Particle Size-Dependent Monthly Variation of Pollution Load, Ecological Risk, and Sources of Heavy Metals in Road Dust in Beijing, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Road Dust Sampling
2.2. Analytical Methods and Quality Control
2.3. Particle Size Fraction Load Index
2.4. Coefficient of Divergence
2.5. Ecological Risk and Pollution Assessment Methods
2.6. Advanced Three-Way Model (ABB Three-Way Model)
2.7. Wavelet Analysis
3. Results and Discussion
3.1. The Variations of Particle Size Fraction Load for Heavy Metals
3.1.1. The Characteristics of Particle Size Fraction Load for Different Heavy Metals
3.1.2. The Correlation and Difference of Particle Size Fraction Load Among Fractions
3.2. Monthly Variation of Ecological Risk of Heavy Metals Within Particle Size Fractions
3.2.1. Monthly Variation of Ecological Risk of Each Heavy Metal
3.2.2. NIRI-Based Monthly Variation of Integrated Ecological Risk of All Heavy Metals
3.3. Identification and Time-Series Analysis of Heavy Metal Sources in Each Fraction
3.3.1. Identification of Heavy Metal Sources in Each Fraction
3.3.2. Time-Series Variation in the Intensity of Heavy Metal Sources in Each Fraction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wiseman, C.L.S.; Levesque, C.; Rasmussen, P.E. Characterizing the sources, concentrations and resuspension potential of metals and metalloids in the thoracic fraction of urban road dust. Sci. Total Environ. 2021, 786, 147467. [Google Scholar] [CrossRef] [PubMed]
- Slukovskii, Z.I.; Dauvalter, V.A.; Denisov, D.B.; Siroezhko, E.V.; Cherepanov, A.A. Geochemistry features of sediments of small urban arctic Lake Komsomolskoye, Murmansk region. IOP Conf. Ser. Earth Environ. Sci. 2020, 467, 012004. [Google Scholar] [CrossRef]
- Xiao, K.; Wang, Z.; Zhou, Y.; Fu, D.; Zhang, Y.; Luo, Z.; Lin, Y.; Wang, Q.; Pei, J.; Shen, G. Size-resolved environmentally persistent free radicals in urban road dust and association with transition metals. Environ. Geochem. Health 2023, 45, 7829–7839. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zhang, X.; Zhang, J.; Duan, N.; Gong, X.; Liu, S.; Zhan, C.; Chen, W.; Xing, X. Characteristics, sources and health risk of heavy metals in road dust in the typical county town, central China. Appl. Sci. 2022, 12, 12958. [Google Scholar] [CrossRef]
- Zhao, H.; Li, X.; Wang, X.; Tian, D. Grain size distribution of road-deposited sediment and its contribution to heavy metal pollution in urban runoff in Beijing, China. J. Hazard. Mater. 2010, 183, 203–210. [Google Scholar] [CrossRef]
- Sajayan, A.; Kiran, G.S.; Priyadharshini, S.; Poulose, N.; Selvin, J. Revealing the ability of a novel polysaccharide bioflocculant in bioremediation of heavy metals sensed in a Vibrio bioluminescence reporter assay. Environ. Pollut. 2017, 228, 118–127. [Google Scholar] [CrossRef]
