Endocrine Disrupting Chemicals and Thyroid Cancer: An Overview
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Industrial: Flame Retardants
3.2. Industrial: Polychlorinated Biphenyls (PCBs)
3.3. Plastic and Plasticizers: Phthalates
3.4. Plastic and Plasticizers: Bisphenol A (BPA)
3.5. Polyfluoroalkyl Substances (PFAS)
3.6. Agricultural Pesticides
3.7. Organochlorine Pesticides
3.8. Organophosphate Pesticides
3.9. Other Pesticides
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Davies, L.; Welch, H.G. Increasing incidence of thyroid cancer in the United States, 1973–2002. JAMA 2006, 295, 2164–2167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitahara, C.M.; Sosa, J.A. The changing incidence of thyroid cancer. Nat. Rev. Endocrinol. 2016, 12, 646–653. [Google Scholar] [CrossRef] [PubMed]
- Fiore, M.; Oliveri Conti, G.; Caltabiano, R.; Buffone, A.; Zuccarello, P.; Cormaci, L.; Angel Cannizzaro, M.; Ferrante, M. Role of emerging environmental risk factors in thyroid cancer: A brief review. Int. J. Environ. Res. Public Health 2019, 16, 1185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wingren, G.B.; Axelson, O. Occupational and environmental determinants for benign thyroid disease and follicular thyroid cancer. Int. J. Occup. Med. Environ. Health 1997, 3, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Zoeller, T.R.; Dowling, A.L.; Herzig, C.T.; Iannacone, E.A.; Gauger, K.J.; Bansal, R. Thyroid hormone, brain development, and the environment. Environ. Health Perspect. 2002, 110, 355–361. [Google Scholar] [CrossRef] [Green Version]
- Camargo, R.Y.A.; Tomimori, E.K.; Neves, S.C.; Rubio, I.G.S.; Galrao, A.L.; Knobel, M.; Medeiros-Neto, G. Thyroid and the environment: Exposure to excessive nutritional iodine increases the prevalence of thyroid disorders in Sao Paulo, Brazil. Eur. J. Endocrinol. 2008, 159, 293. [Google Scholar] [CrossRef] [Green Version]
- Soto, A.M.; Sonnenschein, C. Environmental causes of cancer: Endocrine disruptors as carcinogens. Nat. Rev. Endocrinol. 2010, 6, 363–370. [Google Scholar] [CrossRef] [Green Version]
- Damstra, T.; Barlow, S.; Bergman, A.; Kavlock, R.; Van Der Kraak, G. Global Assessment of the State-of-the-Science of Endocrine Disruptors; World Health Organization: Geneva, Switzerland, 2002; pp. 11–32. [Google Scholar]
- National Institute of Environmental Health Sciences. Endocrine Disruptors and Your Health. Available online: https://www.niehs.nih.gov/health/materials/endocrine_disruptors_508.pdf (accessed on 8 December 2020).
- Dyer, C.A. Heavy metals as endocrine-disrupting chemicals. In Endocrine-Disrupting Chemicals; Humana Press: Totowa, NJ, USA, 2007; pp. 111–133. [Google Scholar]
- National Institute of Environmental Health Sciences. Flame Retardants. Available online: https://www.niehs.nih.gov/health/topics/agents/flame_retardants/index.cfm (accessed on 8 December 2020).
- Chen, S.; Ma, Y.; Wang, J.; Chen, D.; Luo, X.; Mai, B. Brominated flame retardants in children’s toys: Concentration, composition, and children’s exposure and risk assessment. Environ. Sci. Technol. 2009, 43, 4200–4206. [Google Scholar] [CrossRef]
- Weil, E.D.; Levchik, S.V. Flame retardants in commercial use or development for textiles. J. Fire Sci. 2008, 26, 243–281. [Google Scholar] [CrossRef]
- Schreder, E.D.; Uding, N.; La Guardia, M.J. Inhalation a significant exposure route for chlorinated organophosphate flame retardants. Chemosphere 2016, 150, 499–504. [Google Scholar] [CrossRef]
- Davis, A.; Harris, D.; Black, M. A study of chemical exposure from consumer products used in residential environments. ASHRAE Trans. 2019, 125, 109–112. [Google Scholar]
- United States Environmental Protection Agency. Emerging Contaminants- Polybrominated Diphenyls Ethers (PBDE) and Polybrominated Biphenyls (PBB). Available online: https://nepis.epa.gov/Exe/tiff2png.cgi/P1000L3S.PNG?-r+75+-g+7+D%3A%5CZYFILES%5CINDEX%20DATA%5C06THRU10%5CTIFF%5C00000138%5CP1000L3S.TIF (accessed on 8 December 2020).
- Centers for Disease Control and Prevention. Polybrominated Biphenys (PBBs). Available online: https://www.atsdr.cdc.gov/toxfaqs/tfacts68.pdf (accessed on 8 December 2020).
- Centers for Disease Control and Prevention. Polybrominated Diphenyl Ethers (PBDEs) and Polybrominated Biphenyls (PBBs). Available online: https://www.cdc.gov/biomonitoring/PBDEs_FactSheet.html (accessed on 8 December 2020).
- Dodson, R.E.; Perovich, L.J.; Covaci, A.; Van den Eede, N.; Ionas, A.C.; Dirtu, A.C.; Brody, J.G.; Rudel, R.A. After the PBDE phase-out: A broad suite of flame retardants in repeat house dust samples from California. Environ. Sci. Technol. 2012, 46, 13056–13066. [Google Scholar] [CrossRef] [PubMed]
- Oulhote, Y.; Chevrier, J.; Bouchard, M.F. Exposure to polybrominated diphenyl ethers (PBDEs) and hypothyroidism in canadian women. Int. J. Clin. Endocrinol. Metab. 2016, 101, 590–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosen, D.H.; Flanders, W.D.; Friede, A.; Humphrey, H.E.; Sinks, T.H. Half-life of polybrominated biphenyl in human sera. Environ. Health Perspect. 1995, 103, 272–274. [Google Scholar] [CrossRef] [PubMed]
- Ongono, J.S.; Dow, C.; Gambaretti, J.; Severi, G.; Boutron-Ruault, M.; Bonnet, F.; Mancini, F.R. Dietary exposure to brominated flame retardants and risk of type 2 diabetes in the french E3N cohort. Environ. Int. 2019, 123, 54–60. [Google Scholar] [CrossRef]
- Herbstman, J.B.; Sjödin, A.; Kurzon, M.; Lederman, S.A.; Jones, R.S.; Rauh, V.; Needham, L.L.; Tang, D.; Niedzwiecki, M.; Wang, R.Y.; et al. Prenatal exposure to PBDEs and neurodevelopment. Environ. Health Perspect. 2010, 118, 712–719. [Google Scholar] [CrossRef]
- Harley, K.G.; Marks, A.R.; Chevrier, J.; Bradman, A.; Sjödin, A.; Eskenazi, B. PBDE concentrations in women’s serum and fecundability. Environ. Health Perspect. 2010, 118, 699–704. [Google Scholar] [CrossRef]
- Zoeller, R.T.; Bergman, A.; Becher, G.; Bjerregaard, P.; Bornman, R.; Brandt, I.; Iguchi, T.; Jobling, S.; Kidd, K.A.; Kortenkamp, A. A path forward in the debate over health impacts of endocrine disrupting chemicals. Environ. Health 2014, 13, 118. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Zhao, G.; Li, J.; Zhao, H.; Wang, Y.; Chen, J.; Zhao, H. Association of polybrominated diphenylethers (PBDEs) and hydroxylated metabolites (OH-PBDEs) serum levels with thyroid function in thyroid cancer patients. Environ. Res. 2017, 159, 1–8. [Google Scholar] [CrossRef]
- Allen, J.G.; Gale, S.; Zoeller, R.T.; Spengler, J.D.; Birnbaum, L.; McNeely, E. PBDE flame retardants, thyroid disease, and menopausal status in US women. Environ. Health 2016, 15, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Mackenzie, P.I.; Owens, I.S.; Burchell, B.; Bock, K.W.; Bairoch, A.; Belanger, A.; Fournel-Gigleux, S.; Green, M.; Hum, D.W.; Iyanagi, T. The UDP glycosyltransferase gene superfamily: Recommended nomenclature update based on evolutionary divergence. Pharm. Genom. 1997, 7, 255–269. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Wang, H.; Li, J.; Shan, Z.; Teng, W.; Teng, X. The correlation between polybrominated diphenyl ethers (PBDEs) and thyroid hormones in the general population: A meta-analysis. PLoS ONE 2015, 10, e0126989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, H.; Chin, Y.; Yang, Y.S.; Lai, H.; Wang-Peng, J.; Liu, L.F.; Tang, H.; Davis, P.J. Thyroid hormone, cancer, and apoptosis. Compr. Physiol. 2011, 6, 1221–1237. [Google Scholar]
- International Agency for Research on Cancer. Classifications. Available online: https://monographs.iarc.fr/agents-classified-by-the-iarc/ (accessed on 8 December 2020).
