Early-Life Dietary Cadmium Exposure and Kidney Function in 9-Year-Old Children from the PROGRESS Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Diet Data Collection
Dietary Cadmium
2.3. Kidney Function Parameters
2.4. Covariates
2.5. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, Z.; Pan, L.; Liu, G.; Zhang, H.; Zhang, J.; Jiang, J. Dietary exposure to cadmium of Shenzhen adult residents from a total diet study. Food Addit. Contam. Part A 2018, 35, 706–714. [Google Scholar] [CrossRef]
- Spungen, J.H. Children’s exposures to lead and cadmium: FDA total diet study 2014–2016. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess 2019, 36, 893–903. [Google Scholar] [CrossRef] [PubMed]
- Nikic, D.; Stankovic, A. Estimated daily intake of cadmium by children living in the city of Nis, Serbia. Turk J. Pediatr 2009, 51, 257–263. [Google Scholar] [PubMed]
- Goyer, R.A. Mechanisms of lead and cadmium nephrotoxicity. Toxicol. Lett. 1989, 46, 153–162. [Google Scholar] [CrossRef]
- Prozialeck, W.C.; Edwards, J.R. Mechanisms of cadmium-induced proximal tubule injury: New insights with implications for biomonitoring and therapeutic interventions. J. Pharmacol. Exp. Ther. 2012, 343, 2–12. [Google Scholar] [CrossRef] [Green Version]
- de Burbure, C.; Buchet, J.P.; Leroyer, A.; Nisse, C.; Haguenoer, J.M.; Mutti, A.; Smerhovský, Z.; Cikrt, M.; Trzcinka-Ochocka, M.; Razniewska, G.; et al. Renal and neurologic effects of cadmium, lead, mercury, and arsenic in children: Evidence of early effects and multiple interactions at environmental exposure levels. Environ. Health Perspect. 2006, 114, 584–590. [Google Scholar] [CrossRef] [Green Version]
- Orr, S.E.; Bridges, C.C. Chronic Kidney Disease and Exposure to Nephrotoxic Metals. Int. J. Mol. Sci. 2017, 18, 1039. [Google Scholar]
- Lee, J.; Oh, S.; Kang, H.; Kim, S.; Lee, G.; Li, L.; Kim, C.T.; An, J.N.; Oh, Y.K.; Lim, C.S.; et al. Environment-wide association study of CKD. Clin. J. Am. Soc. Nephrol. 2020, 15, 766–775. [Google Scholar] [CrossRef]
- Zheng, L.Y.; Sanders, A.P.; Saland, J.M.; Wright, R.O.; Arora, M. Environmental exposures and pediatric kidney function and disease: A systematic review. Environ. Res. 2017, 158, 625–648. [Google Scholar] [CrossRef] [Green Version]
- Shi, Z.; Taylor, A.W.; Riley, M.; Byles, J.; Liu, J.; Noakes, M. Association between dietary patterns, cadmium intake and chronic kidney disease among adults. Clin. Nutr. 2017, 37, 276–284. [Google Scholar] [CrossRef]
- Ferraro, P.M.; Costanzi, S.; Naticchia, A.; Sturniolo, A.; Gambaro, G. Low level exposure to cadmium increases the risk of chronic kidney disease: Analysis of the NHANES. BMC Public Health 2010, 10, 304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jean, J.; Sirot, V.; Hulin, M.; Le Calvez, E.; Zinck, J.; Noël, L.; Vasseur, P.; Nesslany, F.; Gorecki, S.; Guérin, T.; et al. Dietary exposure to cadmium and health risk assessment in children—Results of the French infant total diet study. Food Chem. Toxicol. 2018, 115, 358–364. [Google Scholar] [CrossRef] [PubMed]
- Mykkänen, H.; Räsänen, L.; Ahola, M.; Kimppa, S. Dietary intakes of mercury, lead, cadmium and arsenic by Finnish children. Hum. Nutr. Appl. Nutr. 1986, 40, 32–39. [Google Scholar]
- Burganowski, R.; Vahter, M.; Queirolo, E.I.; Peregalli, F.; Baccino, V.; Barcia, E.; Mangieri, S.; Ocampo, V.; Mañay, N.; Martínez, G.; et al. A cross-sectional study of urinary cadmium concentrations in relation to dietary intakes in Uruguayan school children. Sci. Total Environ. 2019, 658, 1239–1248. [Google Scholar] [CrossRef] [PubMed]
