurochem. Res. 2010, 35, 227–238. [Google Scholar] [CrossRef]
- Yan, S.; Tan, M.; Zhang, A.; Jiang, D. The exposure risk of heavy metals to insect pests and their impact on pests occurrence and cross-tolerance to insecticides: A review. Sci. Total Environ. 2024, 916, 170274. [Google Scholar] [CrossRef]
- Tang, Q.; Ma, K.; Chi, H.; Hou, Y.; Gao, X. Transgenerational Hormetic Effects of Sublethal Dose of Flupyradifurone on the Green Peach Aphid, Myzus Persicae (Sulzer) (Hemiptera: Aphididae). PLoS ONE 2019, 14, e0208058. [Google Scholar] [CrossRef]
- Calap-Quintana, P.; González-Fernández, J.; Sebastiá-Ortega, N.; Llorens, J.V.; Moltó, M.D. Drosophila melanogaster Models of Metal-Related Human Diseases and Metal Toxicity. Int. J. Mol. Sci. 2017, 18, 1456. [Google Scholar] [CrossRef]
- Wu, H.; Tan, M.; Li, Y.; Zheng, L.; Xu, J.; Jiang, D. The Immunotoxicity of Cd Exposure to Gypsy Moth Larvae: An Integrated Analysis of Cellular Immunity and Humoral Immunity. Ecotoxicol. Environ. Saf. 2022, 235, 113434. [Google Scholar] [CrossRef] [PubMed]
- Feng, R.; Chen, L.; Chen, K. Cytotoxicity and Changes in Gene Expression under Aluminium Potassium Sulfate on Spodoptera Frugiperda 9 Cells. Ecotoxicology 2021, 30, 2056–2070. [Google Scholar] [CrossRef] [PubMed]
- Kandil, M.A.-H.; Sammour, E.A.; Abdel-Aziz, N.F.; Agamy, E.A.E.M.; El-Bakry, A.M.; Abdelmaksoud, N.M. Comparative Toxicity of New Insecticides Generations against Tomato Leafminer Tuta Absoluta and Their Biochemical Effects on Tomato Plants. Bull. Natl. Res. Cent. 2020, 44, 126. [Google Scholar] [CrossRef]
- El-Sheikh, E.-S.A.-M.; El-Saleh, M.A.; Aioub, A.A.; Desuky, W.M. Toxic Effects of Neonicotinoid Insecticides on a Field Strain of Cotton Leafworm, Spodoptera Littoralis. Asian J. Biol. Sci. 2018, 11, 179–185. [Google Scholar]
- Cabrita, A.; Medeiros, A.M.; Pereira, T.; Rodrigues, A.S.; Kranendonk, M.; Mendes, C.S. Motor Dysfunction in as a Biomarker for Developmental Neurotoxicity. iScience 2022, 25, 104541. [Google Scholar] [CrossRef] [PubMed]
- Cardoso-Jaime, V.; Broderick, N.A.; Maya-Maldonado, K. Metal Ions in Insect Reproduction: A Crosstalk between Reproductive Physiology and Immunity. Curr. Opin. Insect Sci. 2022, 52, 100924. [Google Scholar] [CrossRef]
- Nascarella, M.A.; Stoffolano, J.G., Jr.; Stanek, E.J., 3rd; Kostecki, P.T.; Calabrese, E.J. Hormesis and Stage Specific Toxicity Induced by Cadmium in an Insect Model, the Queen Blowfly, Phormia Regina Meig. Environ. Pollut. 2003, 124, 257–262. [Google Scholar] [CrossRef]
- Hafeez, M.; Ullah, F.; Khan, M.M.; Li, X.; Zhang, Z.; Shah, S.; Imran, M.; Assiri, M.A.; Fernández-Grandon, G.M.; Desneux, N.; et al. Metabolic-Based Insecticide Resistance Mechanism and Ecofriendly Approaches for Controlling of Beet Armyworm Spodoptera Exigua: A Review. Environ. Sci. Pollut. Res. Int. 2021, 29, 1746–1762. [Google Scholar] [CrossRef]
