Nanotoxicology and Metalloestrogens: Possible Involvement in Breast Cancer
Abstract
:1. Introduction
Uses | Material |
---|---|
Surface/coating | Ceramics and scratch-resistant surfaces. |
Textiles | Wrinkle-free and water-resistant. |
Sports | Protective gear/helmets and antimicrobial material in fitness areas (silver and copper oxides, carbon nanotubes). |
Foods/Edibles | Preservatives (mainly titanium dioxide). |
Cosmetics | Sunscreens (zinc oxide). |
Military | Biosensors—detect hazardous materials. |
Uniform material—lightweight, thermal protection and camouflage, projectile resistance. | |
Communications—lightweight and can be easily worn in normal garments. | |
Medical—sensors in wearable materials. | |
Weapons—lightweight, increased destructive force. | |
Aerospace | Lighter and more durable material for aircraft. |
Chemistry/synthesis | Catalyst for chemical reactions. |
Construction | Wood—improved sustainability and endurance of wood-related products. |
Steel—improved tensile strength, durability, and longevity. | |
Concrete—improved strength and composition particle size for alumina and silica. | |
Glass—use of titanium and silica oxides to improve cleaning ability and fire protection. | |
Coatings. |
2. Metals and Nanomaterials
2.1. Treatment of Cancer
2.2. Lack of Toxicity Testing and Potential for Pro-Cancer Properties
2.3. Metalloestrogens and Breast Cancer
Estrogenic class | Representative metals [65] | Potential metals | |
---|---|---|---|
Metalloestrogens | Aluminum | Copper | Silver |
Antimony | Lead | Zinc | |
Arsenite | Mercury | Titanium | |
Barium | Nickel | (some evidence—needs more study) | |
Cadmium | Selenite | ||
Chromium (II) | Tin | ||
Cobalt | Vanadate |
3. Toxicity of Key Environmental Metals
3.1. Cadmium
3.2. Aluminum
3.3. Silver
3.4. Titanium
3.5. Silica or Silicon Oxide
3.6. Zinc
4. Direct Mechanisms for Metal Involvement in Breast Cancer
5. Discussion and Conclusions
- The toxicity of metalloestrogens is real, and there are metals (such as cadmium and aluminum) that are potent metalloestrogens, and are also used in some formations of nanoparticles. One concern is whether it is the ion or the nanoparticle that exerts the biological effect. Although some evidence suggests nanoparticles can be toxic, there is more data available describing the toxic effects of various metal ions, leading to extrapolating toxic effects from metal ions to nanoparticles. Therefore, it may be a combination of cellular effects that is observed.
- There is data for other metals (such as silver and titanium) that is equivocal at best regarding the metals' effects on estrogen receptors. Initially, the focus was the actions of metal ions at estrogen receptors, and their ability to alter estrogenic effects on breast tissue. It is now increasingly clear that many metals exert cellular effects through multiple systems, and the combination of effects will alter cellular function.
- There is a possibility that some metals/nanoparticles exert indirect effects through cellular signaling systems to promote the formation of tumors. Many of the metals examined have been shown to increase production of reactive oxygen species and DNA fragmentation. Both responses may lead to aberrant cell growth and cancer development.
- Not all metals used in nanoparticle formation cause cancer; in fact, some metals have demonstrated usefulness in combating cancer by being actively taken into cancerous cells where they damage the intracellular machinery of the cell, resulting in cellular death [138].
Acknowledgments
Conflicts of Interest
References
- United States Environmental Protection Agency. Research on evaluating nanomaterials for chemical safety. Available online: http://www2.epa.gov/chemical-research/research-evaluating-nanomaterials-chemical-safety (accessed on 24 June 2015).
- Hallock, M.F.; Greenley, P.; DiBerardinis, L.; Kallin, D. Potential risks of nanomaterials and how to safely handle materials of uncertain toxicity. J. Chem. Health Saf. 2009, 1, 16–23. [Google Scholar]
- Buzea, C.; Pacheco, I.I.; Robbie, K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2007, 2, MR17–MR71. [Google Scholar] [PubMed]
- Lu, P.J.; Huang, S.C.; Chen, Y.P.; Chiueh, L.-C.; Shih, D.Y.-C. Analysis of titanium dioxide and zine oxide nanoparticles in cosmetics. J. Food Drug Anal. 2015, 23, 587–594. [Google Scholar]
- The Project on Emerging Nanotechnologies. Available online: http://www.nanotechproject.org/ (accessed on 29 June 2015).
