Assessing Pollution with Heavy Metals and Its Impact on Population Health
Abstract
:1. Introduction
2. Data Series and Methodology
2.1. Study Region and Data Series
2.2. Methodology
2.2.1. Principal Component Analysis
2.2.2. Factor Analysis
2.2.3. t-Distributed Stochastic Neighbor Embedding (t-SNE)
2.3. Health Risk Assessment
3. Results and Discussion
3.1. PCA Results
3.2. FA Results
- Factor loadings and variance:
- Sum of squared (SS) loadings: ML2—2.22, ML3—1.77, ML1—1.74;
- Proportion variance: ML2—0.29, ML3—0.18, ML1—0.17;
- Cumulative variance: 64%;
- Loadings: Indicate the strength of association between variables and factors, e.g., Zn (ML2: 0.97), Cr (ML3: 0.83), Co (ML1: 0.99);
- h2 and u2: High communalities indicate variables well-explained by the factors. For example, Zn has h2 = 0.91 and u2 = 0.091, indicating that the factors explain 91% of its variance. The same is true for Mn.
- Factor correlations: ML2-ML3: 0.54, ML2-ML1: 0.03, ML3-ML2: 0.54, ML3-ML1: −0.02.
- Model fit indices:
- Chi-square statistic: 11.23 (p < 0.88);
- Root Mean Square of Residuals (RMSR): 0.07;
- Tucker–Lewis Index (TLI): 4.006;
- BIC: −35.27.
- Factor score adequacy indicates a high reliability of factor scores:
- Correlation of regression scores with factors: ML2 (0.97), ML3 (0.95), ML1 (1.00);
- Multiple R-square of scores with factors: ML3 (0.95), ML1 (0.90), ML2 (0.99);
- Minimum correlation of possible factor scores: ML3 (0.90), ML1 (0.80), ML2 (0.99).
3.3. T-SNE Results
3.4. Results of Health Risk Assessment
4. Conclusions
- Extreme ADDs—the minimum for Cr and Cd, and maximum for Ba, Co, and Pb were computed for sites 1, 7, and 9 (belonging to the same cluster in Figure 7b);
- The ADDs for Fe and Pb reached their minimum at sites 3 and 12 (clustered together in Figure 9b);
- The maximum ADD for Fe and Pb were found at sites 5 and 6 (clustered together in Figure 7b);
- The HI values indicate a concordance between the clusters provided after t-SNE optimization and the magnitude of the non-carcinogenic risk to the population.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kanwar, V.S.; Sharma, A.; Srivastav, A.L.; Rani, L. Phytoremediation of Toxic Metals Present in Soil and Water Environment: A Critical Review. Environ. Sci. Pollut. Res. 2020, 27, 44835–44860. [Google Scholar] [CrossRef]
- Adewumi, A.J.; Ogundele, O.D. Hidden hazards in urban soils: A meta-analysis review of global heavy metal contamination (2010–2022), sources and its Ecological and health consequences. Sustain. Environ. 2024, 10, 2293239. [Google Scholar] [CrossRef]
- Chiritescu, R.-V.; Luca, E.; Iorga, G. Observational study of major air pollutants over urban Romania in 2020 in comparison with 2019. Rom. Rep. Phys. 2024, 76, 702. [Google Scholar]
- Dumitru, A.; Olaru, E.-A.; Dumitru, M.; Iorga, G. Assessment of air pollution by aerosols over a coal open-mine influenced region in southwestern Romania. Rom. J. Phys. 2024, 69, 801. [Google Scholar] [CrossRef]
- Rosianu, A.-M.; Leru, P.M.; Stefan, S.; Iorga, G.; Marmureanu, L. Six-year monitoring of atmospheric pollen and major air pollutant concentrations in relation with meteorological factors in Bucharest, Romania. Rom. Rep. Phys. 2022, 74, 703. [Google Scholar]