- U.S. Department of Health and Human Services, National Toxicology Program. 14th Report on Carcinogens. Available online: https://ntp.niehs.nih.gov/whatwestudy/assessments/cancer/roc/index.html (accessed on 8 December 2020).
- United States Environmental Protection Agency. Risk Assessment for Carcinogenic Effects. Available online: https://www.epa.gov/fera/risk-assessment-carcinogenic-effects (accessed on 8 December 2020).
- Hoffman, K.; Lorenzo, A.; Butt, C.M.; Henderson, B.B.; Roman, S.A.; Scheri, R.P.; Stapleton, H.M.; Sosa, J.A. Exposure to flame retardant chemicals and occurrence and severity of papillary thyroid cancer: A case-control study. Environ. Int. 2017, 107, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Sjodin, A.; Chen, Y.; Ni, X.; Ma, S.; Yu, H.; Ward, M.H.; Udelsman, R.; Rusiecki, J. Polybrominated diphenyl ethers, polybrominated biphenyls, and risk of papillary thyroid cancer: A nested case-control study. Am. J. Epidemiol. 2020, 189, 120–132. [Google Scholar] [CrossRef] [PubMed]
- Aschebrook-Kilfoy, B.; DellaValle, C.T.; Purdue, M.; Kim, C.; Zhang, Y.; Sjodin, A.; Ward, M.H. Polybrominated diphenyl ethers and thyroid cancer risk in the prostate, colorectal, lung, and ovarian cancer screening trial cohort. Am. J. Epidemiol. 2015, 181, 883–888. [Google Scholar] [CrossRef] [Green Version]
- Deziel, N.C.; Alfonso-Garrido, J.; Warren, J.L.; Huang, H.; Sjodin, A.; Zhang, Y. Exposure to polybrominated diphenyl ethers and a polybrominated biphenyl and risk of thyroid cancer in women: Single and multi-pollutant approaches. Cancer Epidemiol. Biomark. Prev. 2019, 28, 1755–1764. [Google Scholar] [CrossRef]
- Hoffman, K.; Sosa, J.A.; Stapleton, H.M. Do flame retardant chemicals increase the risk for thyroid dysregulation and cancer? Curr. Opin. Oncol. 2017, 29, 7–13. [Google Scholar] [CrossRef]
- Deziel, N.C.; Yi, H.; Stapleton, H.M.; Huang, H.; Zhao, N.; Zhang, Y. A case-control study of exposure to organophosphate flame retardants and risk of thyroid cancer in women. BMC Cancer 2018, 18, 637. [Google Scholar] [CrossRef]
- Jacobson, M.H.; Darrow, L.A.; Barr, D.B.; Howards, P.P.; Lyles, R.H.; Terrell, M.L.; Smith, A.K.; Conneely, K.N.; Marder, M.E. Serum polybrominated biphenyls (PBBs) and polychlorinated biphenyls (PCBs) and thyroid function among michigan adults several decades after the 1973–1974 PBB contamination of livestock feed. Environ. Health Perspect. 2017, 125, 097020. [Google Scholar] [CrossRef] [Green Version]
- Meador, J.P. Environmental Contaminants in Wildlife: Interpreting Tissue Concentrations; CRC Press: Boca Raton, FL, USA, 1996; p. 165. [Google Scholar]
- Gore, A.C.; Chappell, V.A.; Fenton, S.E.; Flaws, J.A.; Nadal, A.; Prins, G.S.; Toppari, J.; Zoeller, R.T. EDC-2: The Endocrine Society’s Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr. Rev. 2015, 36, E1–E150. [Google Scholar] [CrossRef] [PubMed]
- United States Environmental Protection Agency. Polychlorinated Biphenyls. Available online: https://www.epa.gov/pcbs (accessed on 8 December 2020).