- Mnyusiwall, A.; Daar, A.S.; Singer, P.A. “Mind the gap”: Science and ethics in nanotechnology. Nanotechnology 2003, 14, R9–R13. [Google Scholar]
- Turco, R.F.; Bischoff, M.; Tong, Z.H.; Nies, L. Environmental implications of nanomaterials: Are we studying the right thing? Curr. Opin. Biotech. 2011, 22, 527–532. [Google Scholar] [PubMed]
- Khan, H.A.; Shanker, R. Toxicity of nanomaterials. BioMed Res. Int. 2015. [Google Scholar] [CrossRef]
- Brayner, R. The toxicological impact of nanoparticles. Nanotoday 2008, 3, 48–55. [Google Scholar]
- Kardos, J.; Jemnitz, K.; Jablonkai, I.; Bóta, A.; Varga, Z.; Visy, J.; Héja, L. The Janus facet of nanomaterials. BioMed Res. Int. 2015, 2015, 1–10. [Google Scholar]
- Singh, N.; Manshian, B.; Jenkins, G.J.S.; Griffiths, S.M.; Williams, P.M.; Maffeis, T.G.; Wright, C.J.; Doak, S.H. NanoGenotoxicology: The DNA damaging potential of engineered nanomaterials. Biomaterials 2009, 30, 3891–3914. [Google Scholar] [CrossRef] [PubMed]
- Fu, P.P.; Xia, Q.; Hwang, H.M.; Ray, P.C.; Yu, H. Mechanisms of nanotoxicity: Generation of reactive oxygen species. J. Food Drug Anal. 2014, 22, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Rozgaj, R.; Kasuba, V.; Mladinic, M.; Kopjar, N.; Micek, V.; Zeljezic, D. Genotoxicity assessment of iron oxide nanoparticles in male Wistar rats after chronic oral treatment. Toxicol. Lett. 2014. [Google Scholar] [CrossRef]
- Kimbrell, G.A. Nanotechnology and nanomaterials in consumer products: Regulatory challenges and necessary amendments. Food Drug Adm. Public Meet. Nanotechnol. 2011. [Google Scholar]
- Vance, M.E.; Kuiken, T.; Vejerano, E.P.; McGinnis, S.P.; Hochella, M.F., Jr.; Rejeski, D.; Hull, M.S. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein J. Nanotechnol. 2015, 6, 1769–1780. [Google Scholar] [CrossRef]
- Kiyama, R.; Wada-Kiyama, Y. Estrogenic endocrine disruptors: Molecular mechanisms of actions. Environ. Int. 2015, 83, 11–40. [Google Scholar] [CrossRef] [PubMed]
- Kiyama, R.; Zhu, Y.; Kawaguchi, K.; Iitake, N.; Wada-Kiyama, Y.; Dong, S. Estrogen-responsive genes for environmental studies. Environ. Technol. Innov. 2014, 1–2, 16–28. [Google Scholar] [CrossRef]
- Kehrer, J.P. The Haber-Weiss reaction and mechanisms of toxicity. Toxicology 2000, 149, 43–50. [Google Scholar] [CrossRef]
- Jarup, L.; Akesson, A. Current status of cadmium as an environmental health problem. Toxicol. Appl. Pharm. 2009, 238, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Satayavivad, J.; Thiantanawat, A.; Pianjing, P.; Visitnonthachai, D.; Chaiyot, K.; Watcharasit, P. Estrogenic activity of sesamol from sesame seed and its interaction with the effect of metalloestrogen cadmium on T47D human breast cancer cells. Toxicol. Lett. 2010, 196S, S311–S312. [Google Scholar] [CrossRef]
- Georgescu, B.; Georgescu, C.; Daraban, S.; Bouaru, A.; Paşcalău, S. Heavy metals acting as endocrine disruptors. Anim. Sci. Biotechnol. 2011, 44, 89–93. [Google Scholar]
- Byrne, C.; Divekar, S.D.; Storchan, G.B.; Parodi, D.A.; Martin, M.B. Cadmium—A metallohormone. Toxicol. Appl. Pharmacol. 2009, 238, 266–271. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.B.; Reiter, R.; Pham, T.; Avellanet, Y.R.; Camara, J.; Lahm, M.; Pentecost, E.; Pratap, K.; Gilmore, B.A.; Divekar, S.; et al. Estrogen-like activity of metals in MCF-7 breast cancer cells. Endocrinology 2003, 144, 2425–2436. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.D.; Kenney, N.; Stoica, A.; Hilakivi-Clarke, L.; Singh, B.; Chepko, G.; Clarke, R.; Sholler, P.F.; Lirio, A.A.; Foss, C.; et al. Cadmium mimics the in vivo effects of estrogen in the uterus and mammary gland. Nat. Med. 2003, 9, 1081–1084. [Google Scholar] [CrossRef] [PubMed]
- Aquino, N.B.; Sevigny, M.B.; Sabangan, J.; Louie, M.C. The role of cadmium and nickel in estrogen receptor signaling and breast cancer: Metalloestrogens or not? J. Environ. Sci. Health Part C 2012, 30, 189–224. [Google Scholar] [CrossRef] [PubMed]
- Byrne, C.; Divekar, S.D.; Storchan, G.B.; Parodi, D.A.; Martin, M.B. Metals and breast cancer. J. Mamm. Glan. Biol. Neoplas. 2013, 18, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Filardo, E.J.; Shaikh, Z.A. The membrane estrogen receptor GPR30 mediates cadmium-induced proliferation of breast cancer cells. Toxicol. Appl. Pharmacol. 2010, 245, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Hofer, N.; Diel, R.; Wittsiepe, J.; Wilhelm, M.; Degen, G.H. Dose- and route-dependent hormonal activity of the metalloestrogen cadmium in the rat uterus. Toxicol. Lett. 2009, 191, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Gimeno-Garcia, E.; Andreu, V.; Boluda, R. Heavy metals incidence in the application of inorganic fertilizers and pesticides to rice farming soils. Environ. Poll. 1996, 9, 19–25. [Google Scholar] [CrossRef]