- Soltani-Gerdefaramarzi, S.; Ghasemi, M.; Ghanbarian, B.; Da Silva Júnior, F.M.R. Geogenic and anthropo-genic sources identification and ecological risk assessment of heavy metals in the urban soil of Yazd, central Iran. PLoS ONE 2021, 16, e0260418. [Google Scholar] [CrossRef]
- Cui, Y.; Bai, L.; Li, C.; He, Z.; Liu, Z. Assessment of heavy metal contamination levels and health risks in environmental media in the northeast region. Sustain. Cities Soc. 2022, 80, 103796. [Google Scholar] [CrossRef]
- Faiz, Y.; Tufail, M.; Javed, M.T.; Chaudhry, M.M.; Siddique, N. Road dust pollution of Cd, Cu, Ni, Pb and Zn along Islamabad Expressway, Pakistan. Microchem. J. 2009, 92, 186–192. [Google Scholar] [CrossRef]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef]
- Morakinyo, O.M.; Mukhola, M.S.; Mokgobu, M.I. Health Risk Analysis of Elemental Components of an Industrially Emitted Respirable Particulate Matter in an Urban Area. Int. J. Environ. Res. Public Health 2021, 18, 3653. [Google Scholar] [CrossRef] [PubMed]
- Sanborn, M.D.; Abelsohn, A.; Campbell, M.; Weir, E. Identifying and managing adverse environmental health effects: 3. Lead exposure. Can. Med. Assoc. J. 2002, 166, 1287–1292. [Google Scholar]
- Turner, A.; Hefzi, B. Levels and bioaccessibilities of metals in dusts from an arid environment. Water Air Soil Poll. 2010, 210, 483–491. [Google Scholar] [CrossRef]
- Nieder, R.; Benbi, D.K.; Reichl, F.X. Soil Components and Human Health; Springer: Dordrech, The Netherlands, 2018. [Google Scholar]
- Aguilera, A.; Cortés, J.L.; Delgado, C.; Aguilar, Y.; Aguilar, D.; Cejudo, R.; Quintana, P.; Goguitchaichvili, A.; Bautista, F. Heavy Metal Contamination (Cu, Pb, Zn, Fe, and Mn) in Urban Dust and its Possible Ecological and Human Health Risk in Mexican Cities. Front. Environ. Sci. 2022, 10, 854460. [Google Scholar] [CrossRef]
- Rouhani, A.; Iqbal, J.; Roman, M.; Hejcman, M. A review of urban dust pollution in Iranian cities with examples from other parts of the world. Int. J. Environ. Sci. Technol. 2024. Available online: https://link.springer.com/content/pdf/10.1007/s13762-024-05973-2.pdf (accessed on 18 November 2024).
- Nazzal, Y.; Orm, N.B.; Barbulescu, A.; Howari, F.; Sharma, M.; Badawi, A.E.; Al-Taani, A.A.; Iqbal, J.; Ktaibi, F.E.; Xavier, C.M.; et al. Study of Atmospheric Pollution and Health Risk Assessment: A Case Study for the Sharjah and Ajman Emirates (UAE). Atmosphere 2021, 12, 1442. [Google Scholar] [CrossRef]
- Huang, B.; Zhou, Y.; Chang, W.; Li, Z.; Zeng, H. Differential characteristics of heavy metal pollution in road dust and its ecological risk in different function areas of Shenzhen city. Ecol. Environ. Sci. 2019, 28, 2398–2408. [Google Scholar]
- Lu, X.; Wang, L.; Lei, K.; Huang, J.; Zhai, Y. Contamination assessment of copper, lead, zinc, manganese and nickel in street dust of Baoji NW China. J. Hazard. Mater. 2009, 161, 1058–1062. [Google Scholar] [CrossRef]
- Atiemo, S.M.; Ofosu, F.G.; Aboh, I.J.K.; Oppon, O.C. Levels and sources of heavy metal contamination in road dust in selected major highways of Accra Ghana. X-Ray Spectrom. 2012, 41, 105–110. [Google Scholar] [CrossRef]
- Bărbulescu, A.; Șerban, C.; Caramihai, S. Assessing the soil pollution using a genetic algorithm. Rom. J. Phys. 2021, 66, 806. [Google Scholar]
- Al-Taani, A.A.; Nazzal, Y.; Howari, F.M. Assessment of heavy metals in roadside dust along the Abu Dhabi–Al Ain National Highway, UAE. Environ. Earth Sci. 2019, 78, 411. [Google Scholar] [CrossRef]
