The Effects of Disinfection Byproduct 2,6-Dichloro-1,4-benzoquinone on the Cyanobacterium Microcystis aeruginosa: From the Perspectives of Biochemistry and Non-Targeted Metabolomics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and M. aeruginosa Cultivation
2.2. Measurements of Growth and the Contents of Chl-a, Carotenoid, and Protein
2.3. ATP Content and Glucose Content Detection
2.4. Determination of Oxidative Stress Biomarkers
2.5. Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) Observations
2.6. Detection of Microcystin-LR in M. aeruginosa
2.7. Extraction of Metabolites and Nontargeted Metabolomics Analysis
2.8. Quantitative Real-Time PCR Analysis
2.9. Reproducibility of the Results and Statistical Analysis
3. Results
3.1. Physiological Responses of M. aeruginosa Exposed to 2,6-DCBQ
3.1.1. Inhibitions of Growth, Photosynthetic Pigments, and Protein Contents
3.1.2. ATP and Glucose Contents
3.1.3. ROS Level, LPO Content, and Detection of Antioxidant Activities
3.2. Cell Morphology and Ultrastructure Characteristics
3.3. MC-LR Content
3.4. Nontarget Metabolomics Analysis
3.4.1. Metabolite Detection and Analysis
3.4.2. Identification of Differential Metabolites (DMs) and Metabolic Pathway Analysis
3.5. Gene Expressions
4. Discussion
4.1. Physiological Responses of M. aeruginosa Exposed to 2,6-DCBQ
4.1.1. Growth and Photosynthetic Pigments
4.1.2. ATP, Glucose, and Protein Contents
4.1.3. Oxidative Stress and Membrane Permeability
4.1.4. Production and Release of MC-LR
4.2. Nontargeted Metabolomics Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The Species Severe Acute Respiratory Syndrome-Related Coronavirus: Classifying 2019-nCoV and Naming It SARS-CoV-2. Nat. Microbiol. 2020, 5, 536–544. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, Y.; Han, L.; Guo, X.; Wu, Z.; Fang, J.; Hou, B.; Cai, Y.; Jiang, J.; Yang, Z. Impacts of COVID-19 Pandemic on the Aquatic Environment Associated with Disinfection Byproducts and Pharmaceuticals. Sci. Total Environ. 2022, 811, 151409. [Google Scholar] [CrossRef]
- Wang, W.; Qian, Y.; Li, J.; Moe, B.; Huang, R.; Zhang, H.; Hrudey, S.E.; Li, X.-F. Analytical and Toxicity Characterization of Halo-Hydroxyl-Benzoquinones as Stable Halobenzoquinone Disinfection Byproducts in Treated Water. Anal. Chem. 2014, 86, 4982–4988. [Google Scholar] [CrossRef]
- He, K.; Xue, B.; Yang, X.; Wang, S.; Li, C.; Zhang, X.; Zhao, C.; Wang, X.; Qiu, Z.; Shen, Z.; et al. Low-Concentration of Trichloromethane and Dichloroacetonitrile Promote the Plasmid-Mediated Horizontal Transfer of Antibiotic Resistance Genes. J. Hazard. Mater. 2022, 425, 128030. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, H.; Yang, X.; Wang, L. Aquatic Toxicity and Aquatic Ecological Risk Assessment of Wastewater-Derived Halogenated Phenolic Disinfection Byproducts. Sci. Total Environ. 2022, 809, 151089. [Google Scholar] [CrossRef] [PubMed]
- Usman, M.; Kuckelkorn, J.; Kämpfe, A.; Zwiener, C.; Wintgens, T.A.; Linnemann, V. Identification of Disinfection By-Products (DBP) in Thermal Water Swimming Pools Applying Non-Target Screening by LC-/GC-HRMS. J. Hazard. Mater. 2023, 449, 130981. [Google Scholar] [CrossRef] [PubMed]