- Karlsson, H.L.; Gustafsson, J.; Cronholm, P.; Möller, L. Size-dependent toxicity of metal oxide particles—A comparison between nano- and micrometer size. Toxicol. Lett. 2009, 188, 112–118. [Google Scholar] [CrossRef]
- Silva, S.D.; Ball, A.S.; Huynh, T.; Reichman, S.M. Metal accumulation in roadside soil in Melbourne, Australia: Effect of road age, traffic density and vehicular speed. Environ. Pollut. 2016, 208, 102–109. [Google Scholar] [CrossRef]
- Hu, Z.; Wu, Z.; Luo, W.; Liu, S.; Tu, C. Spatial distribution, risk assessment, and source apportionment of soil heavy metals in a karst county based on grid survey. Sci. Total Environ. 2024, 953, 176049. [Google Scholar] [CrossRef]
- Liu, R.; Men, C.; Liu, Y.; Yu, W.; Xu, F.; Shen, Z. Spatial distribution and pollution evaluation of heavy metals in Yangtze estuary sediment. Mar. Pollut. Bull. 2016, 110, 564–571. [Google Scholar] [CrossRef]
- Zhao, H.; Li, X. Risk assessment of metals in road-deposited sediment along an urban–rural gradient. Environ. Pollut. 2013, 174, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Ciupa, M.K.; Gospodarek, J.; Socha, A.N. Pollution and ecological risk assessment of heavy metals in forest soils with changes in the leaf traits and membrane integrity of Vaccinium myrtillus L. Eur. J. For. Res. 2022, 141, 409–419. [Google Scholar] [CrossRef]
- Men, C.; Liu, R.; Xu, L.; Wang, Q.; Guo, L.; Miao, Y.; Shen, Z. Source-specific ecological risk analysis and critical source identification of heavy metals in road dust in Beijing, China. J. Hazard. Mater. 2020, 388, 121763. [Google Scholar] [CrossRef]
- Xia, R.; Zhang, S.Q.; Li, J.; Li, H.; Ge, L.S.; Yuan, G.L. Spatial distribution and quantitative identification of contributions for nutrient and beneficial elements in top- and sub-soil of Huairou district of Beijing, China. Ecol. Indic. 2023, 154, 110853. [Google Scholar] [CrossRef]
- Zhu, Y.; An, Y.; Li, X.; Cheng, L.; Lv, S. Geochemical characteristics and health risks of heavy metals in agricultural soils and crops from a coal mining area in Anhui province, China. Environ. Res. 2023, 241, 117670. [Google Scholar] [CrossRef]
- Hu, H.; Zheng, H.; Liu, F.; Ding, Z.; Wang, Z.; Peng, Y.; Zhang, D.; Zhang, Y.; Zheng, Y.; Ding, A. Heavy metal contamination assessment and source attribution in the vicinity of an iron slag pile in Hechi, China: Integrating multi-medium analysis. Environ. Res. 2024, 263, 120206. [Google Scholar] [CrossRef]
- Wang, Z.; Bai, L.; Zhang, Y.; Zhao, K.; Wu, J.; Fu, W. Spatial variation, sources identification and risk assessment of soil heavy metals in a typical Torreya grandis cv. Merrillii plantation region of southeastern China. Sci. Total Environ. 2022, 849, 157832. [Google Scholar] [CrossRef]