- Fernandez-Garcia, M.; Rodriguez, J.A. Metal Oxide Nanoparticles. In Nanomaterials: Inorganic and Bioinorganic Perspectives; Lukehart, C.M., Scott, R.A., Eds.; John Wiley and Sons, Ltd.: West Sussex, UK, 2008; pp. 453–474. [Google Scholar]
- Bozon-Verduraz, F.; Fievet, F.; Piquemal, J.Y.; Brayner, R.; El-Kabouss, K.; Soumare, Y.; Viau, G.; Shafeev, G. Nanoparticles of metal and metal oxides: Some peculiar synthesis methods, size and shape control, application to catalysts preparation. Braz. J. Phys. 2009, 39, 134–140. [Google Scholar] [CrossRef]
- Corr, S.A. Metal oxide nanoparticles. In Nanoscience: Volume 1: Nanostructures through Chemistry; O’Brien, P., Ed.; Royal Society of Chemistry: Cambridge, UK, 2012; pp. 180–207. [Google Scholar]
- Medici, S.; Peana, M.; Nurchi, V.M.; Lachowicz, J.I.; Crisponi, G.Z.; Maria, A. Noble metals in medicine: Latest advances. Coordin. Chem. Rev. 2015, 284, 329–350. [Google Scholar] [CrossRef]
- Rosenberg, B.; van Camp, L.; Krigas, T. Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature 1965, 205, 698–699. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, B.; van Camp, L.; Trosko, J.E. Platinum compounds: A new class of potent antitumor agents. Nature 1969, 222, 385–386. [Google Scholar] [CrossRef] [PubMed]
- Drug Discovery and Development, Cancer Drug 49 Times More Potent than Cisplatin. Available online: http://www.dddmag.com/news/2015/07/cancer-drug-49-times-more-potent-cisplatin (accessed on 7 July 2015).
- Caputo, F.; de Nicola, M.; Ghibelli, L. Pharmacological potential of bioactive engineered nanomaterials. Biochem. Pharmacol. 2014, 92, 112–130. [Google Scholar] [CrossRef] [PubMed]
- Nazir, S.; Hussain, T.; Ayub, A.; Rashid, U.; MacRobert, A.J. Nanomaterials in combating cancer: Therapeutic applications and developments. Nanomed-Nanotechnology 2014, 10, 19–34. [Google Scholar] [CrossRef] [PubMed]
- Savolainen, K.; Alenius, H.; Norppa, H.; Pylkkänen, L.; Tuomi, T.; Kasper, G. Risk assessment of engineered nanomaterials and nanotechnologies—A review. Toxicology 2010, 269, 92–104. [Google Scholar] [CrossRef] [PubMed]
- Donaldson, K.; Poland, C.A. Nanotoxicity: Challenging the myth of nano-specific toxicity. Curr. Opin. Biotech. 2013, 24, 724–734. [Google Scholar] [CrossRef] [PubMed]
- Vines, T.; Faunce, T. Assessing the safety and cost-effectiveness of early nanodrugs. J. Law Med. 2009, 16, 822–845. [Google Scholar] [PubMed]
- Richarz, A.N.; Madden, J.C.; Marchese-Robinson, R.L.; Lubiński, Ł.; Mokshina, E.; Urbaszek, P.; Kuz׳min, V.E.; Puzyn, T.; Cronin, M.T.D. Development of computational models for the prediction of the toxicity of nanomaterials. Persp. Sci. 2015, 3, 27–29. [Google Scholar]
- Oksel, C.; Ma, C.Y.; Liu, J.J.; Wilkins, T.; Wang, X.Z. (Q)SAR modeling of nanomaterial toxicity: A critical review. Particology 2015, 21, 1–19. [Google Scholar] [CrossRef]
- Oksel, C.; Ma, C.Y.; Wang, X.Z. Structure-activity relationship models for hazard assessment and risk management of engineered nanomaterials. Procedia Eng. 2015, 102, 1500–1510. [Google Scholar] [CrossRef]
- Arts, J.H.E.; Hadi, M.; Keene, A.M.; Kreiling, R.; Lyon, D.; Maier, M.; Michel, K.; Petry, T.; Sauer, U.G.; Warheit, D.; et al. A critical appraisal of existing concepts for the grouping of nanomaterials. Regul. Toxicol. Pharmacol. 2014, 70, 492–506. [Google Scholar] [CrossRef] [PubMed]
- Amoabediny, G.; Naderi, A.; Malakootikkah, J.; Koohi, M.K.; Mortazavi, S.A.; Naderi, M.; Rashedi, H. Guidelines for safe handling, use and disposal of nanoparticles. J. Phys. Conf. Ser. 2009. [Google Scholar] [CrossRef]
- Soenen, S.J.; Rivera-Gil, P.; Montenegro, J.M.; Parak, W.J.; de Smedt, S.C.; Braeckmans, K. Cellular toxicity of inorganic nanoparticles: Common aspects and guidelines for improved nanotoxicity evaluation. Nanotoday 2011, 6, 446–465. [Google Scholar] [CrossRef]
- Fairbrother, A.; Fairbrother, J.R. Are environmental regulations keeping up with innovations? A case study of the nanotechnology industry. Ecotoxicol. Environ. Saf. 2009, 72, 1237–1330. [Google Scholar] [CrossRef] [PubMed]