- Moynihan, M.; Peterson, K.E.; Cantoral, A.; Song, P.X.K.; Jones, A.; Solano-González, M.; Meeker, J.D.; Basu, N.; Téllez-Rojo, M.M. Dietary predictors of urinary cadmium among pregnant women and children. Sci. Total Environ. 2017, 575, 1255–1262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braun, J.M.; Wright, R.J.; Just, A.C.; Power, M.C.; Tamayo-Ortiz, M.; Schnaas, L.; Hu, H.; Wright, R.O.; Tellez-Rojo, M.M. Relationships between lead biomarkers and diurnal salivary cortisol indices in pregnant women from Mexico City: A cross-sectional study. Environ. Health 2014, 13, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Ramírez, S.; Mundo-Rosas, V. Methodology for the analysis of dietary data from the Mexican National Health and Nutrition Survey 2006. Salud Publica Mex. 2009, 51, 523–529. [Google Scholar] [CrossRef]
- Kim, C.I.; Lee, J.; Kwon, S.; Yoon, H.J. Total diet study: For a closer-to-real estimate of dietary exposure to chemical substances. Toxicol. Res. 2015, 31, 227–240. [Google Scholar] [CrossRef] [Green Version]
- Torres-Sánchez, L.; Vázquez-Salas, R.A.; Vite, A.; Galván-Portillo, M.; Cebrián, M.E.; Macias-Jiménez, A.P.; Ríos, C.; Montes, S. Blood cadmium determinants among males over forty living in Mexico City. Sci. Total Environ. 2018, 637–638, 686–694. [Google Scholar] [CrossRef]
- Panel, E.; Chain, F. Statement on tolerable weekly intake for cadmium. EFSA J. 2011, 9, 1975. [Google Scholar]
- Jaffe, M. Ueber den Niederschlag, welchen Pikrinsäure in normalem Harn erzeugt und über eine neue Reaction des Kreatinins. Z. Für Physiol. Chem. 1886, 10, 391–400. [Google Scholar]
- Sarkar, R. Establishment of Biological Reference Intervals and Reference Curve for Urea by Exploratory Parametric and Non-Parametric Quantile Regression Models. EJIFCC 2013, 24, 61–67. [Google Scholar] [PubMed]
- Schwartz, G.J.; Muñoz, A.; Schneider, M.F.; Mak, R.H.; Kaskel, F.; Warady, B.A.; Furth, S.L. New equations to estimate GFR in children with CKD. J. Am. Soc. Nephrol. 2009, 20, 629–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwartz, G.J.; Schneider, M.F.; Maier, P.S.; Moxey-Mims, M.; Dharnidharka, V.R.; Warady, B.A.; Furth, S.L.; Mũoz, A. Improved equations estimating GFR in children with chronic kidney disease using an immunonephelometric determination of cystatin C. Kidney Int. 2012, 82, 445–453. [Google Scholar] [CrossRef] [Green Version]
- WHO Multicentre Growth Reference Study Group. WHO Child Growth Standards: Methods and Development; WHO: Geneva, Switzerland, 2014; p. 312. [Google Scholar]
- Pottel, H.; Hoste, L.; Dubourg, L.; Ebert, N.; Schaeffner, E.; Eriksen, B.O.; Melsom, T.; Lamb, E.J.; Rule, A.D.; Turner, S.T.; et al. An estimated glomerular filtration rate equation for the full age spectrum. Nephrol. Dial. Transpl. 2016, 31, 798–806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tinggi, U.; Schoendorfer, N. Analysis of lead and cadmium in cereal products and duplicate diets of a small group of selected Brisbane children for estimation of daily metal exposure. J. Trace Elem. Med. Biol. 2018, 50, 671–675. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.; Melough, M.M.; Vance, T.M.; Noh, H.; Koo, S.I.; Chun, O.K. Dietary cadmium intake and sources in the US. Nutrients 2019, 11, 2. [Google Scholar] [CrossRef] [Green Version]
- Greenberg, J.H.; Kakajiwala, A.; Parikh, C.R.; Furth, S. Emerging biomarkers of chronic kidney disease in children. Pediatr. Nephrol. 2018, 33, 925–933. [Google Scholar] [CrossRef]
- ATSDR. Toxicological Profile for Cadmium; US Department of Health and Humans Services, Public Health Service: Atlanta, GA, USA, 2012.