- Proshad, R.; Uddin, M.; Idris, A.M.; Al, M.A. Receptor model-oriented sources and risks evaluation of metals in sediments of an industrial affected riverine system in Bangladesh. Sci. Total Environ. 2022, 838, 156029. [Google Scholar] [CrossRef]
- Men, C.; Liu, R.; Wang, Y.; Cao, L.; Jiao, L.; Li, L.; Wang, Y. Impact of particle sizes on health risks and source-specific health risks for heavy metals in road dust. Environ. Sci. Pollut. Res. 2022, 29, 75471–75486. [Google Scholar] [CrossRef]
- Tian, Y.Z.; Shi, G.L.; Huang-Fu, Y.Q.; Song, D.L.; Liu, J.Y.; Zhou, L.D.; Feng, Y.C. Seasonal and regional variations of source contributions for PM10 and PM2.5 in urban environment. Sci. Total Environ. 2016, 557–558, 697–704. [Google Scholar] [CrossRef]
- Liu, T.; Tian, Y.; Xue, Q.; Wei, Z.; Qian, Y.; Feng, Y. An advanced three-way factor analysis model (SDABB model) for size-resolved PM source apportionment constrained by size distribution of chemical species in source profiles. Environ. Pollut. 2018, 242 Pt B, 1606–1615. [Google Scholar] [CrossRef]
- Xu, J.; Tian, Y.; Cheng, C.; Wang, C.; Lin, Q.; Li, M.; Wang, X.; Shi, G. Characteristics and source apportionment of ambient single particles in Tianjin, China: The close association between oxalic acid and biomass burning. Atmos. Res. 2020, 237, 104843. [Google Scholar] [CrossRef]
- Tang, Y.; Song, X.; Zhang, Y.; Han, D.; Ai, L.; Zhao, T.; Wang, Y. Using stable isotopes to understand seasonal and interannual dynamics in moisture sources and atmospheric circulation in precipitation. Hydrol. Process. 2017, 31, 4682–4692. [Google Scholar] [CrossRef]
- Ju, X.; Gao, X.; Li, W.; Han, L.; Mao, J. Effects of land use change on surface runoff in Beijing-Tianjin-Hebei urban agglomeration. Acta Ecol. Sin. 2020, 40, 1413–1423. [Google Scholar]
- Amato, F.; Alastuey, A.; Karanasiou, A.; Lucarelli, F.; Nava, S.; Calzolai, G.; Severi, M.; Becagli, S.; Gianelle, V.L.; Colombi, C.; et al. AIRUSE-LIFE+: A harmonized PM speciation and source apportionment in five southern European cities. Atmos. Chem. Phys. 2016, 16, 3289–3309. [Google Scholar] [CrossRef]
- Dehghani, S.; Moore, F.; Vasiluk, L.; Hale, B.A. The influence of physicochemical parameters on bioaccessibility-adjusted hazard quotients for copper, lead and zinc in different grain size fractions of urban street dusts and soils. Environ. Geochem. Health 2018, 40, 1155–1174. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wu, L.; Zhang, Y.; Li, F.; Fang, X.; Mao, H. Elemental composition and risk assessment of heavy metals in the PM 10 fractions of road dust and roadside soil. Particuology 2019, 44, 146–152. [Google Scholar] [CrossRef]
- Wongphatarakul, V.; Friedlander, S.K.; Pinto, J.P. A comparative study of PM2.5 ambient aerosol chemical databases. Environ. Sci. Technol. 1998, 32, 3926–3934. [Google Scholar] [CrossRef]
