Longitudinal Study of Thyroid Hormones between Conventional and Organic Farmers in Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection
2.3. Statistical Analysis
3. Results
3.1. General Characteristics
3.2. Comparison between Conventional and Organic Farmers
3.3. Cumulative Pesticide Spraying Day of Conventional Farmers
3.4. Percentage Change of Thyroid Hormones per 10 Days of Cumulative Pesticide Spraying
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Leemans, M.; Couderq, S.; Demeneix, B.; Fini, J.-B. Pesticides with Potential Thyroid Hormone-Disrupting Effects: A Review of Recent Data. Front. Endocrinol. (Lausanne) 2019, 10, 743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mnif, W.; Hassine, A.I.H.; Bouaziz, A.; Bartegi, A.; Thomas, O.; Roig, B. Effect of Endocrine Disruptor Pesticides: A Review. Int. J. Environ. Res. Public Health 2011, 8, 2265–2303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suhartono, S.; Kartini, A.; Subagio, H.W.; Budiyono, B.; Utari, A.; Suratman, S.; Sakundarno, M. Pesticide Exposure and Thyroid Function in Elementary School Children Living in an Agricultural Area, Brebes District, Indonesia. Int. J. Occup. Environ. Med. 2018, 9, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.-S.; Lee, K.-W.; Ho, C.-H.; Hsu, C.-C.; Su, S.-B.; Wang, J.-J.; Lin, H.-J.; Huang, C.-C. Increased risk for hypothyroidism after anticholinesterase pesticide poisoning: A nationwide population-based study. Endocrine 2017, 57, 436–444. [Google Scholar] [CrossRef]
- Shrestha, S.; Parks, C.G.; Goldner, W.S.; Kamel, F.; Umbach, D.M.; Ward, M.H.; Lerro, C.C.; Koutros, S.; Hofmann, J.N.; Freeman, L.E.B.; et al. Pesticide Use and Incident Hypothyroidism in Pesticide Applicators in the Agricultural Health Study. Environ. Health Perspect. 2018, 126, 97008. [Google Scholar] [CrossRef]
- Rauh, V.A.; Perera, F.P.; Horton, M.K.; Whyatt, R.M.; Bansal, R.; Hao, X.; Liu, J.; Barr, D.B.; Slotkin, T.A.; Peterson, B.S. Brain anomalies in children exposed prenatally to a common organophosphate pesticide. Proc. Natl. Acad. Sci. USA 2012, 109, 7871–7876. [Google Scholar] [CrossRef] [Green Version]
- Goldner, W.S.; Sandler, D.P.; Yu, F.; Shostrom, V.; Hoppin, J.A.; Kamel, F.; LeVan, T.D. Hypothyroidism and Pesticide Use Among Male Private Pesticide Applicators in the Agricultural Health Study. J. Occup. Environ. Med. 2013, 55, 1171–1178. [Google Scholar] [CrossRef] [Green Version]
- Calsolaro, V.; Pasqualetti, G.; Niccolai, F.; Caraccio, N.; Monzani, F. Thyroid Disrupting Chemicals. Int. J. Mol. Sci. 2017, 18, 2583. [Google Scholar] [CrossRef] [Green Version]
- Goldner, W.S.; Sandler, D.P.; Yu, F.; Hoppin, J.A.; Kamel, F.; LeVan, T.D. Pesticide Use and Thyroid Disease among Women in the Agricultural Health Study. Am. J. Epidemiol. 2010, 171, 455–464. [Google Scholar] [CrossRef]