- Baratli, Y.; Charles, A.L.; Wolff, V.; Tahar, L.B.; Smiri, L.; Bouitbir, J.; Zoll, J.; Sakly, M.; Auger, C.; Vogel, T.; et al. Age modulates Fe3O4 nanoparticles liver toxicity: Dose-dependent decrease in mitochondrial respiratory chain complexes activities and coupling in middle-aged as compared to young rats. BioMed Res. Int. 2014. [Google Scholar] [CrossRef] [PubMed]
- Mittal, S.; Pandey, A.K. Cerium oxide nanoparticles induced toxicity in human lung cells: Role of ROS mediated DNA damage and apoptosis. BioMed Res. Int. 2014. [Google Scholar] [CrossRef] [PubMed]
- Ema, M.; Kobayashi, N.; Naya, M.; Hanai, S.; Nakanishi, J. Reproductive and developmental toxicity studies of manufactured nanomaterials. Reprod. Toxicol. 2010, 30, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Descotes, J. Immunotoxicology of very small molecules: Nanomedicine and nanomaterials. Toxicol. Lett. 2009. [Google Scholar] [CrossRef]
- Suh, W.H.; Suslick, K.S.; Stucky, G.D.; Suh, Y.H. Nanotechnology, nanotoxicology and neuroscience. Prog. Neurobiol. 2009, 87, 133–170. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.L.; Gao, J.Q. Potential neurotoxicity of nanoparticles. Int. J. Pharm. 2010, 394, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Boyes, W.K.; Chen, R.; Chen, C.; Yokel, R.A. The neurotoxic potential of engineered nanomaterials. Neurotoxicology 2012, 33, 902–910. [Google Scholar] [CrossRef] [PubMed]
- Karmakar, A.; Zhang, Q.; Zhang, Y. Neurotoxicity of nanoscale materials. J. Food Drug Anal. 2014, 22, 147–160. [Google Scholar] [CrossRef] [PubMed]
- Leite, P.E.C.; Pereira, M.R.; Granjeiro, J.M. Hazard effects of nanoparticles in central nervous system: Searching for biocompatible nanomaterials for drug delivery. Toxicol. In Vitro 2015, in press. [Google Scholar] [CrossRef] [PubMed]
- Setyawati, M.I.; Tay, C.Y.; Leong, D.T. Effect of zinc oxide nanomaterials-induced oxidative stress on the p53 pathway. Biomaterials 2013, 34, 10133–10142. [Google Scholar] [CrossRef] [PubMed]
- Darbre, P.D. Review article: Underarm cosmetics and breast cancer. J. Appl. Toxicol. 2003, 23, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Darbre, P. Metalloestrogens: An emerging class of inorganic xenoestrogens with potential to add to the estrogenic burden of the human breast. J. Appl. Toxicol. 2005, 26, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Dyer, C.A. Heavy metals as endocrine-disrupting chemicals. In Endocrine-Disrupting Chemicals: From Basic Research to Clinical Practice; Gore, A.C., Ed.; Humana Press Inc.: Totowa, NJ, USA, 2007; pp. 111–133. [Google Scholar]
- Darbre, P.D. Environmental oestrogens, cosmetics and breast cancer. Best Pract. Res. Clin. Endocrinol. 2006, 20, 121–143. [Google Scholar] [CrossRef] [PubMed]
- Osborne, G.; Rudel, R.; Schwarzman, M. Evaluating chemical effects on mammary gland development: A critical need in disease prevention. Reprod. Toxicol. 2015, 54, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.B.; Reiter, R.; Johnson, M.; Shah, M.S.; Iann, M.C.; Singh, B.; Richards, J.K.; Wang, A.; Stoica, A. Effects of Tobacco Smoke Condensate on Estrogen Receptor-α Gene Expression and Activity. Endocrinology 2007, 148, 4676–4686. [Google Scholar] [CrossRef] [PubMed]
- Darbre, P.D. Aluminum, antiperspirants and breast cancer. J. Inorg. Biochem. 2005, 99, 1912–1919. [Google Scholar] [CrossRef] [PubMed]
- Choe, S.Y.; Kim, S.J.; Kim, H.G.; Lee, J.H.; Choi, Y.; Lee, H.; Kim, Y. Evaluation of estrogenicity of major heavy metals. Sci. Total Environ. 2003, 312, 15–21. [Google Scholar] [CrossRef]
- Safe, S. Cadmium’s disguise dupes the estrogen receptor. Nat. Med. 2003, 9, 1000–1001. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Campa, C.M.; Alonso-Gonzalez, C.; Mediavilla, M.D.; Cos, S.; González, A.; Sanchez-Barcelo, E.J. Melatonin down-regulates hTERT expression induced by either natural estrogens (17β-estradiol) or metalloestrogens (cadmium) in MCF-7 human breast cancer cells. Cancer Lett. 2008, 268, 272–277. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Gonzalez, C.; Mediavilla, M.D.; Martinez-Campa, C.M.; Gonzalez, A.; Cos, S.; Sanchez-Barcelo, E.J. Melatonin modulate the cadmium-induced expression of MT-2 and MT-1 metallothioneins in three human tumor cells (MCF-7, MDA-MB-231 and HeLa). Toxicol. Lett. 2008, 181, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Morales, P.; Saceda, M.; Kenney, N.; Kim, N.; Salomon, D.S.; Gottardis, M.M.; Solomon, H.B.; Sholler, P.F.; Jordan, V.C.; Martin, M.B. Effect of cadmium on estrogen-receptor levels and estrogen-induced responses in human breast cancer cells. J. Biol. Chem. 1994, 269, 16896–16901. [Google Scholar] [PubMed]