- Fang, X.; Peng, B.; Wang, X.; Song, Z.; Zhou, D.; Wang, Q.; Qin, Z.; Tan, C. Distribution, contamination and source identification of heavy metals in bed sediments from the lower reaches of the Xiangjiang River in Hunan province, China. Sci. Total Environ. 2019, 689, 557–570. [Google Scholar] [CrossRef]
- Chen, J.; Wei, F.; Zheng, C.; Wu, Y.; Adriano, D.C. Background concentrations of elements in soils of China. Water Air Soil Poll. 1991, 57, 699–712. [Google Scholar] [CrossRef]
- Baxevanis, A.D.; Ouellette, B.F.F. Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins; John Wiley & Sons: Hoboken, NJ, USA, 1998. [Google Scholar] [CrossRef]
- Yue, Z.; Zhang, M.; Sheng, G.; Liu, R.; Long, Y.; Xiang, B.; Wang, J.; Yu, H. Determination of main components and anaerobic rumen digestibility of aquatic plants in vitro using near-infrared-reflectance spectroscopy. Water Res. 2009, 44, 2229–2234. [Google Scholar] [CrossRef] [PubMed]
- Ainalis, D.; Ducarne, L.; Kaufmann, O.; Tshibangu, J.-P.; Verlinden, O.; Kouroussis, G. Improved analysis of ground vibrations produced by man-made sources. Sci. Total Environ. 2018, 616–617, 517–530. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Cai, J.; Li, J.; Wang, Z.; Pei, P.; Zhang, J.; Krebs, P. Characterizing the long-term occurrence of polycyclic aromatic hydrocarbons and their driving forces in surface waters. J. Hazard. Mater. 2022, 423 Pt A, 127065. [Google Scholar] [CrossRef]
- Nkosi, V.; Mathee, A.; Blesic, S.; Kapwata, T.; Kunene, Z.; du Preez, D.J.; Garland, R.; Wright, C.Y. Exploring Meteorological Conditions and Human Health Impacts during Two Dust Storm Events in Northern Cape Province, South Africa: Findings and Lessons Learnt. Atmosphere 2022, 13, 424. [Google Scholar] [CrossRef]
- Mei, D.; Zhu, Z.; Sun, T.; Wang, X.; Mei, C.; Xiao, Z. Size Distribution and Carbon Component Characteristics of Atmospheric Particulate Matter from Motor Vehicles. Environ. Sci. 2019, 40, 114–120. [Google Scholar]
- Men, C.; Liu, R.; Xu, F.; Wang, Q.; Guo, L.; Shen, Z. Pollution characteristics, risk assessment, and source apportionment of heavy metals in road dust in Beijing, China. Sci. Total Environ. 2018, 612, 138–147. [Google Scholar] [CrossRef]
- Men, C.; Liu, R.; Wang, Y.; Cao, L.; Jiao, L.; Li, L.; Shen, Z. A four-way model (FEST) for source apportionment: Development, verification, and application. J. Hazard. Mater. 2022, 426, 128009. [Google Scholar] [CrossRef]
- Narvaez-Villa, P.; Arenas-Ramírez, B.; Mira, J.; Aparicio-Izquierdo, F. Analysis and prediction of vehicle kilometers traveled: A case study in Spain. Int. J. Environ. Res. Public Health 2021, 18, 8327. [Google Scholar] [CrossRef]
- Cheng, H.; Zhao, C.; Liu, F.; Yang, K.; Liu, Y.; Li, M.; Peng, M.; Li, K.; Nie, H.; Zhang, Q.; et al. Mercury drop trend in urban soils in Beijing, China, since 1987. J. Geochem. Explor. 2013, 124, 195–202. [Google Scholar] [CrossRef]