- Ritter, R.; Scheringer, M.; MacLeod, M.; Moeckel, C.; Jones, K.C.; Hungerbühler, K. Intrinsic human elimination half-lives of polychlorinated biphenyls derived from the temporal evolution of cross-sectional biomonitoring data from the united kingdom. Environ. Health Perspect. 2011, 119, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Leng, L.; Li, J.; Luo, X.; Kim, J.; Li, Y.; Guo, X.; Chen, X.; Yang, Q.; Li, G.; Tang, N. Polychlorinated biphenyls and breast cancer: A congener-specific meta-analysis. Environ. Int. 2016, 88, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Murray, I.A.; Patterson, A.D.; Perdew, G.H. Aryl hydrocarbon receptor ligands in cancer: Friend and foe. Nat. Rev. Cancer 2014, 14, 801–814. [Google Scholar] [CrossRef] [PubMed]
- Lauby-Secretan, B.; Loomis, D.; Baan, R.; Ghissassi, F.E.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Grosse, Y.; Straif, K. Use of mechanistic data in the IARC evaluations of the carcinogenicity of polychlorinated biphenyls and related compounds. Environ. Sci. Pollut. Res. 2016, 23, 2220–2229. [Google Scholar] [CrossRef]
- Byrne, J.J.; Carbone, J.P.; Hanson, E.A. Hypothyroidism and abnormalities in the kinetics of thyroid hormone metabolism in rats treated chronically with polychlorinated biphenyl and polybrominated biphenyl. Endocrinology 1987, 121, 520–527. [Google Scholar] [CrossRef]
- Benson, K.; Yang, E.; Dutton, N.; Sjodin, A.; Rosenbaum, P.F.; Pavuk, M. Polychlorinated biphenyls, indicators of thyroid function and thyroid autoantibodies in the anniston community health survey I (ACHS-I). Chemosphere 2018, 195, 156–165. [Google Scholar] [CrossRef]
- Matsuura, N.; Uchiyama, T.; Tada, H.; Nakamura, Y.; Kondo, N.; Morito, M.; Fukushi, M. Effects of dioxins and polychlorinated biphenyls (PCBs) on thyroid function in infants born in japan–the second report from research on environmental health. Chemosphere 2001, 45, 1167–1171. [Google Scholar] [CrossRef]
- Chevrier, J.; Eskenazi, B.; Holland, N.; Bradman, A.; Barr, D.B. Effects of exposure to polychlorinated biphenyls and organochlorine pesticides on thyroid function during pregnancy. Am. J. Epidemiol. 2008, 168, 298–310. [Google Scholar] [CrossRef]
- Hagmar, L. Polychlorinated biphenyls and thyroid status in humans: A review. Thyroid 2003, 13, 1021–1028. [Google Scholar] [CrossRef]
- Montaño, M.; Cocco, E.; Guignard, C.; Marsh, G.; Hoffmann, L.; Bergman, A.; Gutleb, A.C.; Murk, A.J. New approaches to assess the transthyretin binding capacity of bioactivated thyroid hormone disruptors. Toxicol. Sci. 2012, 130, 94–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuo, H. Exposure to Polychlorinated Biphenyl (PCBs) and Risk of Papillary Thyroid Cancer (PTC): A Nested Case-Control Study. Ph.D. Thesis, Yale University, New Haven, CT, USA, 2018. [Google Scholar]
- Lerro, C.C.; Jones, R.R.; Langseth, H.; Grimsrud, T.K.; Engel, L.S.; Sjodin, A.; Choo-Wosoba, H.; Albert, P.; Ward, M.H. A nested case-control study of polychlorinated biphenyls, organochlorine pesticides, and thyroid cancer in the janus serum bank cohort. Environ. Res. 2018, 165, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Deziel, N.C.; Warren, J.L.; Huang, H.; Zhou, H.; Sjodin, A.; Zhang, Y. Exposure to polychlorinated biphenyls and organochlorine pesticides and thyroid cancer in connecticut women. Environ. Res. 2020, 192, 110333. [Google Scholar] [CrossRef] [PubMed]
- Ruder, A.M.; Hein, M.J.; Hopf, N.B.; Waters, M.A. Mortality among 24,865 workers exposed to polychlorinated biphenyls (PCBs) in three electrical capacitor manufacturing plants: A ten-year update. Int. J. Hyg. Environ. Health 2014, 217, 176–187. [Google Scholar] [CrossRef] [Green Version]
- United States Environmental Protection Agency. Phthalates. Available online: https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/phthalates (accessed on 8 December 2020).
- Bornehag, C.; Sundell, J.; Weschler, C.J.; Sigsgaard, T.; Lundgren, B.; Hasselgren, M.; Hagerhed-Engman, L. The association between asthma and allergic symptoms in children and phthalates in house dust: A nested case-control study. Environ. Health Perspect. 2004, 112, 1393–1397. [Google Scholar] [CrossRef] [Green Version]
- Bertelsen, R.J.; Carlsen, K.C.L.; Calafat, A.M.; Hoppin, J.A.; Haland, G.; Mowinckel, P.; Carlsen, K.; Lovik, M. Urinary biomarkers for phthalates associated with asthma in norwegian children. Environ. Health Perspect. 2013, 121, 251–256. [Google Scholar] [CrossRef] [Green Version]
- Zuccarello, P.; Conti, G.O.; Cavallaro, F.; Copat, C.; Cristaldi, A.; Fiore, M.; Ferrante, M. Implication of dietary phthalates in breast cancer. A systematic review. Food Chem. Toxicol. 2018, 118, 667–674. [Google Scholar] [CrossRef]
- Swan, S.H. Environmental phthalate exposure in relation to reproductive outcomes and other health endpoints in humans. Environ. Res. 2008, 108, 177–184. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.J.; Moon, S.; Oh, B.; Jung, D.; Choi, K.; Park, Y.J. Association between diethylhexyl phthalate exposure and thyroid function: A meta-analysis. Thyroid 2019, 29, 183–192. [Google Scholar] [CrossRef]
- Ye, H.; Ha, M.; Yang, M.; Yue, P.; Xie, Z.; Liu, C. Di2-ethylhexyl phthalate disrupts thyroid hormone homeostasis through activating the ras/akt/TRHr pathway and inducing hepatic enzymes. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Pan, W.; Chang, J.; Chiang, H.; Guo, Y.L. Does exposure to phthalates influence thyroid function and growth hormone homeostasis? the taiwan environmental survey for toxicants (TEST) 2013. Environ. Res. 2017, 153, 63–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miao, H.; Liu, X.; Li, J.; Zhang, L.; Zhao, Y.; Liu, S.; Ni, S.; Wu, Y. Associations of urinary phthalate metabolites with risk of papillary thyroid cancer. Chemosphere 2020, 241, 125093. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Li, J.; Yan, B.; Zhu, Y.; Liu, X.; Chen, M.; Li, D.; Lee, C.; Yang, X.; Ma, P. Oral exposure to dibutyl phthalate exacerbates chronic lymphocytic thyroiditis through oxidative stress in female wistar rats. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erkekoglu, P.; Kocer-Gumusel, B.; Kizilgun, M.; Hininger-Favier, I.; Rachidi, W.; Roussel, A.; Favier, A.; Hincal, F. Thyroidal effects of di-(2-ethylhexyl) phthalate in rats of different selenium status. J. Environ. Pathol. Toxicol. Oncol. 2012, 31, 143–153. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Health Effects of Exposures to Substances and Carcinogens. Available online: https://www.atsdr.cdc.gov/substances/ToxOrganSystems.asp (accessed on 8 December 2020).
- Marotta, V.; Russo, G.; Gambardella, C.; Grasso, M.; La Sala, D.; Chiofalo, M.G.; D’Anna, R.; Puzziello, A.; Docimo, G.; Masone, S. Human exposure to bisphenol AF and diethylhexylphthalate increases susceptibility to develop differentiated thyroid cancer in patients with thyroid nodules. Chemosphere 2019, 218, 885–894. [Google Scholar] [CrossRef]
- Liu, C.; Deng, Y.; Zheng, T.; Yang, P.; Jiang, X.; Liu, E.; Miao, X.; Wang, L.; Jiang, M.; Zeng, Q. Urinary biomarkers of phthalates exposure and risks of thyroid cancer and benign nodule. J. Hazard. Mater. 2020, 383, 121189. [Google Scholar] [CrossRef]
- National Institute of Environmental Health Sciences. Bisphenol A (BPA). Available online: https://www.niehs.nih.gov/health/topics/agents/sya-bpa/index.cfm (accessed on 8 December 2020).