- Qin, F.; Zhao, Y.-Y.; Zhao, Y.; Boyd, J.M.; Zhou, W.; Li, X.-F. A Toxic Disinfection By-Product, 2,6-Dichloro-1,4-Benzoquinone, Identified in Drinking Water. Angew. Chem. 2010, 49, 790–792. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Anichina, J.; Lu, X.; Bull, R.J.; Krasner, S.W.; Hrudey, S.E.; Li, X.-F. Occurrence and Formation of Chloro- and Bromo-Benzoquinones during Drinking Water Disinfection. Water Res. 2012, 46, 4351–4360. [Google Scholar] [CrossRef]
- Wu, H.; Long, K.; Sha, Y.; Lu, D.; Xia, Y.; Mo, Y.; Yang, Q.; Zheng, W.; Yang, M.; Wei, X. Occurrence and Toxicity of Halobenzoquinones as Drinking Water Disinfection Byproducts. Sci. Total Environ. 2021, 770, 145277. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Y.-T.; Hu, Y.; Lu, W.-W.; Cao, J.-J.; Wang, F.; Han, X.; Lu, W.-Q.; Liu, A.-L. Toxicity of 2,6-Dichloro-1,4-Benzoquinone and Five Regulated Drinking Water Disinfection by-Products for the Caenorhabditis Elegans Nematode. J. Hazard. Mater. 2017, 321, 456–463. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Gong, T.; Zhu, H.; Wang, J.; Li, Z.; Chen, H.; Huang, Z.; Zhang, M.; Xian, Q. Formation and Decomposition of New Iodinated Halobenzoquinones during Chloramination in Drinking Water. Environ. Sci. Technol. 2020, 54, 5237–5248. [Google Scholar] [CrossRef] [PubMed]
- Cuthbertson, A.A.; Bach, C.; Richardson, S.D.; Dauchy, X. A Novel Automated Method for the Quantification of Ten Halobenzoquinones in Drinking Water Using Online Solid-Phase Extraction Coupled with Liquid Chromatography Tandem Mass Spectrometry. J. Chromatogr. A 2020, 1612, 460642. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Chen, X.; Li, W.; Zhang, X.; Wang, G.; Wang, J.; Liang, L.; Yang, F.; Li, J.; Li, J. Oxidative Stress as a Key Event in 2,6-Dichloro-1,4-Benzoquinone-Induced Neurodevelopmental Toxicity. Ecotoxicol. Environ. Saf. 2023, 263, 115357. [Google Scholar] [CrossRef]
- Huisman, J.; Codd, G.A.; Paerl, H.W.; Ibelings, B.W.; Verspagen, J.M.H.; Visser, P.M. Cyanobacterial Blooms. Nat. Rev. Microbiol. 2018, 16, 471–483. [Google Scholar] [CrossRef] [PubMed]
- Hallegraeff, G.; Enevoldsen, H.; Zingone, A. Global Harmful Algal Bloom Status Reporting. Harmful Algae 2021, 102, 101992. [Google Scholar] [CrossRef]
- Yan, T.; Li, X.-D.; Tan, Z.-J.; Yu, R.-C.; Zou, J.-Z. Toxic Effects, Mechanisms, and Ecological Impacts of Harmful Algal Blooms in China. Harmful Algae 2022, 111, 102148. [Google Scholar] [CrossRef]
- Zhang, Y.; Whalen, J.K.; Cai, C.; Shan, K.; Zhou, H. Harmful Cyanobacteria-Diatom/Dinoflagellate Blooms and Their Cyanotoxins in Freshwaters: A Nonnegligible Chronic Health and Ecological Hazard. Water Res. 2023, 233, 119807. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; He, H.; Yang, G.; Liu, K.; Xi, Y.; Li, Z.; Luo, Y.; Liao, Z.; Dao, G.; Ren, X.; et al. The Environmental Risks of Antiviral Drug Arbidol in Eutrophic Lake: Interactions with Microcystis aeruginosa. J. Hazard. Mater. 2024, 466, 133609. [Google Scholar] [CrossRef]
- Wang, C.; Wang, R.; Hu, L.; Xi, M.; Wang, M.; Ma, Y.; Chen, J.; Liu, C.; Song, Y.; Ding, N.; et al. Metabolites and Metabolic Pathways Associated with Allelochemical Effects of Linoleic Acid on Karenia Mikimotoi. J. Hazard. Mater. 2023, 447, 130815. [Google Scholar] [CrossRef]