- Lerro, C.C.; Koutros, S.; Andreotti, G.; Friesen, M.C.; Alavanja, M.C.; Blair, A.; Hoppin, J.A.; Sandler, D.P.; Lubin, J.H.; Ma, X.; et al. Organophosphate insecticide use and cancer incidence among spouses of pesticide applicators in the Agricultural Health Study. Occup. Environ. Med. 2015, 72, 736–744. [Google Scholar] [CrossRef] [Green Version]
- Campos, É.D.A.; Freire, C. Exposure to non-persistent pesticides and thyroid function: A systematic review of epidemiological evidence. Int. J. Hyg. Environ. Health 2016, 219, 481–497. [Google Scholar] [CrossRef] [PubMed]
- Kongtip, P.; Nankongnab, N.; Kallayanatham, N.; Pundee, R.; Choochouy, N.; Yimsabai, J.; Woskie, S. Thyroid Hormones in Conventional and Organic Farmers in Thailand. Int. J. Environ. Res. Public Health 2019, 16, 2704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gietka-Czernel, M. The thyroid gland in postmenopausal women: Physiology and diseases. Przeglad Menopauzalny 2017, 16, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Song, X.; Yuan, W.; Wen, W.; Wu, X.; Li, J.; Chen, X. Effects of cypermethrin and methyl parathion mixtures on hormone levels and immune functions in Wistar rats. Arch. Toxicol. 2006, 80, 449–457. [Google Scholar] [CrossRef]
- Satar, S.; Satar, D.; Kirim, S.; Leventerler, H. Effects of acute organophosphate poisoning on thyroid hormones in rats. Am. J. Ther. 2005, 12, 238–242. [Google Scholar] [CrossRef]
- Jeong, S.-H.; Kim, B.-Y.; Kang, H.-G.; Ku, H.-O.; Cho, J.-H. Effect of chlorpyrifos-methyl on steroid and thyroid hormones in rat F0- and F1-generations. Toxicology 2006, 220, 189–202. [Google Scholar] [CrossRef]
- Bhanu, A.P. Disrupting action of cypermethrin on thyroid and cortisol hormones in the serum of Cyprinus carpio. J. Entomol. Zool. Stud. 2016, 4, 340–341. [Google Scholar]
- Bracken, M.B. Why animal studies are often poor predictors of human reactions to exposure. J. R. Soc. Med. 2009, 102, 120–122. [Google Scholar] [CrossRef] [Green Version]
- Pound, P.; Ebrahim, S.; Sandercock, P.; Bracken, M.B.; Roberts, I. Where is the evidence that animal research benefits humans? BMJ 2004, 328, 514–517. [Google Scholar] [CrossRef] [Green Version]
- Fortenberry, G.Z.; Hu, H.; Turyk, M.; Barr, D.B.; Meeker, J.D. Association between urinary 3, 5, 6-trichloro-2-pyridinol, a metabolite of chlorpyrifos and chlorpyrifos-methyl, and serum T4 and TSH in NHANES 1999–2002. Sci. Total. Environ. 2012, 424, 351–355. [Google Scholar] [CrossRef] [Green Version]
- Lacasaña, M.; López-Flores, I.; Rodríguez-Barranco, M.; Aguilar-Garduño, C.; Muñoz, J.B.; Pérez-Méndez, O.; Gamboa, R.; Bassol, S.; Cebrian, M.E. Association between organophosphate pesticides exposure and thyroid hormones in floriculture workers. Toxicol. Appl. Pharmacol. 2010, 243, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Meeker, J.D.; Barr, D.B.; Hauser, R. Thyroid hormones in relation to urinary metabolites of non-persistent insecticides in men of reproductive age. Reprod. Toxicol. 2006, 22, 437–442. [Google Scholar] [CrossRef] [PubMed]
- Farokhi, F.; Taravati, A. Pesticide exposure and thyroid function in adult male sprayers. Int. J. Med. Investig. 2014, 3, 127–132. [Google Scholar]