- Vandenberg, L.N.; Hauser, R.; Marcus, M.; Olea, N.; Welshons, W.V. Human exposure to bisphenol A (BPA). Reprod. Toxicol. 2007, 24, 139–177. [Google Scholar] [CrossRef]
- Huo, X.; Chen, D.; He, Y.; Zhu, W.; Zhou, W.; Zhang, J. Bisphenol-A and female infertility: A possible role of gene-environment interactions. Int. J. Environ. Res. Public Health 2015, 12, 11101–11116. [Google Scholar] [CrossRef]
- Ziv-Gal, A.; Flaws, J.A. Evidence for bisphenol A-induced female infertility: A review (2007–2016). Fertil. Steril. 2016, 106, 827–856. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.J.; Park, Y.J. Bisphenols and thyroid hormone. Endocrinol. Metab. 2019, 34, 340–348. [Google Scholar] [CrossRef]
- Cuomo, D.; Porreca, I.; Cobellis, G.; Tarallo, R.; Nassa, G.; Falco, G.; Nardone, A.; Rizzo, R.; Mallardo, M.; Ambrosino, C. Carcinogenic risk and bisphenol A exposure: A focus on molecular aspects in endoderm derived glands. Mol. Cell Endocrinol. 2017, 457, 20–34. [Google Scholar] [CrossRef] [PubMed]
- Gentilcore, D.; Porreca, I.; Rizzo, F.; Ganbaatar, E.; Carchia, E.; Mallardo, M.; De Felice, M.; Ambrosino, C. Bisphenol A interferes with thyroid specific gene expression. Toxicology 2013, 304, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Porreca, I.; Severino, L.U.; D’Angelo, F.; Cuomo, D.; Ceccarelli, M.; Altucci, L.; Amendola, E.; Nebbioso, A.; Mallardo, M.; De Felice, M. “Stockpile” of slight transcriptomic changes determines the indirect genotoxicity of low-dose BPA in thyroid cells. PLoS ONE 2016, 11, e0151618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demeneix, B.; Slama, R. Endocrine disruptors: From scientific evidence to human health protection. Eur. Parliam. Rep. 2019. Available online: https://www.europarl.europa.eu/thinktank/en/document.html?reference=IPOL_STU(2019)608866 (accessed on 8 December 2020).
- Zhou, Z.; Zhang, J.; Jiang, F.; Xie, Y.; Zhang, X.; Jiang, L. Higher urinary bisphenol A concentration and excessive iodine intake are associated with nodular goiter and papillary thyroid carcinoma. Biosci. Rep. 2017, 37, BSR20170678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Institute of Environmental Health Sciences. Per- and Polyfluoroalkyl Substances (PFAS). Available online: https://www.epa.gov/pfas (accessed on 8 December 2020).
- Fromme, H.; Tittlemier, S.A.; Völkel, W.; Wilhelm, M.; Twardella, D. Perfluorinated compounds–exposure assessment for the general population in western countries. Int. J. Hyg. Environ. Health 2009, 212, 239–270. [Google Scholar] [CrossRef] [PubMed]
- Bergman, Å.; Heindel, J.J.; Jobling, S.; Kidd, K.; Zoeller, T.R. State of the Science of Endocrine Disrupting Chemicals 2012; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Li, Y.; Fletcher, T.; Mucs, D.; Scottm, K.; Lindh, C.H.; Tallving, P.; Jakobsson, K. Half-lives of PFOS, PFHxS and PFOA after end of exposure to contaminated drinking water. Occup. Environ. Med. 2018, 75, 46–51. [Google Scholar] [CrossRef] [Green Version]
- Coperchini, F.; Awwad, O.; Rotondi, M.; Santini, F.; Imbriani, M.; Chiovato, L. Thyroid disruption by perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA). J. Endocrinol. Investig. 2017, 40, 105–121. [Google Scholar] [CrossRef]
- Temkin, A.M.; Hocevar, B.A.; Andrews, D.Q.; Naidenko, O.V.; Kamendulis, L.M. Application of the key characteristics of carcinogens to per and polyfluoroalkyl substances. Int. J. Environ. Res. Public Health 2020, 17, 1668. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.; Cheng, S. Thyroid hormone receptors regulate adipogenesis and carcinogenesis via crosstalk signaling with peroxisome proliferator-activated receptors. J. Mol. Endocrinol. 2010, 44, 143. [Google Scholar] [CrossRef]
- Barry, V.; Winquist, A.; Steenland, K. Perfluorooctanoic acid (PFOA) exposures and incident cancers among adults living near a chemical plant. Environ. Health Perspect. 2013, 121, 1313–1318. [Google Scholar] [CrossRef] [Green Version]
- Vieira, V.M.; Hoffman, K.; Shin, H.; Weinberg, J.M.; Webster, T.F.; Fletcher, T. Perfluorooctanoic acid exposure and cancer outcomes in a contaminated community: A geographic analysis. Environ. Health Perspect. 2013, 121, 318–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olsen, G.W.; Burlew, M.M.; Marshall, J.C.; Burris, J.M.; Mandel, J.H. Analysis of episodes of care in a perfluorooctanesulfonyl fluoride production facility. J. Occup. Environ. Med. 2004, 46, 837–846. [Google Scholar] [CrossRef] [PubMed]
- Leonard, R.C.; Kreckmann, K.H.; Sakr, C.J.; Symons, J.M. Retrospective cohort mortality study of workers in a polymer production plant including a reference population of regional workers. Ann. Epidemiol. 2008, 18, 15–22. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Basic Information about Pesticide Ingredients. Available online: https://www.epa.gov/ingredients-used-pesticide-products/basic-information-about-pesticide-ingredients (accessed on 8 December 2020).
- Centers for Disease Control and Prevention. Reproductive Health and the Workplace. Available online: https://www.cdc.gov/niosh/topics/repro/pesticides.html (accessed on 8 December 2020).
- Aktar, W.; Sengupta, D.; Chowdhury, A. Impact of pesticides use in agriculture: Their benefits and hazards. Interdiscip. Toxicol. 2009, 2, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurley, P.M. Mode of carcinogenic action of pesticides inducing thyroid follicular cell tumors in rodents. Environ. Health Perspect. 1998, 106, 437–445. [Google Scholar] [CrossRef]
- Schreinemachers, D.M.; Creason, J.P.; Garry, V.F. Cancer mortality in agricultural regions of minnesota. Environ. Health Perspect. 1999, 107, 205–211. [Google Scholar] [CrossRef]
- Zeng, F.; Lerro, C.; Lavoué, J.; Huang, H.; Siemiatycki, J.; Zhao, N.; Ma, S.; Dexiel, N.C.; Friesen, M.C.; Udelsman, R. Occupational exposure to pesticides and other biocides and risk of thyroid cancer. Occup. Environ. Med. 2017, 74, 502–510. [Google Scholar] [CrossRef] [Green Version]
- Jayaraj, R.; Megha, P.; Sreedev, P. Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdiscip. Toxicol. 2016, 9, 90–100. [Google Scholar] [CrossRef] [Green Version]
- National Institute of Environmental Health Sciences. DDT- A Brief Hsitory and Status. Available online: https://www.epa.gov/ingredients-used-pesticide-products/ddt-brief-history-and-status (accessed on 8 December 2020).