- Priya, A.K.; Muruganandam, M.; Ali, S.S.; Kornaros, M. Clean-Up of Heavy Metals from Contaminated Soil by Phytoremediation: A Multidisciplinary and Eco-Friendly Approach. Toxics 2023, 11, 422. [Google Scholar] [CrossRef] [PubMed]
- Bărbulescu, A.; Dumitriu, C.S.; Popescu-Bodorin, N. Assessing atmospheric pollution and its impact on the human health. Atmosphere 2022, 13, 938. [Google Scholar] [CrossRef]
- Aili, A.; Xu, H.; Kasim, T.; Abulikemu, A. Origin and Transport Pathway of Dust Storm and Its Contribution to Particulate Air Pollution in Northeast Edge of Taklimakan Desert, China. Atmosphere 2021, 12, 113. [Google Scholar] [CrossRef]
- Liu, Q.; Huang, Z.; Hu, Z.; Dong, Q.; Li, S. Long-Range Transport and Evolution of Saharan Dust Over East Asia From 2007 to 2020. JGR Atmos. 2022, 127, e2022JD036974. [Google Scholar] [CrossRef]
- Middleton, N.; Kang, U. Sand and Dust Storms: Impact Mitigation. Sustainability 2017, 9, 1053. [Google Scholar] [CrossRef]
- Nazzal, Y.; Bărbulescu, A.; Howari, F.M.; Yousef, A.; Al-Taani, A.A.; Al Aydaroos, F.; Naseem, M. New insight to dust storm from historical records, UAE. Arab. J. Geosci. 2019, 12, 396. [Google Scholar] [CrossRef]
- Al Senafi, F.; Anis, A. Shamals and climate variability in the northern Arabian/Persian Gulf from 1973 to 2012. Int. J. Climatol. 2015, 35, 4509–4528. [Google Scholar] [CrossRef]
- Bărbulescu, A.; Dumitriu, C.S.; Popescu-Bodorin, N. On the aerosol optical depth series in the Arabian Gulf region. Rom. J. Phys. 2022, 67, 814. [Google Scholar]
- Bărbulescu, A.; Popescu—Bodorin, N. History-based long-term predictability of regional monthly fuzzy data. Stoch. Environ. Res. Risk Assess. 2019, 33, 1435–1441. [Google Scholar] [CrossRef]
- Bhagat, S.K.; Tung, T.M.; Yaseen, Z.M. Heavy metal contamination prediction using ensemble model: Case study of Bay sedimentation, Australia. J. Hazard. Mater. 2021, 403, 123492. [Google Scholar] [CrossRef] [PubMed]
- Ozigis, M.S.; Kaduk, J.D.; Jarvis, C.H. Mapping terrestrial oil spill impact using machine learning random forest and Landsat 8 OLI imagery: A case site within the Niger delta region of Nigeria. Environ. Sci. Pollut. Res. 2019, 26, 3621–3635. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Günal, E.; Budak, M.; Kılıç, M.; Cemek, B.; Sırrı, M. Combining spatial autocorrelation with artificial intelligence models to estimate spatial distribution and risks of heavy metal pollution in agricultural soils. Environ. Monit. Assess. 2023, 195, 317. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.; Wang, K.; Long, W.; Wang, K.; Hu, W.; Amable, G.S. A Comparative Assessment of the Influences of Human Impacts on Soil Cd Concentrations Based on Stepwise Linear Regression, Classification and Regression Tree, and Random Forest Models. PLoS ONE 2016, 11, e0151131. [Google Scholar] [CrossRef]
- MacQueen, J.B. Some Methods for Classification and Analysis of Multivariate Observations. In Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, Oakland, CA, USA, 21 June–18 July 1965; University of California Press: Oakland, CA, USA, 1967; pp. 281–297. [Google Scholar]
- Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. Available online: https://cdn.aaai.org/KDD/1996/KDD96-037.pdf (accessed on 21 December 2024).