- Lortenkamp, A. Are cadmium and other heavy metal compounds acting as endocrine disruptors? Metal Ions Life Sci. 2011, 8, 305–317. [Google Scholar]
- Darbre, P.D.; Pugazhendhi, D.; Mannello, F. Aluminum and human breast disease. J. Inorg. Biochem. 2011, 105, 1484–1488. [Google Scholar] [CrossRef] [PubMed]
- Darbre, P.D.; Mannello, F.; Exley, C. Aluminum and breast cancer: Sources of exposure, tissue measurements and mechanism of toxicological actions on breast biology. J. Inorg. Biochem. 2013, 128, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.Y.; Liu, Y.; Pang, D.W.; Cai, R.X.; Qi, Y.P. Spectroscopic and voltametric study on the binding of aluminum (III) to DNA. Jpn. Soc. Anal. Chem. 2002, 18, 761–766. [Google Scholar]
- Exley, C.; Charles, L.M.; Barr, L.; Martin, C.; Polwart, A.; Darbre, P.D. Aluminium in human breast tissue. J. Inorg. Biochem. 2007, 101, 1344–1346. [Google Scholar] [CrossRef] [PubMed]
- Mannello, F.; Ligi, D.; Canale, M. Aluminum, carbonyls and cytokines in human nipple aspirate fluids: Possible relationship between inflammation, oxidative stress and breast cancer microenvironments. J. Inorg. Biochem. 2013, 128, 250–256. [Google Scholar] [CrossRef] [PubMed]
- House, E.; Polwart, A.; Darbre, P.; et al. The aluminum content of breast tissue taken from women with breast cancer. J. Trace Elem. Med. Biol. 2013, 27, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Darbre, P.D.; Bakir, A.; Iskakova, E. Effect of aluminum on migratory and invasive properties of MCF-7 human breast cancer cells in culture. J. Inorg. Biochem. 2013, 128, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Pineau, A.; Faucanneau, B.; Sappino, A.P.; Deloncle, R.; Guillard, O. If exposure to aluminum in antiperspirants presents health risks, its content should be reduced. J. Trace Elem. Med. Biol. 2014, 28, 147–150. [Google Scholar] [CrossRef] [PubMed]
- Massarsky, A.; Trudeau, V.L.; Moon, T.W. Predicting the environmental impact of nanosilver. Environ. Toxicol. Pharmacol. 2014, 38, 861–873. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Kong, F.; Vardhanabhuti, B.; Mustapha, A.; Lin, M. Detection of engineered silver nanoparticle contamination in pears. J. Agric. Food Chem. 2012, 60, 10762–10767. [Google Scholar] [CrossRef] [PubMed]
- Cooper, R.J.; Spitzer, N. Silver nanoparticles at sub-lethal concentrations disrupt cytoskeleton and neurite dynamics in cultured adult stem cells. Neurotoxicology 2015, 48, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Park, M.V.D.Z.; Neigh, A.M.; Vermeulen, J.P.; de la Fonteyne, L.J.; Verharen, H.W.; Briedé, J.J.; van Loveren, H.; de Jong, W.H. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 2011, 32, 9810–9817. [Google Scholar] [CrossRef] [PubMed]
- Onodera, A.; Nishiumi, F.; Kakiguchi, K.; Tanaka, A.; Tanabe, N.; Honma, A.; Yayama, K.; Yoshioka, Y.; Nakahira, K.; Yonemura, S.; et al. Short-term changes in intracellular ROS localization after the silver nanoparticles exposure depending on particle size. Toxicol. Rep. 2015, 2, 574–579. [Google Scholar] [CrossRef]
- Dobrzynska, M.M.; Gajowik, A.; Radzikowska, J.; Lankoff, A.; Dušinská, M.; Kruszewski, M. Genotoxicity of silver and titanium dioxide nanoparticles in bone marrow cells of rats in vivo. Toxicology 2015, 315, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Lappas, C.M. The immunomodulatory effects of titanium dioxide and silver nanoparticles. Food Chem. Toxicol. 2015, in press. Available online: http://dx.doi.org/10.106/j.fct.2015.05.015 (accessed on 21 June 2015). [Google Scholar]
- Krishnaraj, C.; Muthukumaran, P.; Ramachandran, R.; Balakumaran, M.D.; Kalaichelvan, P.T. Acalypha indica Linn: Biogenic synthesis of silver and gold nanoparticles and their cytotoxic effects against MDA-MB-231, human breast cancer cells. Biotech. Rep. 2014, 4, 42–49. [Google Scholar] [CrossRef]
- Sulaiman, N.I.; Salimin, N.R.; Haque, R.A.; Iqbal, M.A.; Ng, S.W.; Rizal, M. Synthesis, spectroscopic characterization, single crystal X-ray determination and cytotoxicity activity against human breast cancer (MCF-7) and colon cancer (HCT-116) cell lines of silver (I) coordination polymer. Polyhedron 2015, 97, 188–196. [Google Scholar] [CrossRef]