- Cohn, B.A.; Wolff, M.S.; Cirillo, P.M.; Sholtz, R.I. DDT and breast cancer in young women: New data on the significance of age at exposure. Environ. Health Perspect. 2007, 115, 1406–1414. [Google Scholar] [CrossRef]
- Goldner, W.S.; Sandler, D.P.; Yu, F.; Shostrom, V.; Hoppin, J.A.; Kamel, F.; LeVan, T.D. Hypothyroidism and pesticide use among male private pesticide applicators in theagricultural health study. J. Occup. Environ. Med. 2013, 55, 1171. [Google Scholar] [CrossRef] [Green Version]
- Brucker-David, F. Effects of environmental synthetic chemicals on thyroid function. Thyroid 1998, 8, 827–856. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Environmental Health Sciences. Hexachlorobenzene. Available online: https://www.epa.gov/sites/production/files/201609/documents/hexachlorobenzene.pdf (accessed on 8 December 2020).
- National Institute of Environmental Health Sciences. Pentachlorophenyl. Available online: https://www.epa.gov/ingredients-used-pesticide-products/pentachlorophenol (accessed on 8 December 2020).
- Agricultural Health Study. Questionnaires & Study Data. Available online: https://aghealth.nih.gov/collaboration/questionnaires.html (accessed on 8 December 2020).
- Lerro, C.C.; Freeman, L.E.B.; DellaValle, C.T.; Andreotti, G.; Hoffman, J.N.; Koutros, S.; Parks, C.H.; Shrestha, S.; Alavanja, M.C.R. Pesticide exposure and incident thyroid cancer among male pesticide applicators in agricultural health study. Environ. Int. 2020, 146, 106187. [Google Scholar] [CrossRef] [PubMed]
- Louis, L.M.; Lerro, C.C.; Friesen, M.C.; Andreotti, G.; Koutros, S.; Sandler, D.P.; Blair, A.; Robson, M.G.; Beane Freeman, L.E. A prospective study of cancer risk among agricultural health study farm spouses associated with personal use of organochlorine insecticides. Environ. Health 2017, 16, 95. [Google Scholar] [CrossRef] [PubMed]
- Saracci, R.; Kogevinas, M.; Bertazzi, P.A.; Bueno de Mesquita, B.H.; Coggon, D.; Green, L.M.; Kauppinen, T.; Abbé, K.A.; Littorin, M.; Lynge, E. Cancer mortality in workers exposed to chlorophenoxy herbicides and chlorophenols. Lancet 1991, 338, 1027–1032. [Google Scholar] [CrossRef]
- Grimalt, J.O.; Sunyer, J.; Moreno, V.; Amaral, O.C.; Sala, M.; Rosell, A.; Anto, J.M.; Albaiges, J. Risk excess of soft-tissue sarcoma and thyroid cancer in a community exposed to airborne organochlorinated compound mixtures with a high hexachlorobenzene content. Int. J. Cancer 1994, 56, 200–203. [Google Scholar] [CrossRef] [PubMed]
- Ruder, A.M.; Yiin, J.H. Mortality of US pentachlorophenol production workers through 2005. Chemosphere 2011, 83, 851–861. [Google Scholar] [CrossRef]
- National Institute of Environmental Health Sciences. Organophopshate Insecticides. Available online: https://www.epa.gov/sites/production/files/documents/rmpp_6thed_ch5_organophosphates.pdf (accessed on 8 December 2020).
- Centers for Disease Control and Prevention. Organophosphorus Insecticides: Dialkyl Phosphate Metabolites. Available online: https://www.cdc.gov/biomonitoring/OPDPM_BiomonitoringSummary.html (accessed on 8 December 2020).
- Campos, É.; Freire, C. Exposure to non-persistent pesticides and thyroid function: A systematic review of epidemiological evidence. Int. J. Hyg. Environ. Health 2016, 219, 481–497. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Toxic Substances Portal-Diazinon. Available online: https://www.atsdr.cdc.gov/ToxProfiles/tp.asp?id=512&tid=90 (accessed on 8 December 2020).
- U.S. Food and Drug Administration. Malathion. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/018613s017lbl.pdf (accessed on 8 December 2020).
- Mokarizadeh, A.; Faryabi, M.R.; Rezvanfar, M.A.; Abdollahi, M. A comprehensive review of pesticides and the immune dysregulation: Mechanisms, evidence and consequences. Toxicol. Mech. Methods 2015, 25, 258–278. [Google Scholar] [CrossRef]
- Abdollahi, M.; Mostafalou, S.; Pournourmohammadi, S.; Shadnia, S. Oxidative stress and cholinesterase inhibition in saliva and plasma of rats following subchronic exposure to malathion. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2004, 137, 29–34. [Google Scholar] [CrossRef]
- Lerro, C.C.; Koutros, S.; Andreotti, G.; Friesen, M.C.; Alavanja, M.C.; Blair, A.; Hoppin, J.A.; Sandler, D.P.; Lubin, J.H.; Ma, X. Organophosphate insecticide use and cancer incidence among spouses of pesticide applicators in the agricultural health study. Occup. Environ. Med. 2015, 72, 736–744. [Google Scholar] [CrossRef] [Green Version]
- National Institute of Environmental Health Sciences. Alachlor. Available online: https://www3.epa.gov/pesticides/chem_search/reg_actions/reregistration/fs_PC-090501_1-Dec-98.pdf (accessed on 8 December 2020).
- Wilson, A.G.; Thake, D.C.; Heydens, W.E.; Brewster, D.W.; Hotz, K.J. Mode of action of thyroid tumor formation in the male Long–Evans rat administered high doses of alachlor. Fundam. Appl. Toxicol. 1996, 33, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.J.; Hoppin, J.A.; Blair, A.; Lubin, J.H.; Dosemeci, M.; Sandler, D.P.; Alavanja, M.C.R. Cancer incidence among pesticide applicators exposed to alachlor in the agricultural health study. Am. J. Epidemiol. 2004, 159, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Acquavella, J.F.; Delzell, E.; Cheng, H.; Lynch, C.F.; Johnson, G. Mortality and cancer incidence among alachlor manufacturing workers 1968–1999. Occup. Environ. Med. 2004, 61, 680–685. [Google Scholar] [CrossRef]
- EUR-Lex, Access to European Union Law. Available online: https://eurlex.europa.eu/eli/dec/2004/248/oj (accessed on 8 December 2020).