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data mining, Inference, and Prediction; Springer: New York, NY, USA, 2009; pp. 485–586. [Google Scholar]
- Daghigh, H.; Tannant, D.D.; Daghigh, V.; Lichti, D.D.; Lindenbergh, R. A critical review of discontinuity plane extraction from 3D point cloud data of rock mass surfaces. Comput. Geosci. 2022, 169, 105241. [Google Scholar] [CrossRef]
- Pisner, D.A.; Schnyer, D.M. Chapter 6—Support vector machine. In Machine Learning; Mechelli, A., Vieira, S., Eds.; Academic Press: London, UK, 2020; pp. 101–121. [Google Scholar]
- Domingos, P.; Pazzani, M. Beyond independence: Conditions for the optimality of simple bayesian classifier. Mach. Learn. 1997, 29, 103–130. [Google Scholar] [CrossRef]
- Ankerst, M.; Breunig, M.M.; Kriegel, H.-P.; Sander, J. OPTICS: Ordering points to identify the clustering structure. ACM Sigmod Rec. 1999, 28, 49–60. [Google Scholar] [CrossRef]
- Anifowose, B.; Anifowose, F. Artificial intelligence and machine learning in environmental impact prediction for soil pollution management—Case for EIA process. Environ. Adv. 2024, 17, 100554. [Google Scholar] [CrossRef]
- Kahangwa, C.A. Application of Principal Component Analysis, Cluster Analysis, Pollution Index and Geoaccumulation Index in Pollution Assessment with Heavy Metals from Gold Mining Operations, Tanzania. J. Geosci. Environ. Prot. 2022, 10, 303–317. [Google Scholar] [CrossRef]
- Rao, B.R.M.; Fyzee, M.A.; Sujatha, G.; Wadodkar, M. Soil Resource Appraisal of Emirate of Dubai for Optimum Landuse Planning. Available online: https://www.isprs.org/proceedings/xxxvi/part4/brm_rao.pdf (accessed on 15 September 2024).
- Revelle, V. Package ‘psych’. Procedures for Psychological, Psychometric, and Personality Research. Available online: https://cran.r-project.org/web/packages/psych/psych.pdf (accessed on 10 September 2024).
- Husson, F.; Josse, J.; Le, S.; Mazet, J. Package ‘FactoMineR’. Multivariate Exploratory Data Analysis and Data Mining. Available online: https://cran.r-project.org/web/packages/FactoMineR/FactoMineR.pdf (accessed on 13 October 2024).
- Kassambara, A.; Mundt, F. Package ‘factoextra’. Extract and Visualize the Results of Multivariate Data Analyses. Available online: https://cran.r-project.org/web/packages/factoextra/factoextra.pdf (accessed on 13 October 2024).
- Ripley, B.; Venables, B.; Bates, D.M.; Hornik, K.; Gebhardt, A.; Firth, D. Package ‘MASS’. Support Functions and Datasets for Venables and Ripley’s MASS. Available online: https://cran.r-project.org/web/packages/MASS/MASS.pdf (accessed on 13 October 2024).
- Charrad, M.; Ghazzali, N.; Boiteau, V.; Niknafs, A. Package ‘NbClust’. Determining the Best Number of Clusters in a Data Set. Available online: https://cran.r-project.org/web/packages/NbClust/NbClust.pdf (accessed on 10 October 2024).
- Jolliffe, I.T. Principal Component Analysis, 2nd ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Abdi, H.; Williams, L.J. Principal Component Analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Kaiser, H.F. The application of electronic computers to factor analysis. Educ. Psychol. Meas. 1960, 20, 141–151. [Google Scholar] [CrossRef]
- Catell, R.B. The scree test for the number of factors. Multivar. Behav. Res. 1955, 1, 245–276. [Google Scholar] [CrossRef]
- Peres-Neto, P.R.; Jackson, D.A.; Somers, K.M. How many principal components? Stopping rules for determining the number of non-trivial axes revisited. Comput. Stat. Data Anal. 2005, 49, 974–997. [Google Scholar] [CrossRef]
- Cavanaugh, J.E.; Neath, A.A. The Akaike information criterion: Background, derivation, properties, application, interpretation, and refinements. Wires Comput. Stat. 2019, 11, e1460. [Google Scholar] [CrossRef]
- Schwarz, G.E. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Revelle, W.; Rocklin, T. Very Simple Structure: An Alternative Procedure For Estimating The Optimal Number Of Interpretable Factors. Multivar. Behav. Res. 1979, 14, 403–414. [Google Scholar] [CrossRef] [PubMed]
- Chapter 6. Constructs, Components, and Factor Models. Available online: https://www.personality-project.org/r/book/Chapter6.pdf (accessed on 1 September 2024).