- Lopez-Giacoman, S. Biomarkers in chronic kidney disease, from kidney function to kidney damage. World J. Nephrol. 2015, 4, 57. [Google Scholar] [CrossRef]
- Hosten, A.O. BUN and Creatinine. Clinical Methods: The History, Physical, and Laboratory Examinations, 3rd ed.; Butterworths: Boston, MA, USA, 1990; ISBN 040990077X. [Google Scholar]
- Satarug, S. Dietary cadmium intake and its effects on kidneys. Toxics 2018, 6, 15. [Google Scholar] [CrossRef] [Green Version]
- Saif, M.; Rahman, U.R.; Ali, M.U.; Shoaib, M.; Amin, M.A. Cadmium Induced Nephrotoxicity: Advances and Perspectives. Trends Biosci. 2015, 8, 5167–5175. [Google Scholar]
- Marín, S.; Pardo, O.; Báguena, R.; Font, G.; Yusà, V. Dietary exposure to trace elements and health risk assessment in the region of Valencia, Spain: A total diet study. Food Addit. Contam. 2017, 34, 228–240. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Wang, Y.; Mao, W.; Sui, H.; Yong, L.; Yang, D.; Jiang, D.; Zhang, L.; Gong, Y. Dietary cadmium exposure assessment among the Chinese population. PLoS ONE 2017, 12, e0177978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Program on Chemical Safety; Friberg, L.; Elinder, C.-G.; Kjellström, T.; United Nations Environment Programme; International Labour Organisation; World Health Organization; International Program on Chemical Safety. Cadmium–Environmental Health Criteria 134; World Health Organization: Geneva, Switzerland, 1992; ISBN 9241571349. [Google Scholar]
- Sowers, J.R. Metabolic risk factors and renal disease. Kidney Int. 2007, 71, 719–720. [Google Scholar] [CrossRef] [Green Version]
Study Visit | 1-Year Visit n = 566 | 2-Year Visit n = 530 | 4-Year Visit n = 582 | 6-Year Visit n = 573 | 9-Year Visit n = 544 |
---|---|---|---|---|---|
Characteristic | Mean ± SD or n (%) | Mean ± SD or n (%) | Mean ± SD or n (%) | Mean ± SD or n (%) | Mean ± SD or n (%) |
Sex Male | 285 (50.3%) | 278 (52.4%) | 293 (50.3%) | 293 (51.2%) | 280 (51.4%) |
Age (months) | 12.2 ± 0.28 | 24.4 ± 0.54 | 58.5 ± 6.7 | 82.1 ± 7.2 | 116 ± 8.2 |
BMI Z-score a | |||||
Underweight | 15 (2.6%) | 2 (0.38%) | 2 (0.34%) | 7 (1.2%) | 3(0.53%) |
Normal weight | 455 (80.3%) | 352 (66.4%) | 474 (81.4%) | 407 (71.0%) | 286 (52.5%) |
Overweight | 73 (12.9%) | 130 (24.5%) | 68 (11.6%) | 92 (16.0%) | 135 (24.8%) |
Obesity | 23 (4.0%) | 46 (8.6%) | 38 (6.5%) | 67 (11.6%) | 120 (22.0%) |
Physical activity (min/day) b Aerobic activities | N/A | N/A | 65.8 ± 30.0 | 69.73 ± 29.3 | 21.02 ± 7.10 |
Second-hand smoking (daily) c | N/A | N/A | |||
Yes | 58 (10%) | 75 (13%) | 98 (18.1%) | ||
No | 517 (90%) | 486 (86.6%) | 442 (81.8%) | ||
Socioeconomic Status d | |||||
Lower | 292 (51.5%) | ||||
Middle | 218 (38.5%) | ||||
Higher | 56 (9.8%) |
Kidney Function Parameter | n | Mean ± SD | (5–95%) |
---|---|---|---|
Serum Creatinine (mg/dL) | 380 | 0.434 ± 0.09 | (0.28–0.59) |
Cystatin C (mg/L) | 455 | 0.730 ± 0.17 | (0.48–1.03) |
BUN (mg/dL) | 379 | 12.20 ± 3.09 | (7.71–17.9) |
eGFRSchwartz (ml/min/1.73 m2) | 379 | 180.91 ± 41.65 | (125.43–261.8) |
eGFRCystatin C (ml/min/1.73 m2) | 455 | 116.55 ± 28.41 | (77.93–166.79) |
Unadjusted | Adjusted b | ||||
---|---|---|---|---|---|
Low CdD | High CdD | High CdD | |||
n | β (95% CI) | n | β (95% CI) | ||
SCr c (mg/dL) | 375 | Ref | −0.021 (−0.047, 0.005) | 342 | −0.013 (−0.041, 0.015) |
Cystatin C (mg/L) | 447 | Ref | 0.057 (0.001, 0.113) | 409 | 0.049 (−0.010, 0.109) |
BUN (mg/dL) | 375 | Ref | −0.038 (−0.111, 0.033) | 342 | −0.077 (−0.151, −0.003) |