- Son, H.; Nishikawa, A.; Okazaki, K.; Lee, K.; Imazawa, T.; Hirose, M. Lack of modifying effects of atrazine and/or tamoxifen on thyroid carcinogenesis in rats pretreated with N-bis (2-hydroxypropyl) nitrosamine (DHPN). Food Chem. Toxicol. 2003, 41, 1811–1816. [Google Scholar] [CrossRef]
- Freeman, L.E.B.; Rusiecki, J.A.; Hoppin, J.A.; Lubin, J.H.; Koutros, S.; Andreotti, G.; Zahm, S.H.; Hines, C.J.; Coble, J.B.; Barone-Adesi, F. Atrazine and cancer incidence among pesticide applicators in the agricultural health study (1994–2007). Environ. Health Perspect. 2011, 119, 1253–1259. [Google Scholar] [CrossRef] [Green Version]
- Lerro, C.; Freeman, L.B.; Koutros, S.; Andreotti, G.; Hoffman, J.; DellaValle, C.; Alavanja, M.; Sandler, D.; Chen, H.; Blair, A. O25-1 Pesticide use and thyroid cancer incidence among spouses of pesticide applicators in the agricultural health study. Occup. Environ. Med. 2016, 73, A47. [Google Scholar]
- Centers for Disease Control and Prevention. Carbamate Insecticides Overview. 2017. Available online: https://www.cdc.gov/biomonitoring/Carbofuran_BiomonitoringSummary.html (accessed on 8 December 2020).
- National Institute of Environmental Health Sciences. Organophosphathes (OP) and N-Methyl Carbamates. Available online: https://www.epa.gov/pesticide-reevaluation/groups-pesticides-registration-review#ops (accessed on 8 December 2020).
- Dias, E.; e Costa, F.G.; Morais, S.; de Lourdes Pereira, M. A review on the assessment of the potential adverse health impacts of carbamate pesticides. In Topics in Public Health, 1st ed.; IntechOpen: London, UK, 2015; Chapter 9; pp. 197–212. [Google Scholar]
- Dhouib, I.; Jallouli, M.; Annabi, A.; Marzouki, S.; Gharbi, N.; Elfazaa, S.; Lasram, M.M. From immunotoxicity to carcinogenicity: The effects of carbamate pesticides on the immune system. Environ. Sci. Pollut. Res. 2016, 23, 9448–9458. [Google Scholar] [CrossRef]
- Nordby, K.; Andersen, A.; Irgens, L.M.; Kristensen, P. Indicators of mancozeb exposure in relation to thyroid cancer and neural tube defects in farmers’ families. Scand. J. Work Environ. Health 2005, 31, 89–96. [Google Scholar] [CrossRef]
- Boas, M.; Feldt-Rasmussen, U.; Main, K.M. Thyroid effects of endocrine disrupting chemicals. Mol. Cell Endocrinol. 2012, 355, 240–248. [Google Scholar] [CrossRef]
Author (Year) | EDC Type (Congeners) | Country | Study Design | Investigated Population (n) | Measurement of Exposure | Association with Thyroid Cancer |
---|---|---|---|---|---|---|
Hoffman et al. (2017) [34] | Flame retardants (TBB, TBPH, TPHP, TCEP, TCIPP, BDE-47, BDE-99, BDE-100, BDE-153, BDE-154, BDE-209) | United States | Case-control | PTC cases from the Duke Cancer Institute (n = 70) Matched controls from the Duke Health system and surrounding communities (n = 70) | Dust samples. | High (below median value) vs. Low exposure (above median value): TBB: OR: 0.62 (95% CI: 0.29–1.31) TBPH: OR: 1.22 (95% CI: 0.56–2.65) TPHP: OR: 2.07 (95% CI: 0.94–4.56) TCEP: OR: 2.42 (95% CI: 1.10–5.33) TCIPP: OR:0.92 (95% CI: 0.43–1.97) BDE-47: OR: 0.80 (95% CI: 0.38–1.70) BDE-99: OR: 0.75 (95% CI: 0.36–1.59) BDE-100: OR: 0.88 (95% CI: 0.42–1.87) BDE-153: OR: 0.77 (95% CI: 0.37–1.63) BDE-154: OR: 0.80 (95% CI: 0.38–1.70) BDE-209: OR: 2.29; 95% CI: 1.03–5.08) |
Huang et al. (2020) [35] | PBDEs (BDE-28, BDE-47, BDE-85, BDE-99, BDE-100, BDe-153, BDE-154) PBBs (BB-153) | United States | Nested case-control | United States Department of Defense cohort. (n = 1484) PTC cases (n = 742) Matched controls (n = 742) | Lipid-adjusted serum concentrations | Third tertile vs. below limit of detection: Total population BDE-28: OR: 2.09 (95% CI: 1.02–4.15) BDE-47: OR: 1.00 (95% CI: 0.41–2.44) BDE-85: OR: 1.76 (95% CI: 0.57–5.47) BDE-99: OR: 0.86 (95% CI: 0.39–1.87) BDE-100: OR: 0.67 (95% CI: 0.27–1.65) BDE- 153: OR: 0.94 (95% CI: 0.55–1.61) BDE-154: OR: 0.61 (95% CI: 0.19–1.99) BB-153: OR: 0.92 (95% CI: 0.65–1.31) |
Aschebrook et al. (2015) [36] | PBDEs (BDE-47, BDE-99, BDE-100, BDE-153) | United States | Nested case-control | Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial (n = 312) Thyroid cancer cases (n = 104) Matched controls (n = 208) | Lipid-adjusted serum samples | Continuous: BDE-47: OR: 0.95 (95% CI: 0.80–1.12) BDE-99: OR: 0.95 (95% CI: 0.81–1.11) BDE-100: OR: 0.96 (95% CI: 0.84–1.09) BDE-153: OR: 0.96 (95% CI: 0.82–1.11) Total PBDE: OR: 0.94 (95% CI: 0.79–1.11) |
Deziel et al. (2019) [37] | PBDEs (BDE-28, BDE-47, BDE-85, BDE-99, BDE-100, BDE-153, BDE-154, BDE-183, BDE-209) PBBs (BB-153) | United States | Case-control | Women identified through Yale Cancer Center’s Rapid Case Ascertainment Shared Resources (n = 500) PTC cases (n = 250) Age- matched controls (n = 250) | Lipid-adjusted serum concentrations | Continuous: BDE-28: OR: 0.94 (95% CI: 0.78–1.13) BDE-47: OR: 0.89 (95% CI: 0.72–1.10) BDE-99: OR: 0.91 (95% CI: 0.74–1.12) BDE-100: OR: 1.05 (95% CI: 0.87–1.26) BDE-153: OR: 1.08 (95% CI: 0.90–1.30) BDE-209: OR: 0.87 (95% CI: 0.71–1.06) BB-153: OR: 1.15 (95% CI: 0.88–1.52) Above LOD vs. below LOD: BDE-85: OR: 0.71 (95% CI: 0.48–1.05) BDE-154: OR: 0.78 (95% CI: 0.53–1.13) BDE-183: OR: 0.74 (95% CI: 0.49–1.12) |