- Balamurali, M.; Melkumyan, A. t-SNE Based Visualisation and Clustering of Geological Domain. In Neural Information Processing. ICONIP 2016. Lecture Notes in Computer Science; Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D., Eds.; Springer: Cham, Switzerland, 2016; Volume 9950, pp. 565–572. [Google Scholar]
- Birjandtalab, J.; Pouyan, M.B.; Nourani, M. Nonlinear dimension reduction for EEG-based epileptic seizure detection. In Proceedings of the 2016 IEEE-EMBS International Conference on Biomedical and Health Informatics, Las Vegas, NV, USA, 24–27 February 2016; pp. 595–598. [Google Scholar]
- Wallach, I.; Liliean, R. The Protein-Small-Molecule Database, A Non-Redundant Structural Resource for the Analysis of Protein-Ligand Binding. Bioinformatics 2009, 25, 615–620. [Google Scholar] [CrossRef] [PubMed]
- Kobak, D.; Berens, P. The art of using t-SNE for single-cell transcriptomics. Nat. Commun. 2019, 10, 5416. [Google Scholar] [CrossRef] [PubMed]
- Jamieson, A.R.; Giger, M.L.; Drukker, K.; Lui, H.; Yuan, Y.; Bhooshan, N. Exploring Nonlinear Feature Space Dimension Reduction and Data Representation in Breast CADx with Laplacian Eigenmaps and t-SNE. Med. Phys. 2010, 37, 339–351. [Google Scholar] [CrossRef] [PubMed]
- Gashi, I.; Stankovic, V.; Leita, C.; Thonnard, O. An Experimental Study of Diversity with Off-the-shelf AntiVirus Engines. In Proceedings of the 2009 Eighth IEEE International Symposium on Network Computing and Applications, Cambridge, MA, USA, 9–11 July 2009; pp. 4–11. [Google Scholar]
- Liu, H.; Yang, J.; Ye, M.; James, S.C.; Tang, Z.; Dong, J.; Xing, T. Using t-distributed Stochastic Neighbor Embedding (t-SNE) for cluster analysis and spatial zone delineation of groundwater geochemistry data. J. Hydrol. 2021, 597, 126146. [Google Scholar] [CrossRef]
- Xiao, C.; Hong, S.; Huang, W. Optimizing graph layout by t-SNE perplexity estimation. Int. J. Data Sci. Anal. 2023, 15, 159–171. [Google Scholar] [CrossRef]
- van der Maaten, L.J.P.; Hinton, G.E. Visualizing Data Using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Wattenberg, M.; Viégas, F.; Johnson, I. How to Use t-SNE Effectively. Distill, 2016. Available online: https://distill.pub/2016/misread-tsne/ (accessed on 10 September 2024).
- MacKay, D.J.C. Information Theory, Inference, and Learning Algorithms; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Qian, N. On the momentum term in gradient descent learning algorithms. Neural Netw. 1999, 12, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Gao, B.; Zhou, H.; Ju, X.; Hao, H.; Yin, S. Health risk assessment of heavy metals in road dusts in urban parks of Beijing, China. Procedia Environ. Sci. 2013, 18, 299–309. [Google Scholar] [CrossRef]
- U.S. EPA. Exposure Factors Handbook (1997, Final Report); U.S. Environmental Protection Agency: Washington, DC, USA, 1997; EPA/600/P-95/002F a-c. Available online: https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NCEA&dirEntryId=12464 (accessed on 2 October 2020).
- U.S. EPA. Risk Assessment Guidance for Superfund, Vol. 1: Human Health Evaluation Manual. EPA/540/1-89/002. Available online: https://www.epa.gov/sites/default/files/2015-09/documents/rags_a.pdf (accessed on 25 October 2024).
- U.S. EPA. Risk Assessment Guidance for Superfund: Vol. III—Part A, Process for Conducting Probabilistic Risk Assessment. 2001. Available online: https://www.epa.gov/risk/risk-assessment-guidance-superfund-rags-volume-iii-part (accessed on 15 October 2024).