- Stoker, T.; Kaydos, E.; Jeffay, S.; Cooper, R. Effect of 2,4-D exposure on pubertal development and thyroid function in the male wistar rat. Biol. Reprod. 2007, 77, 75. [Google Scholar] [CrossRef]
- Van den Berg, K.J.; Van Raaij, J.A.G.M.; Bragt, P.C.; Notten, W.R.F. Interactions of halogenated industrial chemicals with transthyretin and effects on thyroid hormone levels in vivo. Arch. Toxicol. 1991, 65, 15–19. [Google Scholar] [CrossRef]
- Tsatsakis, A.M.; Perakis, K.; Koumantakis, E. Experience with acute paraquat poisoning in Crete. Vet. Hum. Toxicol. 1996, 38, 113–117. [Google Scholar]
- Kackar, R.; Srivastava, M.K.; Raizada, R.B. Studies on rat thyroid after oral administration of mancozeb: Morphological and biochemical evaluations. J. Appl. Toxicol. 1997, 17, 369–375. [Google Scholar] [CrossRef]
- Mallem, L.; Boulakoud, M.S.; Franck, M. Hypothyroidism after medium exposure to the fungicide maneb in the rabbit Cuniculus lepus. Commun. Agric. Appl. Biol. Sci. 2006, 71, 91–99. [Google Scholar]
- Axelstad, M.; Boberg, J.; Nellemann, C.; Kiersgaard, M.; Jacobsen, P.R.; Christiansen, S.; Hougaard, K.S.; Hass, U. Exposure to the Widely Used Fungicide Mancozeb Causes Thyroid Hormone Disruption in Rat Dams but No Behavioral Effects in the Offspring. Toxicol. Sci. 2011, 120, 439–446. [Google Scholar] [CrossRef]
- Taxvig, C.; Hass, U.; Axelstad, M.; Dalgaard, M.; Boberg, J.; Andeasen, H.R.; Vinggaard, A.M. Endocrine-Disrupting Activities In Vivo of the Fungicides Tebuconazole and Epoxiconazole. Toxicol. Sci. 2007, 100, 464–473. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Chen, M.; Liu, Y.; Gui, W.; Zhu, G. Thyroid endocrine disruption in zebrafish larvae following exposure to hexaconazole and tebuconazole. Aquat. Toxicol. 2013, 138–139, 35–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barlas, N.; Selmanoglu, G.; Koçkaya, A.; Songür, S. Effects of carbendazim on rat thyroid, parathyroid, pituitary and adrenal glands and their hormones. Hum. Exp. Toxicol. 2002, 21, 217–221. [Google Scholar] [CrossRef] [PubMed]
- Patrick, L. Thyroid disruption: Mechanism and clinical implications in human health. Altern. Med. Rev. 2009, 14, 326–346. [Google Scholar] [PubMed]
- Piccoli, C.; Cremonese, C.; Koifman, R.J.; Koifman, S.; Freire, C. Pesticide exposure and thyroid function in an agricultural population in Brazil. Environ. Res. 2016, 151, 389–398. [Google Scholar] [CrossRef]
Variables | Conventional Farmers n (%) | Organic Farmers n (%) | p-Value |
---|---|---|---|
Age (Year) | |||
Median (IQR) | 52.0 (44.0–58.0) | 52.0 (46.0–60.0) | 0.084 § |
Min-Max | 18–69 | 28–79 | |
Sex | |||
Male | 158 (74.2) | 115 (51.1) | <0.001 † |
Female | 55 (25.8) | 110 (48.9) | |
Educational level | |||
Below elementary | 14 (6.6) | 4 (1.8) | 0.035 † |
Elementary | 122 (57.3) | 125 (55.6) | |
High school | 72 (33.8) | 85 (37.8) | |
Bachelor or higher | 5 (2.3) | 11 (4.9) | |
Have Second Job | |||