eGFRSchwartz (ml/min/1.73m2) | 376 | Ref | 0.020 (−0.043, 0.084) | 343 | 0.022 (−0.046, 0.091) |
eGFRCystatin C (ml/min/1.73m2) | 449 | Ref | −0.053 (−0.110, 0.004) | 411 | −0.046 (−0.107, 0.014) |
Unadjusted | Adjusted b | ||||
---|---|---|---|---|---|
Low CdD | High CdD | High CdD | |||
n | β (95% CI) | n | β (95% CI) | ||
SCr c (mg/dL) | 229 | Ref | −0.012 (−0.039, 0.013) | 208 | −0.003 (−0.031, 0.025) |
Cystatin C (mg/L) | 274 | Ref | −0.051 (−0.110, 0.007) | 248 | −0.026 (−0.089, 0.036) |
BUN (mg/dL) | 229 | Ref | −0.055 (−0.125, 0.014) | 208 | −0.011 (−0.081, 0.059) |
eGFRSchwartz (ml/min/1.73m2) | 230 | Ref | 0.027 (−0.035, 0.090) | 209 | −0.003 (−0.072, 0.065) |
eGFRCystatin C (ml/min/1.73m2) | 276 | Ref | 0.065 (0.004, 0.125) | 250 | 0.034 (−0.029, 0.098) |
Kidney Function Parameter | SCr b (n = 124) | Cystatin C (n = 140) | BUN (n = 124) | eGFRSchwartz (n = 124) | eGFRCystatinC (n = 142) |
---|---|---|---|---|---|
Score | β (95% CI) | β (95% CI) | β (95% CI) | β (95% CI) | β (95% CI) |
Discrete | −0.011 (−0.025, 0.002) | −0.019 (−0.050, 0.010) | −0.037 (−0.072, −0.003) | 0.025 (−0.007, 0.058) | 0.020 (−0.011, 0.051) |
0 (n = 23) | Ref | Ref | Ref | Ref | Ref |
1 (n = 38) | 0.017 (−0.047, 0.081) | 0.063 (−0.083, 0.211) | −0.006 (−0.168, 0.154) | −0.028 (−0.182, 0.126) | −0.064 (−0.216, 0.088) |
2 (n = 57) | −0.015 (−0.075, 0.044) | 0.053 (−0.087, 0.193) | −0.041 (−0.191, 0.107) | 0.048 (−0.094, 0.190) | −0.072 (−0.216, 0.071) |
3 (n = 31) | −0.039 (−0.0105, 0.026) | −0.082 (−0.241, 0.075) | −0.092 (−0.257, 0.073) | 0.104 (−0.053, 0.262) | 0.081 (−0.082, 0.244) |
4 (n = 16) | 0.000 (−0.081, 0.081) | −0.028 (−0.209, 0.151) | −0.129 (−0.332, 0.073) | 0.011 (−0.182, 0.204) | 0.027 (−0.159, 0.213) |
5 (n = 10) | −0.051 (−0.147, 0.044) | −0.007 (−0.202, 0.187) | −0.187 (−0.428, 0.052) | 0.100 (−0.128, 0.328) | 0.009 (−0.192, 0.210) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-López, E.; Tamayo-Ortiz, M.; Ariza, A.C.; Ortiz-Panozo, E.; Deierlein, A.L.; Pantic, I.; Tolentino, M.C.; Estrada-Gutiérrez, G.; Parra-Hernández, S.; Espejel-Núñez, A.; et al. Early-Life Dietary Cadmium Exposure and Kidney Function in 9-Year-Old Children from the PROGRESS Cohort. Toxics 2020, 8, 83. https://doi.org/10.3390/toxics8040083
Rodríguez-López E, Tamayo-Ortiz M, Ariza AC, Ortiz-Panozo E, Deierlein AL, Pantic I, Tolentino MC, Estrada-Gutiérrez G, Parra-Hernández S, Espejel-Núñez A, et al. Early-Life Dietary Cadmium Exposure and Kidney Function in 9-Year-Old Children from the PROGRESS Cohort. Toxics. 2020; 8(4):83. https://doi.org/10.3390/toxics8040083
Chicago/Turabian StyleRodríguez-López, Edna, Marcela Tamayo-Ortiz, Ana Carolina Ariza, Eduardo Ortiz-Panozo, Andrea L. Deierlein, Ivan Pantic, Mari Cruz Tolentino, Guadalupe Estrada-Gutiérrez, Sandra Parra-Hernández, Aurora Espejel-Núñez, and et al. 2020. "Early-Life Dietary Cadmium Exposure and Kidney Function in 9-Year-Old Children from the PROGRESS Cohort" Toxics 8, no. 4: 83. https://doi.org/10.3390/toxics8040083
APA StyleRodríguez-López, E., Tamayo-Ortiz, M., Ariza, A. C., Ortiz-Panozo, E., Deierlein, A. L., Pantic, I., Tolentino, M. C., Estrada-Gutiérrez, G., Parra-Hernández, S., Espejel-Núñez, A., Téllez-Rojo, M. M., Wright, R. O., & Sanders, A. P. (2020). Early-Life Dietary Cadmium Exposure and Kidney Function in 9-Year-Old Children from the PROGRESS Cohort. Toxics, 8(4), 83. https://doi.org/10.3390/toxics8040083