- Du, Y.; Wang, Y.; Du, Z.; Zhang, Y.; Xu, D.; Li, T. Modeling of residential indoor PM 2.5 exposure in 37 counties in China. Environ. Pollut. 2018, 238, 691–697. [Google Scholar] [CrossRef]
- Ottosen, L.M.; Eriksson, T.; Hansen, H.K.; Ribeiro, A.B. Effects from different types of construction refuse in the soil on electrodialytic remediation. J. Hazard. Mater. 2002, 91, 205–219. [Google Scholar] [CrossRef] [PubMed]
- De, X.; Li, J.; Zhao, Y.; An, X.; Li, B.; Yang, H.; Li, Y.; Dong, S. Impact of wind direction on atmospheric particulate matter concentrations in Beijing. China Environ. Sci. 2010, 30, 1–6. [Google Scholar]
- Jabari, F.; Mohammadi-ivatloo, B.; Ghaebi, H.; Bannae-sharifian, M.-B. Biogas fueled combined cooling, desalinated water and power generation systems. J. Clean. Prod. 2019, 219, 906–924. [Google Scholar] [CrossRef]
- Michalski, S.; Hanak, D.P.; Manovic, V. Techno-economic feasibility assessment of calcium looping combustion using commercial technology appraisal tools. J. Clean. Prod. 2019, 219, 540–551. [Google Scholar] [CrossRef]
- Li, H.; Zheng, N.; Guo, G.; Chen, Y. Control measures for reduction of arsenic and cadmium contamination during underground coal gasification without shaft. J. Clean. Prod. 2019, 219, 960–970. [Google Scholar] [CrossRef]
- Limo, J.; Paturi, P.; Mäkinen, J. Magnetic biomonitoring with moss bags to assess stop-and-go traffic induced particulate matter and heavy metal concentrations. Atmos. Environ. 2018, 195, 187–195. [Google Scholar] [CrossRef]
- Passalacqua, M.; Lanzarotto, D.; Repetto, M.; Vaccaro, L.; Bonfiglio, A.; Marchesoni, M. Fuel economy and ems for a series hybrid vehicle based on supercapacitor storage. IEEE Trans. Power Electr. 2019, 34, 9966–9977. [Google Scholar] [CrossRef]
- Matzrafi, M. Climate change exacerbates pest damage through reduced pesticide efficacy. Pest Manag. Sci. 2019, 75, 9–13. [Google Scholar] [CrossRef]
Classification | Level |
---|---|
NIRI ≤ 40; ≤ 40 | Low risk |
40 < NIRI ≤ 80; 40 < ≤ 80 | Moderate risk |
80 < NIRI ≤ 160; 80 < ≤ 160 | Considerable risk |
160 < NIRI ≤ 320; 160 < ≤ 320 | High risk |
NIRI > 320; > 320 | Extreme risk |
NIPI ≤ 0.7; PIi ≤ 1 | Unpolluted |
0.7 < NIPI ≤ 1 | Warning limit of pollution |
1 < NIPI ≤ 2; 1 < PIi ≤ 2 | Low polluted |
2 < NIPI ≤ 3; 2 < PIi ≤ 3 | Moderately polluted |
NIPI > 3; PIi > 3 | Strongly polluted |
Particle Size Fraction | Season | NIRI | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
As | Cd | Cr | Cu | Hg | Mn | Ni | Pb | Zn | Fe | |||
P1 | Spring | 6.03 | 155.99 | 3.27 | 19.37 | 11,973.66 | 1.10 | 6.20 | 15.37 | 4.47 | 1.02 | 8513.92 |
Summer | 6.26 | 161.99 | 3.14 | 20.53 | 550.60 | 1.00 | 5.90 | 12.37 | 4.93 | 0.94 | 393.26 | |
Autumn | 5.84 | 134.03 | 3.07 | 17.13 | 427.44 | 0.98 | 5.69 | 11.21 | 4.09 | 0.96 | 311.82 | |
Winter | 6.12 | 127.94 | 2.95 | 15.89 | 805.83 | 1.04 | 5.63 | 11.09 | 3.71 | 0.97 | 574.06 | |