- Rabelo, M.M.; Santos, I.B.; Paula-Moraes, S.V. (Hubner) (Lepidoptera: Noctuidae) Fitness and Resistance Stability to Diamide and Pyrethroid Insecticides in the United States. Insects 2022, 13, 365. [Google Scholar] [CrossRef] [PubMed]
- Sharaby, A.M.; EL-Hawary, F.M.; Moawad, S.S. Zinc Sulfate as a Growth Disruptor for Spodoptera Littoralis with Reference to Histological Changes in Larval Endocrine Glands. IOSR J. Agric. Vet. Sci. 2013, 5, 67–74. [Google Scholar] [CrossRef]
- Ali, S.; Ullah, M.I.; Saeed, M.F.; Khalid, S.; Saqib, M.; Arshad, M.; Afzal, M.; Damalas, C.A. Heavy Metal Exposure through Artificial Diet Reduces Growth and Survival of Spodoptera Litura (Lepidoptera: Noctuidae). Environ. Sci. Pollut. Res. Int. 2019, 26, 14426–14434. [Google Scholar] [CrossRef] [PubMed]
- Tarnawska, M.; Babczyńska, A.; Hassa, K.; Kafel, A.; Płachetka-Bożek, A.; Augustyniak, J.; Dziewięcka, M.; Flasz, B.; Augustyniak, M. Protective Role of Zinc in Spodoptera Exigua Larvae under 135-Generational Cadmium Exposure. Chemosphere 2019, 235, 785–793. [Google Scholar] [CrossRef] [PubMed]
- Slobodian, M.R.; Petahtegoose, J.D.; Wallis, A.L.; Levesque, D.C.; Merritt, T.J.S. The Effects of Essential and Non-Essential Metal Toxicity in the Drosophila melanogaster Insect Model: A Review. Toxics 2021, 9, 269. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Liu, Z.; Wang, Y.; Cheng, L.; Qing, Q.; Duan, J.; Xu, J.; Dang, X.; Zhou, Z.; Li, Z. Imidacloprid Activates ROS and Causes Mortality in Honey Bees (Apis mellifera) by Inducing Iron Overload. Ecotoxicol. Environ. Saf. 2021, 228, 112709. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Peng, L.; Stevenson, F.F.; Doctrow, S.R.; Andersen, J.K. Iron and Paraquat as Synergistic Environmental Risk Factors in Sporadic Parkinson’s Disease Accelerate Age-Related Neurodegeneration. J. Neurosci. 2007, 27, 6914–6922. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.J.; Kao, C.H. Paraquat toxicity is reduced by metal chelators in rice leaves. Physiol. Plant. 1997, 22, 163–168. [Google Scholar] [CrossRef]
- Wouts, W.M. Mass Production of the Entomogenous Nematode Heterorhabditis Heliothidis (Nematoda: Heterorhabditidae) on Artificial Media. J. Nematol. 1981, 13, 467–469. [Google Scholar] [PubMed]
- Erre, L.S.; Garribba, E.; Micera, G.; Sardone, N. Metal Complexes of Imazapyr, a Herbicide Provided with Efficient Metal-Chelating Ability: Crystal Structure of the Cobalt (III) and Manganese (II) Complexes. Inorganica Chim. Acta 1998, 272, 68–73. [Google Scholar] [CrossRef]
- Stolpe, C.; Müller, C. Effects of Single and Combined Heavy Metals and Their Chelators on Aphid Performance and Preferences. Environ. Toxicol. Chem. 2016, 35, 3023–3030. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.X.; Gao, H.H.; Zhang, L.; Zhao, H.H. Effects of combined stress of heavy metal cadmium and Zinc on the life table parameters and fecundity of English grain aphid Sitobion avenae (Hemiptera: Aphididae). J. Plant Protec. 2017, 44, 406–412. [Google Scholar]