- Pan, D.; Pavagadhi, S.; Umashankar, S.; Rai, A.; Benke, P.I.; Rai, M.; Saxena, G.; Gangu, V.; Swarup, S. Resource Partitioning Strategies during Toxin Production in Microcystis aeruginosa Revealed by Integrative Omics Analysis. Algal Res. 2019, 42, 101582. [Google Scholar] [CrossRef]
- Zhu, X.; Dao, G.; Tao, Y.; Zhan, X.; Hu, H. A Review on Control of Harmful Algal Blooms by Plant-Derived Allelochemicals. J. Hazard. Mater. 2021, 401, 123403. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, A.; Klemenčič, M.; Sueldo, D.J.; Rzymski, P.; Giannuzzi, L.; Martin, M.V. Cell Death in Cyanobacteria: Current Understanding and Recommendations for a Consensus on Its Nomenclature. Front. Microbiol. 2021, 12, 631654. [Google Scholar] [CrossRef]
- Wang, H.; Jin, M.; Mao, W.; Chen, C.; Fu, L.; Li, Z.; Du, S.; Liu, H. Photosynthetic Toxicity of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) on Green Algae Scenedesmus Obliquus. Sci. Total Environ. 2020, 707, 136176. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Zhu, X.; Zhu, Y.; Huang, Y.; Chen, B. Ecotoxicological Effects of DBPs on Freshwater Phytoplankton Communities in Co-Culture Systems. J. Hazard. Mater. 2022, 421, 126679. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Ni, J.; Tian, F.; Ji, X.; Hou, M.; Li, Y.; Yang, L.; Wang, R.; Xu, W.; Meng, L. Toxicity Effects of Disinfection Byproduct Chloroacetic Acid to Microcystis aeruginosa: Cytotoxicity and Mechanisms. J. Environ. Sci. 2023, 129, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Robillot, C.; Vinh, J.; Puiseux-Dao, S.; Hennion, M.-C. Hepatotoxin Production Kinetics of the Cyanobacterium Microcystis aeruginosa PCC 7820, as Determined by HPLC-Mass Spectrometry and Protein Phosphatase Bioassay. Environ. Sci. Technol. 2000, 34, 3372–3378. [Google Scholar] [CrossRef]
- Du, C.; Sang, W.; Xu, C.; Jiang, Z.; Wang, J.; Fang, Y.; Zhu, C.; Wizi, J.; Akram, M.A.; Ni, L.; et al. Integrated Transcriptomic and Metabolomic Analysis of Microcystis aeruginosa Exposed to Artemisinin Sustained-Release Microspheres. J. Hazard. Mater. 2023, 443, 130114. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhu, Q.; Chen, C.; Xie, B.; Tang, B.; Fan, M.; Hu, Q.; Liao, Z.; Yan, X. The Growth Inhibitory Effects and Non-Targeted Metabolomic Profiling of Microcystis aeruginosa Treated by Scenedesmus sp. Chemosphere 2023, 338, 139446. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, Q.; Feng, J.; Lv, J.-P.; Xie, S.-L. Effect of High-Doses Pyrogallol on Oxidative Damage, Transcriptional Responses and Microcystins Synthesis in Microcystis aeruginosa TY001 (Cyanobacteria). Ecotoxicol. Environ. Saf. 2016, 134, 273–279. [Google Scholar] [CrossRef]
- Chen, Z.; Yang, H.; Pavletich, N.P. Mechanism of Homologous Recombination from the RecA–ssDNA/dsDNA Structures. Nature 2008, 453, 489–494. [Google Scholar] [CrossRef] [PubMed]
- Wan, L.; Wu, Y.; Zhang, B.; Yang, W.; Ding, H.; Zhang, W. Effects of Moxifloxacin and Gatifloxacin Stress on Growth, Photosynthesis, Antioxidant Responses, and Microcystin Release in Microcystis aeruginosa. J. Hazard. Mater. 2021, 409, 124518. [Google Scholar] [CrossRef] [PubMed]
- Cupellini, L.; Calvani, D.; Jacquemin, D.; Mennucci, B. Charge Transfer from the Carotenoid Can Quench Chlorophyll Excitation in Antenna Complexes of Plants. Nat. Commun. 2020, 11, 662. [Google Scholar] [CrossRef]