P2 | Spring | 4.82 | 149.92 | 4.15 | 22.38 | 10,130.96 | 1.16 | 6.50 | 21.95 | 4.41 | 1.32 | 7211.47 |
Summer | 5.39 | 148.79 | 3.73 | 31.44 | 396.43 | 1.08 | 6.56 | 17.76 | 4.84 | 1.17 | 284.71 | |
Autumn | 4.98 | 130.94 | 3.28 | 24.20 | 233.62 | 0.95 | 5.79 | 13.94 | 3.98 | 1.04 | 184.33 | |
Winter | 5.62 | 138.28 | 3.91 | 19.38 | 651.95 | 1.12 | 6.94 | 15.14 | 4.01 | 1.26 | 465.01 | |
P3 | Spring | 4.10 | 123.50 | 3.29 | 14.54 | 7905.09 | 0.91 | 5.80 | 20.45 | 3.10 | 1.04 | 5622.56 |
Summer | 4.69 | 123.48 | 3.04 | 20.97 | 511.46 | 0.86 | 5.85 | 16.48 | 3.78 | 1.00 | 367.30 | |
Autumn | 4.16 | 103.19 | 2.83 | 20.54 | 151.97 | 0.80 | 5.30 | 13.08 | 3.05 | 0.91 | 123.82 | |
Winter | 4.57 | 157.93 | 2.86 | 15.87 | 481.09 | 0.92 | 5.45 | 15.26 | 3.21 | 1.07 | 343.82 | |
P4 | Spring | 3.74 | 95.02 | 2.53 | 18.70 | 7459.12 | 0.71 | 4.62 | 22.31 | 2.89 | 0.87 | 5302.01 |
Summer | 3.99 | 91.55 | 2.58 | 11.24 | 490.32 | 0.73 | 5.04 | 14.73 | 2.66 | 0.85 | 350.58 | |
Autumn | 4.14 | 87.66 | 2.54 | 9.76 | 945.26 | 0.72 | 4.52 | 11.92 | 2.45 | 0.81 | 674.59 | |
Winter | 4.28 | 94.61 | 2.18 | 9.55 | 416.63 | 0.75 | 4.61 | 18.30 | 2.60 | 0.91 | 297.31 | |
P5 | Spring | 4.66 | 113.45 | 3.18 | 11.78 | 7487.73 | 0.89 | 4.61 | 30.11 | 2.93 | 1.10 | 5324.73 |
Summer | 4.86 | 91.61 | 3.05 | 9.42 | 287.19 | 0.83 | 5.10 | 18.61 | 2.69 | 0.95 | 205.40 | |
Autumn | 4.51 | 91.72 | 2.49 | 8.72 | 175.98 | 0.70 | 4.38 | 13.54 | 2.41 | 0.83 | 128.78 | |
Winter | 5.49 | 112.92 | 2.61 | 10.86 | 481.31 | 0.86 | 25.28 | 21.40 | 3.02 | 1.04 | 343.65 | |
All particles | Spring | 5.15 | 140.05 | 3.31 | 18.35 | 10,404.70 | 1.01 | 5.89 | 19.61 | 3.92 | 1.05 | 7397.80 |
Summer | 5.11 | 125.51 | 3.07 | 17.73 | 483.05 | 0.91 | 5.63 | 14.41 | 3.81 | 0.96 | 344.87 | |
Autumn | 5.06 | 118.07 | 2.89 | 16.58 | 379.83 | 0.88 | 5.31 | 12.26 | 3.48 | 0.92 | 279.15 | |
Winter | 5.58 | 129.99 | 2.95 | 15.23 | 661.84 | 0.98 | 7.22 | 13.97 | 3.52 | 1.02 | 471.82 |
Particle Size Fraction | Season | PIi | NIPI | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
As | Cd | Cr | Cu | Hg | Mn | Ni | Pb | Zn | Fe | |||
P1 | Spring | 0.60 | 5.20 | 1.63 | 3.87 | 299.34 | 1.10 | 1.24 | 3.07 | 4.47 | 1.02 | 213.25 |
Summer | 0.63 | 5.40 | 1.57 | 4.11 | 13.77 | 1.00 | 1.18 | 2.47 | 4.93 | 0.94 | 10.20 | |
Autumn | 0.58 | 4.47 | 1.54 | 3.43 | 10.69 | 0.98 | 1.14 | 2.24 | 4.09 | 0.96 | 8.25 | |
Winter | 0.61 | 4.26 | 1.48 | 3.18 | 20.15 | 1.04 | 1.13 | 2.22 | 3.71 | 0.97 | 14.52 | |
P2 | Spring | 0.48 | 5.00 | 2.07 | 4.48 | 253.27 | 1.16 | 1.30 | 4.39 | 4.41 | 1.32 | 180.93 |
Summer | 0.54 | 4.96 | 1.87 | 6.29 | 9.91 | 1.08 | 1.31 | 3.55 | 4.84 | 1.17 | 8.12 | |
Autumn | 0.50 | 4.36 | 1.64 | 4.84 | 5.84 | 0.95 | 1.16 | 2.79 | 3.98 | 1.04 | 5.69 | |
Winter | 0.56 | 4.61 | 1.95 | 3.88 | 16.30 | 1.12 | 1.39 | 3.03 | 4.01 | 1.26 | 11.89 | |