- Bednarska, A.J.; Opyd, M.; Żurawicz, E.; Laskowski, R. Regulation of body metal concentrations: Toxicokinetics of cadmium and zinc in crickets. Ecotoxicol. Environ. Saf. 2015, 119, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Shu, Y.; Gao, Y.; Sun, H.; Zou, Z.; Zhou, Q.; Zhang, G. Effects of zinc exposure on the reproduction of Spodoptera litura Fabricius (Lepidoptera: Noctuidae). Ecotoxicol. Environ. Saf. 2009, 72, 2130–2136. [Google Scholar] [CrossRef] [PubMed]
- Sell, D.K.; Schmidt, C.H. Chelating Agents Suppress Pupation of the Cabbage Looper. J. Econ. Entomol. 1968, 61, 946–949. [Google Scholar] [CrossRef]
- Wiegand, C.; Pehkonen, S.; Akkanen, J.; Penttinen, O.P.; Kukkonen, J.V.K. Bioaccumulation of paraquat by Lumbriculus variegatus in the presence of dissolved natural organic matter and impact on energy costs, biotransformation and antioxidative enzymes. Chemosphere 2007, 66, 558–566. [Google Scholar] [CrossRef]
- Ballan-Dufrançais, C. Localization of Metals in Cells of Pterygote Insects. Microsc. Res. Tech. 2002, 56, 403–420. [Google Scholar] [CrossRef]
- Bonneton, F.; Wegnez, M. Developmental Variability of Metallothionein Mtn Gene Expression in the Species of the Drosophila Melanogaster Subgroup. Dev. Genet. 1995, 16, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Durliat, M.; Bonneton, F.; Boissonneau, E.; André, M.; Wegnez, M. Expression of Metallothionein Genes during the Post-Embryonic Development of Drosophila Melanogaster. Biometals 1995, 8, 339–351. [Google Scholar] [CrossRef] [PubMed]
- Shaik, H.A.; Mishra, A.; Sehnal, F. Silk Recycling in Larvae of the Wax Moth, Galleria Mellonella (Lepidoptera: Pyralidae). Eur. J. Entomol. 2017, 114, 61–65. [Google Scholar] [CrossRef]
- Ortega-Arellano, H.F.; Jimenez-Del-Rio, M.; Velez-Pardo, C. Melatonin Increases Life Span, Restores the Locomotor Activity, and Reduces Lipid Peroxidation (LPO) in Transgenic Knockdown Parkin Drosophila melanogaster Exposed to Paraquat or Paraquat/Iron. Neurotox. Res. 2021, 39, 1551–1563. [Google Scholar] [CrossRef]
- Takeda, A. Movement of Zinc and Its Functional Significance in the Brain. Brain Res. Brain Res. Rev. 2000, 34, 137–148. [Google Scholar] [CrossRef]
- Shaik, H.A.; Mishra, A.; Hussein, H.M.; Habuštová, O.S.; Sehnal, F. Competitive Interactions between Entomopathogenic Nematodes and Parasitoid Venom. J. Appl. Entomol. 2020, 144, 481–490. [Google Scholar] [CrossRef]
- Sridhara, S.; Bhat, J.V. Trace Element Nutrition of the silkwormBombyx Mori L. Proc. Indian Acad. Sci. Sect. B Biol. Sci. 1966, 63, 17–25. [Google Scholar] [CrossRef]
- Troxell, B.; Hassan, H.M. Transcriptional Regulation by Ferric Uptake Regulator (Fur) in Pathogenic Bacteria. Front. Cell. Infect. Microbiol. 2013, 3, 59. [Google Scholar] [CrossRef]