- Tiwari, S.; Patel, A.; Prasad, S.M. Phytohormone Up-Regulates the Biochemical Constituent, Exopolysaccharide and Nitrogen Metabolism in Paddy-Field Cyanobacteria Exposed to Chromium Stress. BMC Microbiol. 2020, 20, 206. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X.; Zheng, X.; Yang, M.; Gao, X.; Huang, J.; Zhang, L.; Fan, Z. Toxic Effects and Mechanisms of PFOA and Its Substitute GenX on the Photosynthesis of Chlorella Pyrenoidosa. Sci. Total Environ. 2021, 765, 144431. [Google Scholar] [CrossRef]
- Ye, J.; Hua, S.; Liu, S.; Tian, F.; Ji, X.; Li, Y.; Hou, M.; Xu, W.; Meng, L.; Sun, L. Enantioselective Effects of Chiral Fragrance Carvone (L- and D-Carvone) on the Physiology, Oxidative Damage, Synthesis, and Release of Microcystin-LR in Microcystis aeruginosa. Sci. Total Environ. 2022, 853, 158631. [Google Scholar] [CrossRef] [PubMed]
- Langklotz, S.; Baumann, U.; Narberhaus, F. Structure and Function of the Bacterial AAA Protease FtsH. Biochim. Biophys. Acta 2012, 1823, 40–48. [Google Scholar] [CrossRef]
- Middepogu, A.; Hou, J.; Gao, X.; Lin, D. Effect and Mechanism of TiO2 Nanoparticles on the Photosynthesis of Chlorella Pyrenoidosa. Ecotoxicol. Environ. Saf. 2018, 161, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Mittler, R.; Vanderauwera, S.; Gollery, M.; Van Breusegem, F. Reactive Oxygen Gene Network of Plants. Trends Plant Sci. 2004, 9, 490–498. [Google Scholar] [CrossRef]
- Huang, L.; Lu, D.; Diao, J.; Zhou, Z. Enantioselective Toxic Effects and Biodegradation of Benalaxyl in Scenedesmus Obliquus. Chemosphere 2012, 87, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Chen, X.; Shao, B. Oxidative Damage and Cytotoxicity of Perfluorooctane Sulfonate on Chlorella Vulgaris. Bull. Environ. Contam. Toxicol. 2017, 98, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Aderemi, A.O.; Novais, S.C.; Lemos, M.F.L.; Alves, L.M.; Hunter, C.; Pahl, O. Oxidative Stress Responses and Cellular Energy Allocation Changes in Microalgae Following Exposure to Widely Used Human Antibiotics. Aquat. Toxicol. 2018, 203, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.-F.; Liu, L.; Gong, Y.-X.; Zhu, B.; Liu, G.-L.; Wang, G.-X. Potential Toxic Effect of Trifloxystrobin on Cellular Microstructure, mRNA Expression and Antioxidant Enzymes in Chlorella Vulgaris. Environ. Toxicol. Pharmacol. 2014, 37, 1040–1047. [Google Scholar] [CrossRef]
- Frías-Gómez, S.A.; Hernández Hernández, L.H.; Powell, M.S.; Álvarez-González, C.A.; Cortés-Jacinto, E.; Cigarroa-Ruiz, L.; Arellano-Carrasco, G. Effect of Dietary Protein, Lipid and Carbohydrate Ratio on Growth, Digestive and Antioxidant Enzyme Activity of Prawn Macrobrachium Acanthurus Postlarvae. Aquacult. Rep. 2023, 30, 101578. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, X.; Li, Y.; Xie, P. A Meta-Analysis on the Toxicity of Microcystin-LR to Fish and Mammals. Environ. Pollut. 2023, 330, 121780. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Chen, Q.; Zhang, J.; Dong, J.; Ao, Y.; Wang, M.; Wang, X. Long-Term Exposure to Antibiotic Mixtures Favors Microcystin Synthesis and Release in Microcystis aeruginosa with Different Morphologies. Chemosphere 2019, 235, 344–353. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Gao, B.; Feng, S. Combined Effects of Two Antibiotic Contaminants on Microcystis aeruginosa. J. Hazard. Mater. 2014, 279, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, F.; Chen, X.; Zhang, J.; Gao, B. Influence of Coexisting Spiramycin Contaminant on the Harm of Microcystis aeruginosa at Different Nitrogen Levels. J. Hazard. Mater. 2015, 285, 517–524. [Google Scholar] [CrossRef] [PubMed]