- Li, C.J.; Trost, B.M. Green chemistry for chemical synthesis. Proc. Natl. Acad. Sci. USA 2008, 105, 13197–13202. [Google Scholar] [CrossRef] [PubMed]
- Patra, S.; Mukherjee, S.; Barui, A.K.; Ganguly, A.; Sreedhar, B.; Patra, C.R. Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. Mater. Sci. Eng. 2015, 53, 298–309. [Google Scholar] [CrossRef] [PubMed]
- Rajan, R.; Chandran, K.; Harper, S.L.; Yun, S.-I.; Kalaichelvan, P.T. Plant extract synthesized silver nanoparticles: An ongoing source of novel biocompatible materials. Ind. Crop. Prod. 2015, 70, 356–373. [Google Scholar] [CrossRef]
- Syed, A.; Sraswati, S.; Kundu, G.C.; Ahmad, A. Biological synthesis of silver nanoparticles using the fungus Humicola sp. And evaluation of their cytotoxicity using normal and cancer cell lines. Spectrochim. Acta A 2013, 114, 144–147. [Google Scholar] [CrossRef] [PubMed]
- Sathishkumar, G.; Gobinath, C.; Wilson, A.; Sivaramakrishnan, S. Dendrophthoe falcata (Lf) Ettingsh (Neem mistletoe): A potent bioresource to fabricate silver nanoparticles for anticancer effect against human breast cancer cells (MCF-7). Spectrochim. Acta A-M 2014, 128, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Gurunathan, S.; Han, J.W.; Dayem, A.A.; Eppakayala, V.; Park, J.H.; Cho, S.-G.; Lee, K.J.; Kim, J.-H. Green synthesis of anisotropic silver nanoparticles and its potential cytotoxicity in human breast cancer cells (MCF-7). J. Ind. Eng. Chem. 2013, 19, 1600–1605. [Google Scholar] [CrossRef]
- Mittal, A.K.; Tripathy, D.; Choudhary, A.; Aili, P.K.; Chatterjee, A.; Singh, I.P.; Banerjee, U.C. Bio-synthesis of silver nanoparticles using Potentilla fulgens Wall. Ex Hook and its therapeutic evaluation as anticancer and antimicrobial agent. Mater. Sci. Eng. C 2015, 53, 120–127. [Google Scholar]
- Ramar, M.; Manikandan, B.; Marimuthu, P.N.; Raman, T.; Mahalingam, A.; Subramanian, P.; Karthick, S.; Munusamy, A. Synthesis of silver nanoparticles using Solanum trilobatum fruits extract and its antibacterial, cytotoxic activity against human breast cancer cell line MCF-7. Spectrochim. Acta A-M 2015, 140, 223–228. [Google Scholar] [CrossRef] [PubMed]
- United States Environmental Protection Agency. Nanomaterial Case Studies: Nanoscale Titanium Dioxide in Water Treatment and in Topical Sunscreen. Available online: http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=230972 (accessed on 24 June 2015).
- Dieterich, M.; Reimer, T.; Dieterich, H.; Stubert, J.; Gerber, B. A short-term follow-up of implant based breast reconstruction using a titanium-coated polypropylene mesh (TiLoop® Bra). EJSO 2012, 38, 1225–1230. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Hartlieb, E.; Rothmund, L.; Waschke, J.; Wu, X.; van Landuyt, K.L.; Milz, S.; Michalke, B.; Hickel, R.; Reichl, F.X. Intracellular uptake and toxicity of three different titanium particles. Dent. Mater. 2015, 31, 734–744. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.; Morton, J.; Smith, I.; Jurkschat, K.; Harding, A.H.; Evans, G. Human in vivo and in vitro studies on gastrointestinal absorption of titanium dioxide nanoparticles. Toxicol. Lett. 2015, 233, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Park, E.J.; Yoon, J.; Choi, K.; Yi, J.; Park, K. Induction of chronic inflammation in mice treated with titanium dioxide nanoparticles by intratracheal instillation. Toxicology 2009, 260, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Warheit, D.B.; Webb, T.R.; Reed, K.L.; Frerichs, S.; Sayes, C.M. Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: Differential responses related to surface properties. Toxicology 2007, 230, 90–104. [Google Scholar] [CrossRef] [PubMed]
- Morishige, T.; Yoshioka, Y.; Tanabe, A.; Yao, X.; Tsunoda, S.; Tsutsumi, Y.; Mukai, Y.; Okada, N.; Nakagawa, S. Titanium dioxide induces different levels of IL-1β production dependent on its particle characteristics through caspase-1 activation mediated by reactive oxygen species and cathepsin B. Biochem. Biophys. Res. Commun. 2010, 392, 160–165. [Google Scholar] [CrossRef] [PubMed]
- Sha, B.Y.; Gao, W.; Wang, S.Q.; Li, W.; Liang, X.; Xu, F.; Lu, T.J. Nano-titanium dioxide induced cardiac injury in rat under oxidative stress. Food Chem. Toxicol. 2013, 58, 280–288. [Google Scholar] [CrossRef] [PubMed]