Deziel et al. (2018) [39] | Organophosphate flame retardants (BCIPP. DPHP, BDCIPP, IPDPP, BCIPHIPP) | United States | Case-control | Women identified through Yale Cancer Center’s Rapid Case Ascertainment Shared Resources (n = 200) PTC cases (n = 100) Matched controls (n = 100) | Interviews and urine samples | Continuous: BCIPP: OR: 0.89 (95% CI: 0.76–1.04) DPHP: OR: 0.99 995% CI: 0.74–1.31) BDCIPP: OR: 1.07 (95% CI: 0.85–1.34) IPDPP: OR: 1.06 (95% CI: 0.75–1.48) BCIPHIPP: OR: 0.82 (95% CI: 0.65–1.01) Total PFR: OR: 0.93 (95% CI: 0.65–1.33) |
Author (Year) | EDC Type (Congeners) | Country | Study Design | Investigated Population | Measurement of Exposure | Association with Thyroid Cancer |
---|---|---|---|---|---|---|
Zhuo et al. (2018) [54] | PCBs (PCB-28, PCB-74, PCB-99, PCB-105, PCB-118, PCB-138/158, PCB-146, PCB-153, PCB-156, PCB-157, PCB-167, PCB-170, PCB-178, PCB-180, PCB-183, PCB-187, PCB-194, PCB-196/203, PCB-199, PCB-206, PCB-209) | United States | Nested case-control | Department of Defense Automated Central Tumor Registry (ACTUR) and Defense Medical Surveillance System (DMSS) (n = 1484) PTC cases = 742 Matched controls = 742 | Lipid-adjusted serum concentrations | Fourth quartile vs. first quartile: PCB-28: OR: 1.04 (95% CI: 0.62–1.76) PCB-74: OR: 1.24 (95% CI: 0.50–3.09) PCB-99: OR: 1.05 (95% CI: 0.68–1.62) PCB-105: OR: 1.02 (95% CI: 0.62–1.70) PCB-118: OR: 1.55 (95% CI: 1.01–2.38) PCB-138/158: OR: 1.07 (95% CI: 0.65–1.76) PCB-146: OR: 0.81 (95% CI: 0.48–1.38) PCB-153: OR: 1.01 (95% CI: 0.61–1.68) PCB-156: OR: 1.15 (95% CI: 0.67–1.95) PCB-157: OR: 1.44 (95% CI: 0.63–3.29) PCB-167: OR: 1.90 (95% CI: 0.74–4.85) PCB-170: OR: 0.92 (95% CI: 0.53–1.59) PCB-178: OR: 0.79 (95% CI: 0.34–1.88) PCB-180: OR: 0.80 (95% CI: 0.47–1.35) PCB-183: OR: 0.73 (95% CI: 0.39–1.35) PCB-187: OR: 0.89 (95% CI: 0.55–1.43) PCB-194: OR: 0.77 (95% CI: 0.43–1.36) PCB-196/203: OR: 1.08 (95% CI: 0.62–1.88) PCB-199: OR: 1.15 (95% CI: 0.68–1.95) PCB-206: OR: 1.57 (95% CI: 0.81–3.04) PCB-209: OR: 1.81 (95% CI: 0.83–3.97) |
Lerro et al. (2018) [55] | PCBs (PCB-28, PCB-44, PCB-49, PCB- 52, PCB-66, PCB-74, PCB-87, PCB-99, PCB-101, PCB-105, PCB-110, PCB-114, PCB-118; PCB-128, PCB-138/158, PCB-146, PCB-149, PCB-151, PCB-153, PCB-156, PCB-157, PCB-167, PCB-170, PCB-172, PCB-177, PCB-178, PCB-180, PCB-183, PCB-187, PCB-189, PCB-194, PCB-195, PCB-196/203, PCB-199, PCB-206, PCB-209) | Norway | Nested case-control | Norwegian Janus Serum Bank cohort (n = 324) Thyroid cancer cases (n = 108) Controls (n = 216) | Blood samples | Continuous: PCB-28:OR: 1.05 (95% CI:0.70–1.58) PCB-44: OR: 0.97 (95% CI: 0.79–1.19) PCB-49: OR: 0.93 (95% CI: 0.67–1.30) PCB-52: OR: 0.95 (95% CI: 0.80–1.13) PCB-66: OR: 0.90 (95% CI: 0.65–1.24) PCB-74: OR: 0.85 (95% CI: 0.69–1.05) PCB-87: OR: 0.71 (95% CI: 0.33–1.55) PCB-99: OR: 0.85 (95% CI: 0.71–1.00) PCB-101: OR: 0.91 (95% CI: 0.67–1.23) PCB-105: OR: 0.83 (95% CI: 0.62–1.12) PCB-110: OR: 0.93 (95% CI: 0.65–1.33) PCB-114: OR: 0.78 (95% CI: 0.62–0.97) PCB-118: OR: 0.96 (95% CI: 0.89–1.04) PCB-128: OR: 0.96 (95% CI: 0.87–1.06) PCB-138/158: OR: 0.86 (5% CI: 0.64–1.15) PCB-146: OR: 0.94 (95% CI: 0.80–1.11) PCB-149: OR: 0.95 (95% CI: 0.87–1.03) PCB-151: OR: 0.98 (95% CI: 0.89–1.07) PCB-153: OR: 0.91 (95% CI: 0.72–1.14) PCB-156: OR: 0.90 (95% CI: 0.71–1.13) PCB-157: OR: 0.96 (95% CI: 0.87–1.06) PCB-167: OR: 0.98 (95% CI: 0.93–1.04) PCB-170: OR: 0.96 (95% CI: 0.87–1.05) PCB-172: OR: 0.98 (95% CI: 0.92–1.04) PCB-177: OR: 0.96 (95% CI: 0.92–1.01) PCB-178: OR: 0.98 (95% CI: 0.93–1.03) PCB-180: OR: 0.86 (95% CI: 0.58–1.27) PCB-183: OR: 0.85 (95% CI: 0.64–1.14) PCB-187: OR: 0.94 (95% CI: 0.84–1.06) PCB-189: OR: 0.63 (95% CI: 0.12–3.45) PCB-194: OR: 0.88 (95% CI: 0.67–1.15) PCB-195: OR: 0.91 (95% CI: 0.81–1.02) PCB-196/203: OR: 0.79 (95% CI: 0.59–1.04) PCB-199: OR: 0.77 (95% CI: 0.58–1.03) PCB-206: OR: 0.95 (95% CI: 0.88–1.02) PCB-209: OR: 1.00 (95% CI: 0.93–1.08) Total: OR: 0.96 (95% CI: 0.90–1.02) |
Deziel et al. (2020) [56] | PCB-28, PCB-66, PCB-74, PCB-99, PCB-105, PCB-114, PCB-118, PCB-138 & 158, PCB-146, PCB-153, PCB-156, PCB-157, PCB-167, PCB-170, PCB-178, PCB-180, PCB-183, PCB-187, PCB-189, PCB-194, PCB-196 & 203, PCB-199, PCB-206, PCB-209, | United States | Case control | Incident female PTC cases (n = 250) Female controls (n = 250) | Interviews and serum samples | PCB-28: OR 0.89 (95% CI: 0.77–1.04) PCB-66: OR: 0.95 (95% CI: 0.84–1.06) PCB-74: OR: 0.94 (95% CI: 0.74–1.18) PCB-99: OR: 0.99 (95% CI: 0.88–1.10) PCB-105: OR: 0.98 (95% CI: 0.91–1.05) PCB-114: OR: 1.01 (95% CI: 0.82–1.25) PCB-118: OR: 0.99 (95% CI: 0.88–1.10) PCB-138 & 158: OR: 0.97 (95% CI 0.81–1.17) PCB-146: OR: 0.95 (95% CI: 0.76.-1.29) PCB-153: OR: 1.00 (95% CI: 0.78–1.29) PCB-156: OR: 0.99 (95% CI: 0.76–1.29) PCB-157: OR: 0.97 (95% CI: 0.75–1.25) PCB-167: OR: 0.99 (95% CI: 0.79–1.23) PCB-170: OR: 0.96 (95% CI: 0.70–1.33) PCB-178: OR: 1.04 (95% CI: 0.79–1.37) PCB-180: OR: 0.96 (95% CI: 0.70–1.33) PCB-183: OR: 1.04 (95% CI: 0.83–1.31) PCB-187: OR: 1.02 (95% CI: 0.81–1.27) PCB-189: OR: 0.90 (95% CI: 0.66–1.24) PCB-194: OR: 1.05 (95% CI: 0.75–1.45) PCB-196 & 203: OR: 1.12 (95% CI: 0.83–1.50) PCB-199: OR: 1.11 (95% CI: 0.84–1.45) PCB-206: OR: 1.07 (95% CI: 0.85–1.36) PCB-209: OR: 1.07 (95% CI: 0.89–1.30) |