- Taghavi, M.; Darvishiyan, M.; Momeni, M.; Eslami, H.; Fallahzadeh, R.A.; Zarei, A. Ecological risk assessment of trace elements (TEs) pollution and human health risk exposure in agricultural soils used for saffron cultivation. Sci. Rep. 2023, 13, 4556. [Google Scholar] [CrossRef]
- Miletić, A.; Lučić, M.; Onjia, A. Exposure Factors in Health Risk Assessment of Heavy Metal(loid)s in Soil and Sediment. Metals 2023, 13, 1266. [Google Scholar] [CrossRef]
- Toxicity Values for Inhalation Exposure. April 2023. Available online: https://dep.nj.gov/wp-content/uploads/boss/risk-screening/toxall-04-2023.pdf (accessed on 10 December 2024).
- Muhammad, N.; Nafees, M. Geo-chemical investigation and health risk assessment of potential toxic elements in industrial wastewater irrigated soil: A geo-statistical approach. J. Biodivers. Environ. Sci. 2018, 12, 367–380. [Google Scholar]
- Kolo, M.T.; Khandaker, M.U.; Amin, Y.M.; Abdullah, W.H.B.; Bradley, D.A.; Alzimami, K.S. Assessment of health risk due to the exposure of heavy metals in soil around mega coal-fred cement factory in Nigeria. Results Phys. 2018, 11, 755–762. [Google Scholar] [CrossRef]
- Adimalla, N. Heavy metals contamination in urban surface soils of Medak province, India, and its risk assessment and spatial distribution. Environ. Geochem. Health 2020, 42, 59–75. [Google Scholar] [CrossRef]
- Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef]
- Sammon, J.W., Jr. A nonlinear mapping for data structure analysis. IEEE Trans. Comput. 1969, 100, 401–409. [Google Scholar] [CrossRef]
- Henderson, P. Sammon Mapping. Available online: https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/AV0910/henderson.pdf (accessed on 10 October 2024).
- Saliba, Y.; Bărbulescu, A. A Downscaling MERRA-2 Reanalysis PM2.5 series over the Arabian Gulf by Inverse Distance Weighting, Bicubic Spline Smoothing, and Spatio-temporal Kriging. Toxics 2024, 12, 177. [Google Scholar] [CrossRef] [PubMed]
- Nazzal, Y.; Bărbulescu, A.; Sharma, M.; Howari, F.; Naseem, M. Evaluating the Contamination by Indoor Dust in Dubai. Toxics 2023, 11, 933. [Google Scholar] [CrossRef]
Factor | Definition | Value |
---|---|---|
c | concentration of the heavy metal in the sample [mg/kg] computed here | |
Ring | dust ingestion rate [mg/day] | 100 |
AT | average time [day] | 365 × ED |
BW | mean weight of body [kg] | 70 |
EF | frequency of exposure [days/year] | 365 |
ED | duration of exposure [year] | 24 |
SA | surface of the skin in contact with the dust [cm2] | 5700 |
Rinh | rate of inhalation [m3/day] | 20 |
SL | factor of skin adherence for dust [mg/cm2] | 0.07 |
ABS | factor of dermal absorption [-] | 0.001 |
PEF | factor of particle emission [m3/kg] | 1.36 × 109 |
Metal | Ingestion | Dermal | Inhalation |
---|---|---|---|
Ba | 7 × 10−2 | 14 × 10−3 | 5 × 10−4 |
Cd | 5 × 10−4 | 5 × 10−6 | 2 × 10−5 |
Co | 3 × 10−2 | 5 × 10−6 | 6 × 10−6 |
Cr | 3 × 10−3 | 15 × 10−6 | 1.4 × 10−4 |