- Coccini, T.; Grandi, S.; Lonati, D.; Locatelli, C.; de Simone, U. Comparative cellular toxicity of titanium dioxide nanoparticles on human astrocyte and neuronal cells after acute and prolonged exposure. Neurotoxicology 2015, 48, 77–89. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Bai, R.; Li, B.; Ge, C.; Du, J.; Liu, Y.; le Guyader, L.; Zhao, Y.; Wu, Y.; He, S.; et al. Rutile TiO2 particles exert size and surface coating dependent retention and lesions on the murine brain. Toxicol. Lett. 2011, 207, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Yan, J.; Li, Y. Genotoxicity of titanium dioxide nanoparticles. J. Food Drug Anal. 2014, 22, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Demir, E.; Akca, H.; Turna, F.; Aksakal, S.; Burgucu, D.; Kaya, B.; Tokgün, O.; Vales, G.; Creus, A.; Marcos, R. Genotoxic and cell-transforming effects of titanium dioxide nanoparticles. Environ. Res. 2015, 136, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Melendez, E. Titanium complexes in cancer treatment. Crit. Rev. Oncol. Hematol. 2002, 42, 309–315. [Google Scholar] [CrossRef]
- Vessieres, A.; Plamont, M.A.; Cabestaing, C.; Claffey, J.; Dieckmann, S.; Hogan, M.; Müller-Bunz, H.; Strohfeldt, K.; Tacke, M. Proliferative and anti-proliferative effects of titanium- and iron-based metallocene anti-cancer drugs. J. Organomet. Chem. 2009, 694, 874–879. [Google Scholar] [CrossRef]
- Saturnino, C.; Sirignano, E.; Botta, A.; Sinicropi, M.S.; Caruso, A.; Pisano, A.; Lappano, R.; Maggiolini, M.; Longo, P. New titanocene derivatives with high antiproliferative activity against breast cancer cells. Bioorg. Med. Chem. Lett. 2014, 24, 136–140. [Google Scholar] [CrossRef] [PubMed]
- Ramkumar, K.M.; Manjula, C.; GnanaKumar, G.; Kanjwal, M.A.; Sekar, T.V.; Paulmurugan, R.; Rajaguru, P. Oxidative stress-mediated cytotoxicity and apoptosis induction by TiO2 nanofibers in HeLa cells. Eur. J. Pharm. Biopharm. 2012, 81, 324–333. [Google Scholar] [CrossRef] [PubMed]
- Ibanez, I.L.; Notcovich, C.; Catalano, P.N.; Bellino, M.G.; Durán, H. The redox-active nanomaterial toolbox for cancer therapy. Cancer Lett. 2015, 359, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Laiva, A.L.; Venugopal, J.R.; Karuppuswamy, P.; Navaneethan, B.; Gora, A.; Ramakrishna, S. Controlled release of titanocene into the hybrid nanofibrous scaffolds to prevent the proliferation of breast cancer cells. Int. J. Pharm. 2015, 483, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Ninomiya, K.; Fukuda, A.; Ogino, C.; Shimizu, N. Targeted sonocatalytic cancer cell injury using avidin-conjugated titanium dioxide nanoparticles. Ultrason. Sonochem. 2014, 21, 1624–1628. [Google Scholar] [CrossRef] [PubMed]
- Lagopati, N.; Kitsiou, P.V.; Kontos, A.J.; Venieratos, P.; Kotsopoulou, E.; Kontos, A.G.; Dionysiou, D.D.; Pispas, S.; Tsilibary, E.C.; Falaras, P. Photo-induced treatment of breast epithelial cancer cells using nanostructured titanium dioxide solution. J. Photochem. Photobio. A C 2010, 214, 215–223. [Google Scholar] [CrossRef]
- Wang, K.; Liu, Y.; Wang, S.; Shi, D.; Zhou, X.; Wang, C.; Wu, J.; Zeng, Z.; Li, Y.; Sun, J. CD44-engineered mesoporous silica nanoparticles for overcoming multidrug resistance in breast cancer. Appl. Surf. Sci. 2015, 332, 308–317. [Google Scholar] [CrossRef]
- Wang, K.; Yao, H.; Meng, Y.; Wang, Y.; Yan, X.; Huang, R. Specific aptamer-conjugated mesoporous silica-carbon nanoparticles for HER2-targeted chemo-photothermal combined therapy. Acta Biomater. 2015, 16, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Jo, H.; Her, J.; Ban, C. Dual aptamer-functionalized silica nanoparticles for the highly sensitive detection of breast cancer. Biosens. Bioelectron. 2015, 71, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Nishimori, H.; Kondoh, M.; Isoda, K.; Tsunoda, S.; Tsutsumi, Y.; Yagi, K. Silica nanoparticles as hepatotoxicants. Eur. J. Pharm. Biopharm. 2009, 72, 496–501. [Google Scholar] [CrossRef] [PubMed]