Yes | 49 (23.0) | 128(56.9) | <0.001 † |
No | 164(77.0) | 97(43.1) | |
Marital status | |||
Single | 21 (10.1) | 13 (6.0) | 0.032 † |
Married | 179 (86.1) | 185 (84.9) | |
Widowed/divorced | 8 (3.8) | 20 (9.2) | |
BMI (kg/m2) | |||
Normal (<18.49–24.99) | 122 (57.5) | 167 (74.2) | <0.001 † |
Abnormal (≥25.00) | 90 (42.5) | 58 (25.8) | |
Median (IQR) | 24.2 (21.2–27.3) | 23.0 (20.7–25.1) | 0.002 § |
Min-Max | 16.5–53.0 | 16.2–37.1 | |
Total Cholesterol (mg/dL) | |||
Normal (≤200) | 50 (23.5) | 123 (55.4) | <0.001 † |
Abnormal (>200) | 163 (76.5) | 99 (44.6) | |
LDL (mg/dL) | |||
Normal (≤100) | 21 (10.8) | 63 (28.4) | <0.001 † |
Abnormal (>100) | 173 (89.2) | 159 (71.6) | |
HDL (mg/dL) | |||
Normal (≤60) | 52 (26.8) | 15 (6.8) | <0.001 † |
Abnormal (>60) | 142 (73.2) | 207 (93.2) | |
Triglyceride (mg/dL) | |||
Normal (≤150) | 111 (57.2) | 143 (64.4) | 0.133 † |
Abnormal (>150) | 83 (42.8) | 79 (35.6) | |
TSH (μIU/mL) | |||
Hypo (<0.34) | 6 (3.1) | 14 (6.4) | 0.259 ‡ |
Normal (0.34–5.60) | 186 (95.9) | 205 (93.2) | |
Hyper (>5.60) | 2 (1.0) | 1 (0.5) | |
FT4 (ng/dL) | |||
Hypo (<0.59) | 3 (1.6) | 3 (1.4) | 1.000 ‡ |
Normal (0.59–1.54) | 189 (97.9) | 218 (98.2) | |
Hyper (>1.54) | 1 (0.5) | 1 (0.5) | |
FT3 (ng/dL) | |||
Hypo (<0.23) | - | 20 (9.0) | <0.001 ‡ |
Normal (0.23–0.49) | 192 (99.0) | 198 (89.2) | |
Hyper (>0.49) | 2 (1.0) | 4 (1.8) | |
T4 (µg/dL) | |||
Hypo (<6.09) | 9 (4.6) | 33 (14.9) | 0.001 ‡ |
Normal (6.09–12.23) | 181 (93.3) | 179 (80.6) | |
Hyper (>12.23) | 4 (2.1) | 10 (4.5) | |
T3 (ng/mL) | |||
Hypo (< 0.87) | 29 (14.9) | 91 (41.0) | <0.001 ‡ |
Normal (0.87–1.78) | 161 (83.0) | 127 (57.2) | |
Hyper (>1.78) | 4 (2.1) | 4 (1.8) | |
Alcohol intake | |||
Current drinker | 136 (63.8) | 91 (41) | <0.001 † |
Smoking | |||
Current smoker | 59 (26.9) | 36 (16.1) | 0.006 † |
Expense adequacy | |||
Enough for saving | 39 (18.3) | 50 (22.2) | 0.621 ‡ |
Just enough | 100 (46.9) | 94 (41.8) | |
In debt | 73 (34.3) | 79 (35.1) | |
Stress symptom in the past 2–4 weeks | |||
Yes | 113(53.3) | 100(45.0) | 0.085 † |
Household use of insecticide in the past year | |||
Yes | 191 (89.7) | 33 (14.7) | <0.001 † |
Parameter | Conventional Farmers Mean (95%CI) | Organic Farmers Mean (95%CI) | p-Value from Model F-Test |
---|---|---|---|
TSH (µIU/mL) | 1.37(1.27–1.48) | 1.03(0.96–1.11) | <0.001 |
FT4 (ng/dL) | 0.85(0.83–0.86) | 0.87(0.85–0.88) | 0.095 |
FT3 (ng/dL) | 0.34(0.34–0.35) | 0.32(0.32–0.33) | <0.001 |
T4 (µg/dL) | 7.99(7.76–8.23) | 7.56(7.36–7.77) | 0.008 |
T3 (ng/mL) | 0.97(0.94–1.00) | 0.87(0.85–0.89) | <0.001 |
Parameter | Round One Mean (95%CI) | Round Two Mean (95%CI) | Round Three Mean (95%CI) | Round Four Mean (95%CI) |
---|---|---|---|---|
TSH (µIU/mL) | ||||
Conventional farmers | 1.28(1.16–1.42) ** | 1.38(1.23–1.54) ** | 1.36(1.22–1.51) ** | 1.48(1.33–1.64) ** |
Organic farmers | 0.90(0.82–0.99) | 1.04(0.94–1.15) | 1.02(0.93–1.12) | 1.20(1.10–1.31) |
FT4 (ng/dL) | ||||
Conventional farmers | 0.82(0.80–0.85) | 0.91(0.89–0.93) | 0.82(0.80–0.83) ** | 0.84(0.82–0.86) |