P3 | Spring | 0.41 | 4.12 | 1.64 | 2.91 | 197.63 | 0.91 | 1.16 | 4.09 | 3.10 | 1.04 | 141.26 |
Summer | 0.47 | 4.12 | 1.52 | 4.19 | 12.79 | 0.86 | 1.17 | 3.30 | 3.78 | 1.00 | 9.64 | |
Autumn | 0.42 | 3.44 | 1.41 | 4.11 | 3.80 | 0.80 | 1.06 | 2.62 | 3.05 | 0.91 | 4.21 | |
Winter | 0.46 | 5.26 | 1.43 | 3.17 | 12.03 | 0.92 | 1.09 | 3.05 | 3.21 | 1.07 | 9.17 | |
P4 | Spring | 0.37 | 3.17 | 1.26 | 3.74 | 186.48 | 0.71 | 0.92 | 4.46 | 2.89 | 0.87 | 133.77 |
Summer | 0.40 | 3.05 | 1.29 | 2.25 | 12.26 | 0.73 | 1.01 | 2.95 | 2.66 | 0.85 | 9.14 | |
Autumn | 0.41 | 2.92 | 1.27 | 1.95 | 23.63 | 0.72 | 0.90 | 2.38 | 2.45 | 0.81 | 17.29 | |
Winter | 0.43 | 3.15 | 1.09 | 1.91 | 10.42 | 0.75 | 0.92 | 3.66 | 2.60 | 0.91 | 7.76 | |
P5 | Spring | 0.47 | 3.78 | 1.59 | 2.36 | 187.19 | 0.89 | 0.92 | 6.02 | 2.93 | 1.10 | 134.49 |
Summer | 0.49 | 3.05 | 1.52 | 1.88 | 7.18 | 0.83 | 1.02 | 3.72 | 2.69 | 0.95 | 5.62 | |
Autumn | 0.45 | 3.06 | 1.25 | 1.74 | 4.40 | 0.70 | 0.88 | 2.71 | 2.41 | 0.83 | 3.69 | |
Winter | 0.55 | 3.76 | 1.31 | 2.17 | 12.03 | 0.86 | 5.06 | 4.28 | 3.02 | 1.04 | 9.55 | |
All particles | Spring | 0.60 | 5.20 | 1.63 | 3.87 | 299.34 | 1.10 | 1.24 | 3.07 | 4.47 | 1.02 | 213.25 |
Summer | 0.63 | 5.40 | 1.57 | 4.11 | 13.77 | 1.00 | 1.18 | 2.47 | 4.93 | 0.94 | 10.20 | |
Autumn | 0.58 | 4.47 | 1.54 | 3.43 | 10.69 | 0.98 | 1.14 | 2.24 | 4.09 | 0.96 | 8.25 | |
Winter | 0.61 | 4.26 | 1.48 | 3.18 | 20.15 | 1.04 | 1.13 | 2.22 | 3.71 | 0.97 | 14.52 |
Seasons | Traffic Exhaust | Fuel Combustion | Construction | Use of Pesticides and Fertilizers |
---|---|---|---|---|
Spring | 1.15 | 0.52 | 1.41 | 3.72 |
Summer | 1.18 | 1.12 | 0.91 | 0.10 |
Autumn | 0.88 | 1.16 | 0.68 | 0.05 |
Winter | 0.79 | 1.19 | 1.00 | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Men, C.; Li, D.; Jing, Y.; Xiong, K.; Liu, J.; Cheng, S.; Li, Z. Particle Size-Dependent Monthly Variation of Pollution Load, Ecological Risk, and Sources of Heavy Metals in Road Dust in Beijing, China. Toxics 2025, 13, 40. https://doi.org/10.3390/toxics13010040
Men C, Li D, Jing Y, Xiong K, Liu J, Cheng S, Li Z. Particle Size-Dependent Monthly Variation of Pollution Load, Ecological Risk, and Sources of Heavy Metals in Road Dust in Beijing, China. Toxics. 2025; 13(1):40. https://doi.org/10.3390/toxics13010040
Chicago/Turabian StyleMen, Cong, Donghui Li, Yunqi Jing, Ke Xiong, Jiayao Liu, Shikun Cheng, and Zifu Li. 2025. "Particle Size-Dependent Monthly Variation of Pollution Load, Ecological Risk, and Sources of Heavy Metals in Road Dust in Beijing, China" Toxics 13, no. 1: 40. https://doi.org/10.3390/toxics13010040
APA StyleMen, C., Li, D., Jing, Y., Xiong, K., Liu, J., Cheng, S., & Li, Z. (2025). Particle Size-Dependent Monthly Variation of Pollution Load, Ecological Risk, and Sources of Heavy Metals in Road Dust in Beijing, China. Toxics, 13(1), 40. https://doi.org/10.3390/toxics13010040