- Clement, L.; Zenerino, A.; Hurel, C.; Amigoni, S.; de Givenchy, E.T.; Guittard, F. Toxicity assessment of silica nanoparticles, functionalized silica nanoparticles and HASE-grafted silica nanoparticles. Sci. Total Environ. 2013, 450–451, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Fruijter-Polloth, C. The toxicological mode of action and the safety of synthetic amorphous silica—A nanostructured material. Toxicology 2012, 294, 61–79. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, T.; Yoshioka, Y.; Matsuyama, K.; Nakazato, Y.; Tochigi, S.; Hirai, T.; Kondoh, S.; Nagano, K.; Abe, Y.; Kamada, H.; et al. Surface modification of amorphous nanosilica particles suppresses nanosilica-induced cytotoxicity, ROS generation, and DNA damage in various mammalian cells. Biochem. Biophys. Res. Commun. 2012, 427, 748–752. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Zhen, Z.; Hu, X.; Wu, S.; Xu, Z.; Chu, P.K. Hollow chitosan-silica nanospheres as pH-sensitive targeted delivery carriers in breast cancer therapy. Biomaterials 2011, 32, 4976–4986. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zeng, Y.; Huang, S.; Xie, Q.; Fu, Y.; Tan, L.; Ma, M. Quartz crystal microbalance monitoring of intervention of doxorubicin-loaded core-shell magnetic silica nanospheres on human breast cancer cells (MCF-7). Sens. Actuat B Chem. 2012, 173, 433–440. [Google Scholar] [CrossRef]
- Rossi, L.M.; Shi, L.; Rosenzweig, N.; Rosenzweig, Z. Fluorescent silica nanospheres for digital counting bioassay of breast cancer marker HER2/neu. Biosens. Bioelectron. 2006, 21, 1900–1906. [Google Scholar] [CrossRef] [PubMed]
- Milivojevic, T.; Glavan, G.; Bozic, J.; Sepčić, K.; Mesarič, T.; Drobne, D. Neurotoxic potential of ingested ZnO nanomaterials on bees. Chemosphere 2015, 120, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Park, Y.C.; Lee, S.W.; Jeong, M.S.; Yu, K.N.; Jung, H.; Lee, J.K.; Kim, J.S.; Cho, M.H. Comparing the toxic mechanism of synthesized zinc oxide nanomaterials by physiochemical characterization and reactive oxygen species properties. Toxicol. Lett. 2011, 207, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Hanley, C.; Thurber, A.; Hanna, C.; Punnoose, A.; Zhang, J.; Wingett, D.G. The influences of cell type and ZnO nanoparticle size on immune cell cytotoxicity and cytokine induction. Nanoscale Res. Lett. 2009, 4, 1409–1420. [Google Scholar] [CrossRef] [PubMed]
- Nations, S.; Wages, M.; Canas, J.E.; Maul, J.; Theodorakis, C.; Cobb, G.P. Acute effects of Fe2O3, TiO2, ZnO and CuO nanomaterials on Xenopus laevis. Chemosphere 2011, 83, 1053–1061. [Google Scholar] [CrossRef] [PubMed]
- Ionescu, J.G.; Novotny, J.; Stejskal, V.; Lätsch, A.; Blaurock-Busch, E.; Eisenmann-Klein, M. Increased levels of transition metals in breast cancer tissue. Neuroendocrinol. Lett. 2006, 27, 36–39. [Google Scholar] [PubMed]
- Wu, H.D.I.; Chou, S.Y.; Chen, D.R.; Kuo, H.W. Differentiation of serum levels of trace elements in normal and malignant breast patients. Biol. Trace Elem. Res. 2006, 113, 9–18. [Google Scholar] [CrossRef]
- Silva, N.; Peiris-John, R.; Wickremasinghe, R. Cadmium a metalloestrogen: Are we convinced? J. Appl. Toxicol. 2012, 32, 318–332. [Google Scholar] [CrossRef] [PubMed]
- Stoica, A.; Katzenellenbogen, B.S.; Martin, M.B. Activation of estrogen receptor alpha by the heavy metal cadmium. Mol. Endocrinol. 2000, 14, 545–553. [Google Scholar] [PubMed]
- Harvey, P.W.; Everett, D.J. Regulation of endocrine-disrupting chemicals: Critical overview and deficiencies in toxicology and risk assessment for human health. Best Pract. Res. Clin. Endocrinol. 2006, 20, 145–165. [Google Scholar] [CrossRef] [PubMed]
- Gatoo, M.A.; Naseem, S.; Arfat, M.Y.; Dar, A.M.; Qasim, K.; Zubair, S. Physicochemical properties of nanomaterials: Implication in associated toxic manifestations. BioMed Res. Int. 2014. [Google Scholar] [CrossRef] [PubMed]
- Stelkic, A.; Potkrajac, M.; Rakic, B.; Price, A.; Apic, G. Bioinformatics analysis of nanomaterials toxicity. Toxicol. Lett. 2014. [Google Scholar] [CrossRef]
- Biomedicine News, Nano weapons join the fight against cancer. Available online: http://www.technologyreview.com/news/402690/nano-weapons-join-the-fight-against-cancer/ (accessed on 29 June 2015).
© 2015 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wallace, D.R. Nanotoxicology and Metalloestrogens: Possible Involvement in Breast Cancer. Toxics 2015, 3, 390-413. https://doi.org/10.3390/toxics3040390
Wallace DR. Nanotoxicology and Metalloestrogens: Possible Involvement in Breast Cancer. Toxics. 2015; 3(4):390-413. https://doi.org/10.3390/toxics3040390
Chicago/Turabian StyleWallace, David R. 2015. "Nanotoxicology and Metalloestrogens: Possible Involvement in Breast Cancer" Toxics 3, no. 4: 390-413. https://doi.org/10.3390/toxics3040390
APA StyleWallace, D. R. (2015). Nanotoxicology and Metalloestrogens: Possible Involvement in Breast Cancer. Toxics, 3(4), 390-413. https://doi.org/10.3390/toxics3040390