Cu | 4 × 10−2 | 12 × 10−3 | 1 × 10−4 |
Fe | 0.7 | 2.2 × 10−4 | 7 × 10−3 |
Mn | 2 × 10−2 | 8 × 10−4 | 5 × 10−5 |
Ni | 2 × 10−2 | 54 × 10−4 | 2 × 10−5 |
Pb | 14 × 10−4 | 42 × 10−5 | 1 × 10−4 |
Zn | 0.300 | 0.0600 | 0.300 |
Number of PCs | 1 | 2 | 3 | 4 |
---|---|---|---|---|
AIC | 102.13 | 86.277 | 74.23 | 62.12 |
BIC | 102.77 | 87.55 | 76.14 | 64.68 |
Metal | ML2 | ML3 | ML1 | h2 | u2 | Com |
---|---|---|---|---|---|---|
Cd | −0.45 | 0.03 | 0.64 | 0.59 | 0. 413 | 1.8 |
Cr | −0.15 | 0.83 | −0.15 | 0.62 | 0.383 | 1.1 |
Cu | 0.53 | 0.04 | −0.08 | 0.31 | 0.688 | 1.1 |
Ni | −0.11 | −0.08 | 0.37 | 0.17 | 0.832 | 1.3 |
Pb | 0.47 | 0.23 | 0.31 | 0.49 | 0.510 | 2.2 |
Co | 0.09 | −0.03 | 0.99 | 1.00 | 0.005 | 1.0 |
Ba | 0.43 | 0.41 | −0.21 | 0.58 | 0.415 | 2.5 |
Fe | 0.86 | 0.11 | 0.07 | 0.86 | 0.137 | 1.0 |
Mn | 0.26 | 0.77 | 0.18 | 0.91 | 0.093 | 1.3 |
Zn | 0.97 | −0.03 | −0.02 | 0.91 | 0.091 | 1.0 |
Metal | Min/Site | Max/Site | Mean | Min/Site | Max/Site | Mean | Min/Site | Max/Site | Mean |
---|---|---|---|---|---|---|---|---|---|
Ba | 4.430 | 16.900 | 9.470 | 0.931 | 3.540 | 1.990 | 25.300 | 96.100 | 54.000 |
D2 | D9 | D2 | D9 | D2 | D9 | ||||
Cd | 0.294 | 0.926 | 0.544 | 7.970 | 25.100 | 14.800 | |||
D7 | D1, D12 | D7 | D1, D12 | D7 | D1, D12 | ||||
Co | 0.663 | 2.85 | 1.230 | 8.820 | 37.900 | 16.4 | 0.325 | 1.400 | 0.605 |
D12 | D1 | D12 | D1 | D12 | D1 | ||||
Cr | 0.164 | 0.889 | 0.383 | 0.803 | 4.360 | 1.880 | 0.803 | 118.000 | 50.900 |
D1 | D14 | D1 | D14 | D1 | D14 | ||||
Cu | 1.540 | 8.810 | 3.590 | 0.576 | 3.240 | 1.320 | 15.400 | 87.900 | 35.800 |
D12 | D6 | D12 | D6 | D12 | D6 | ||||
Fe | 427.00 | 1800 | 1090.00 | 243.000 | 1030.00 | 625.00 | 243.00 | 1030.00 | 623.000 |
D3 | D6 | D3 | D6 | D3 | D6 | ||||
Mn | 3.980 | 7.820 | 5.640 | 2.930 | 5.750 | 4.150 | 79.500 | 156.000 | 113.000 |
D8 | D5 | D8 | D5 | D8 | D5 | ||||
Ni | 3.020 | 15.500 | 5.760 | 2.220 | 11.400 | 4.230 | 60.300 | 310.000 | 115.000 |
D11 | D8 | D11 | D8 | D11 | D8 | ||||
Pb | 0.145 | 8.300 | 41.200 | 19.300 | 0.306 | 1.529 | 0.710 | ||
D12 | D9 | D12 | D9 | D12 | D9 | ||||
Zn | 518.00 | 2500.00 | 1340.00 | 2.540 | 12.400 | 5.590 | 0.689 | 33.500 | 179.000 |
D14 | D5 | D14 | D5 | D14 | D5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saliba, Y.; Bărbulescu, A. Assessing Pollution with Heavy Metals and Its Impact on Population Health. Toxics 2025, 13, 52. https://doi.org/10.3390/toxics13010052
Saliba Y, Bărbulescu A. Assessing Pollution with Heavy Metals and Its Impact on Population Health. Toxics. 2025; 13(1):52. https://doi.org/10.3390/toxics13010052
Chicago/Turabian StyleSaliba, Youssef, and Alina Bărbulescu. 2025. "Assessing Pollution with Heavy Metals and Its Impact on Population Health" Toxics 13, no. 1: 52. https://doi.org/10.3390/toxics13010052
APA StyleSaliba, Y., & Bărbulescu, A. (2025). Assessing Pollution with Heavy Metals and Its Impact on Population Health. Toxics, 13(1), 52. https://doi.org/10.3390/toxics13010052