- Gautam, U.K.; Hlávková, D.; Shaik, H.A.; Karaca, I.; Karaca, G.; Sezen, K.; Kodrík, D. Adipokinetic Hormones Enhance the Efficacy of the Entomopathogenic Fungus in Model and Pest Insects. Pathogens 2020, 9, 801. [Google Scholar] [CrossRef] [PubMed]
- Shaik, H.A.; Mishra, A.; Sehadová, H.; Kodrík, D. Responses of Sericotropin to Toxic and Pathogenic Challenges: Possible Role in Defense of the Wax Moth Galleria Mellonella. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2020, 227, 108633. [Google Scholar] [CrossRef] [PubMed]
Compound | LC20(mg/kg Diet) | Fiducial Limits | Slope | |
---|---|---|---|---|
Metals and Herbicide | Lower | Upper | ||
Zinc (Zn) | 23.757 | 6.81 | 33.714 | 5.474 ± 1.235 |
Iron (Fe) | 23.958 | 14.783 | 30.731 | 4.990 ± 1.091 |
Paraquat (PQ) | 17.979 | 4.054 | 28.17 | 4.108 ± 0.832 |
Treatment | Pupal Ecdysis (%)/Days | Pupal Death (%)/Days | Ecdysis to Imago (%)/Days | ||||||
---|---|---|---|---|---|---|---|---|---|
10 mg | 20 mg | 40 mg | 10 mg | 20 mg | 40 mg | 10 mg | 20 mg | 40 mg | |
Control | 100/7–9 | 100/6–7 | 100/6–8 | 0 | 0 | 0 | 100/5–8 | 100/4–6 | 100/6–7 |
Zn | 100/6–9 | 100/6–7 | 100/7–8 | 0 | 0 | 0 | 100/6–9 | 100/5–7 | 59/8–9 |
Fe | 100/6–8 | 94/7–8 | 100/7–8 | 0 | 6/6 a | 0 | 100/7–9 | 100/3–7 | 42/7–9 |
Zn/Fe | 100/6–8 | 89/5–9 | 100/7–8 | 0 | 11/5 a | 0 | 100/9–10 | 88/7–10 | 65/10–12 |
42/10 | 0 | ||||||||
PQ | 76/8–10 | 50/5–9 | 0 | 10/6 a | 23/7 a | 100 | 22/8–12 | ||
57/10–12 | 0 | ||||||||
Zn/PQ | 81/8–9 | 64/7–10 | 0 | 12/8 a | 15/6–7 a | 100 | 61/10–12 | 35/7–12 | |
76/10 | 0 | ||||||||
Fe/PQ | 67/8–9 | 49/6–11 | 0 | 11/7 a | 15/8–9 a | 100 | 39/7–12 | ||
0 | |||||||||
Zn/Fe/PQ | 92/9–6 | 81/6–18 | 0 | 5/12 | 7/9–10 | 100 | 60/10–12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaik, H.A.; Siaussat, D.; Mishra, A. Interactions among Zinc, Iron, and Paraquat in the Physiological and Toxicological Responses of the Egyptian Cotton Leafworm Spodoptera littoralis. Toxics 2025, 13, 38. https://doi.org/10.3390/toxics13010038
Shaik HA, Siaussat D, Mishra A. Interactions among Zinc, Iron, and Paraquat in the Physiological and Toxicological Responses of the Egyptian Cotton Leafworm Spodoptera littoralis. Toxics. 2025; 13(1):38. https://doi.org/10.3390/toxics13010038
Chicago/Turabian StyleShaik, Haq Abdul, David Siaussat, and Archana Mishra. 2025. "Interactions among Zinc, Iron, and Paraquat in the Physiological and Toxicological Responses of the Egyptian Cotton Leafworm Spodoptera littoralis" Toxics 13, no. 1: 38. https://doi.org/10.3390/toxics13010038
APA StyleShaik, H. A., Siaussat, D., & Mishra, A. (2025). Interactions among Zinc, Iron, and Paraquat in the Physiological and Toxicological Responses of the Egyptian Cotton Leafworm Spodoptera littoralis. Toxics, 13(1), 38. https://doi.org/10.3390/toxics13010038