- Ceballos-Laita, L.; Calvo-Begueria, L.; Lahoz, J.; Bes, M.-T.; Fillat, M.F.; Peleato, M.-L. γ-Lindane Increases Microcystin Synthesis in Microcystis aeruginosa PCC7806. Mar. Drugs 2015, 13, 5666–5680. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, S.; Zhang, J.; Li, X.; Gao, B. Stimulation Effects of Ciprofloxacin and Sulphamethoxazole in Microcystis aeruginosa and Isobaric Tag for Relative and Absolute Quantitation-Based Screening of Antibiotic Targets. Mol. Ecol. 2017, 26, 689–701. [Google Scholar] [CrossRef] [PubMed]
- Chen, M. Chlorophyll Modifications and Their Spectral Extension in Oxygenic Photosynthesis. Annu. Rev. Biochem. 2014, 83, 317–340. [Google Scholar] [CrossRef]
- Lyu, J.; Gao, R.; Guo, Z. Galactosyldiacylglycerols: From a Photosynthesis-Associated Apparatus to Structure-Defined in Vitro Assembling. J. Agric. Food Chem. 2021, 69, 8910–8928. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhao, C.; Zhu, X.; Zhu, Y.; Tian, R. Multiple Inhibitory Effects of Succinic Acid on Microcystis aeruginosa: Morphology, Metabolomics, and Gene Expression. Environ. Technol. 2022, 43, 3121–3130. [Google Scholar] [CrossRef]
- Sato, N.; Mori, N.; Hirashima, T.; Moriyama, T. Diverse Pathways of Phosphatidylcholine Biosynthesis in Algae as Estimated by Labeling Studies and Genomic Sequence Analysis. Plant J. 2016, 87, 281–292. [Google Scholar] [CrossRef] [PubMed]
- Reilman, E.; Mars, R.A.T.; van Dijl, J.M.; Denham, E.L. The Multidrug ABC Transporter BmrC/BmrD of Bacillus Subtilis Is Regulated via a Ribosome-Mediated Transcriptional Attenuation Mechanism. Nucleic Acids Res. 2014, 42, 11393–11407. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Wang, Z.; Wu, L.; Liu, C.; Meng, L.; Tian, F.; Hou, M.; Lin, H.; Ye, J. The Effects of Disinfection Byproduct 2,6-Dichloro-1,4-benzoquinone on the Cyanobacterium Microcystis aeruginosa: From the Perspectives of Biochemistry and Non-Targeted Metabolomics. Toxics 2025, 13, 64. https://doi.org/10.3390/toxics13010064
Zhang T, Wang Z, Wu L, Liu C, Meng L, Tian F, Hou M, Lin H, Ye J. The Effects of Disinfection Byproduct 2,6-Dichloro-1,4-benzoquinone on the Cyanobacterium Microcystis aeruginosa: From the Perspectives of Biochemistry and Non-Targeted Metabolomics. Toxics. 2025; 13(1):64. https://doi.org/10.3390/toxics13010064
Chicago/Turabian StyleZhang, Tianqi, Zhaoyang Wang, Liang Wu, Chaonan Liu, Liang Meng, Fuxiang Tian, Meifang Hou, Haizhuan Lin, and Jing Ye. 2025. "The Effects of Disinfection Byproduct 2,6-Dichloro-1,4-benzoquinone on the Cyanobacterium Microcystis aeruginosa: From the Perspectives of Biochemistry and Non-Targeted Metabolomics" Toxics 13, no. 1: 64. https://doi.org/10.3390/toxics13010064
APA StyleZhang, T., Wang, Z., Wu, L., Liu, C., Meng, L., Tian, F., Hou, M., Lin, H., & Ye, J. (2025). The Effects of Disinfection Byproduct 2,6-Dichloro-1,4-benzoquinone on the Cyanobacterium Microcystis aeruginosa: From the Perspectives of Biochemistry and Non-Targeted Metabolomics. Toxics, 13(1), 64. https://doi.org/10.3390/toxics13010064