Organic farmers | 0.82(0.80–0.84) | 0.93(0.90–0.95) | 0.88(0.86–0.90) | 0.84(0.82–0.85) |
FT3 (ng/dL) | ||||
Conventional farmers | 0.33(0.32–0.34) ** | 0.36(0.34–0.37) | 0.34(0.33–0.36) ** | 0.35(0.34–0.36) ** |
Organic farmers | 0.31(0.31–0.32) | 0.35(0.34–0.36) | 0.32(0.31–0.33) | 0.31(0.30–0.32) |
T4 (µg/dL) | ||||
Conventional farmers | 8.32(8.03–8.63) | 7.71(7.50–7.92) | 8.08(7.52–8.69) ** | 7.97(7.68–8.27) ** |
Organic farmers | 8.01(7.76–8.28) | 7.80(7.61–8.00) | 7.09(6.65–7.56) | 7.26(7.02–7.50) |
T3 (ng/mL) | ||||
Conventional farmers | 1.03(0.99–1.07) ** | 1.00(0.97–1.04) | 0.91(0.85–0.96) ** | 0.94(0.90–0.97) ** |
Organic farmers | 0.86(0.83–0.90) | 1.02(0.99–1.06) | 0.75(0.71–0.80) | 0.85(0.82–0.88) |
Cumulative Pesticide Spray Days | Round 1 n = 213 | Round 2 n = 199 | Round 3 n = 185 | Round 4 n = 178 | |
---|---|---|---|---|---|
Insecticide | Mean (SD) | 14 (18) | 25 (27) | 37 (40) | 45 (46) |
Median (IQR) | 4 (4–24) | 12 (8–36) | 20 (12–48) | 24 (16–58) | |
Herbicide | Mean (SD) | 7 (7) | 17 (13) | 25 (16) | 34 (23) |
Median (IQR) | 4 (4–8) | 14 (8–18) | 24 (12–32) | 29 (18–44) | |
Fungicide | Mean (SD) | 9 (17) | 17 (29) | 25 (41) | 29 (47) |
Median (IQR) | 0 (0–8) | 8 (0–24) | 8 (0–32) | 12 (0–38) |
Thyroid Hormone | Cumulative Insecticide Spray Days | p-Value | Cumulative Herbicide Spray Days | p-Value | Cumulative Fungicide Spray Days | p-Value |
---|---|---|---|---|---|---|
TSH | 2.92 (1.4, 4.42) | <0.001 | 4.68 (2.28, 7.07) | <0.001 | 3.28 (1.6, 4.95) | <0.001 |
FT3 | 0.95 (0.51, 1.38) | <0.001 | 1.72 (0.01, 2.44) | <0.001 | 0.64 (0.17, 1.11) | 0.007 |
FT4 | −0.43 (−0.79, −0.08) | 0.017 | −0.07 (−0.64, 0.49) | 0.802 | −0.58 (−0.97, −0.19) | 0.004 |
T3 | 0.57 (−0.08, 1.22) | 0.085 | 0.18 (−0.89, 1.25) | 0.738 | 0.46 (−0.24, 1.16) | 0.197 |
T4 | 0.06 (−0.58, 0.70) | 0.184 | 0.42 (−0.63, 1.46) | 0.435 | −0.11 (−0.81, 0.59) | 0.756 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nankongnab, N.; Kongtip, P.; Kallayanatham, N.; Pundee, R.; Yimsabai, J.; Woskie, S. Longitudinal Study of Thyroid Hormones between Conventional and Organic Farmers in Thailand. Toxics 2020, 8, 82. https://doi.org/10.3390/toxics8040082
Nankongnab N, Kongtip P, Kallayanatham N, Pundee R, Yimsabai J, Woskie S. Longitudinal Study of Thyroid Hormones between Conventional and Organic Farmers in Thailand. Toxics. 2020; 8(4):82. https://doi.org/10.3390/toxics8040082
Chicago/Turabian StyleNankongnab, Noppanun, Pornpimol Kongtip, Nichcha Kallayanatham, Ritthirong Pundee, Jutharak Yimsabai, and Susan Woskie. 2020. "Longitudinal Study of Thyroid Hormones between Conventional and Organic Farmers in Thailand" Toxics 8, no. 4: 82. https://doi.org/10.3390/toxics8040082
APA StyleNankongnab, N., Kongtip, P., Kallayanatham, N., Pundee, R., Yimsabai, J., & Woskie, S. (2020). Longitudinal Study of Thyroid Hormones between Conventional and Organic Farmers in Thailand. Toxics, 8(4), 82. https://doi.org/10.3390/toxics8040082