Ruder et al. (2014) [57] | PCBs | United States | Cohort | Capacitor-manufacturing workers exposed to PCBs at plants in Indiana, Massachusetts and New York (n = 24,865) Short term workers (n = 7647) Long term workers (n = 17,218) | Cumulative PCB exposure using plant-specific job-exposure matrices | Standardized thyroid cancer mortality ratios: Entire cohort: SMR: 0.52 (95% CI: 0.11–1.53) Short-term workers: SMR: 0.00 (95% CI: 0.00–2.76) Long-term workers: SMR: 0.68 (95% CI: 0.14–2.00) |
Author (Year) | EDC Type (Metabolites) | Study Design | Country | Investigated Population | Measurement | Association with Thyroid Cancer |
---|---|---|---|---|---|---|
Marotta et al. (2019) [70] | DEHP (MEHP) | Cross-sectional | Italy | Patients with differentiated TC (n = 28) Patients with benign thyroid nodules (n = 27) | Serum | MHEP: OR: 3.19 (95% CI: 0.85–11.87) (unadjusted) DHEP: OR: 15.07 (95% CI: 1.59–142.13) |
Miao et al. (2020) [66] | DEHP (MBP, MEP, MEHP, MEOHP, MECPP, MEHHP) | Case-control | China | Cancer Hospital of Chinese Academy of Medical Sciences PTC cases (n = 111) Controls with non-PTC (n = 111) | Urinary phthalates metabolite concentrations | MBP: OR: 1.48 (95% CI: 0.98–2.24) MEP: OR: 1.40 (95% CI: 0.90–2.19) MEHP: OR: 7.30 (95% CI: 2.17–24.56) MEOHP: OR: 2.07 (95% CI: 1.21–3.53) MECPP: OR: 3.11 (95% CI: 1.56–6.19) MEHHP: OR: 3.63 (95% CI: 1.69–7.74) Total DEHP: OR: 3.15 (95% CI: 1.64–7.49) |
Liu et al. (2020) [71] | Phthalate metabolites (MMP, MEP, MBP, MBzP, MEHHP, MEOHP, MEHP) | Case-control | China | Central Hospital of Wuhan, China Thyroid cancer cases (n = 144) Healthy adults (n = 144) | Creatinine–adjusted urinary phthalate metabolite concentrations | Continuous: MMP: OR: 1.11 (95% CI: 1.01–1.22) MEP: OR: 0.97 (95% CI: 0.84–1.13) MBP: OR: 0.45 (95% CI: 0.34–0.60) MBzP: OR: 0.71 (95% CI: 0.60–0.85) MEOHP: OR: 1.09 (95% CI: 0.84–1.42) MEHHP: OR: 1.53; 95% CI: 1.19–1.96) MEHP: OR: 1.46; 95% CI: 1.09–1.91) |
Author (Year) | EDC Type | Study Design | Country | Investigated Population | Measurement of Exposure | Association with Thyroid Cancer |
---|---|---|---|---|---|---|
Zhou et al. (2017) [81] | BPA | Cross-sectional | China | Qilu Hospital of Shandong University PTC (n = 53) Healthy volunteers (n = 65) | Urinary BPA concentrations | Higher urinary BPA (>2.84 ng/mL) vs. lower urinary BPA: OR: 3.57 (95% CI: 1.37–9.30) |
Marotta et al. (2019) [70] | BPA, BPS, BPF, BPE, BPB, BPAF, BADGE | Cross-sectional | Italy | Patients with differentiated TC (n = 28) Patients with benign thyroid nodules (n = 27) | Serum | Unadjusted analysis: BPA: OR: 3.17 (95% CI: 0.67–20.34) BPS: OR: 10.1 (95% CI: 0.51–197.32) BPF: OR: 5.18 (95% CI: 0.23–111.22) BPB: OR: 1.50 (95% CI: 0.46–4.83) BAGDE: OR: 2.66 (5% CI: 0.61–11.64) Adjusted analysis: BPE: OR: 3.62 (95% CI: 0.69–18.95) BPAF: OR: 15.07 (95% CI: 1.59–142.13) |
Author (Year) | EDC Type | Study Design | Country | Investigated Population | Measurement of Exposure | Association with Thyroid Cancer |
---|---|---|---|---|---|---|
Barry et al. (2013) [89] | PFOA | Cohort | United States | C8 Health Project (n = 32,254) | Estimated PFOA serum levels | No lag: HR: 1.10 (95% CI 0.95–1.20) 10-year lag: HR: 1.04 (95% CI: 0.89–1.20) |
Vieria et al. (2013) [90] | PFOA | Case-control | United States | Incident cancer cases among residents living near the DuPont Teflon-manufacturing plant in Parkersburg, West Virginia (n = 19,716) using cancer registry data | Estimated individual-level annual PFOA serum exposure categories | Very high: OR: 0.8 (95% CI: 0.2–3.5) High: OR: 0.7 (95% CI: 0.2–2.1) Medium: OR: 0.9 (95% CI: 0.4–2.3) Low: OR: 1.2 (95% CI: 0.8–1.7) |
Olsen et al. (2004) [91] | PFOA | Case-control | United States | Fluorochemical production facility employees (n = 652 cases) and film plant employees (n = 659 controls) | Health claims data | RR (95% CI): unable to calculate |
Leonard et al. (2008) [92] | PFOA | Case-control | United States | Workers at polymer manufacturing facility (n = 6027) Workers at other DuPont facilities (n = 72,882) | Causes of death (Dupont Epidemiology Registry) or (NDI Plus) | SMR: 628.6 (95% CI: 129.7; 1836.9) |
Author (Year) | EDC Type | Study Design | Country | Investigated Population | Measurement of Exposure | Association with Thyroid Cancer |
---|---|---|---|---|---|---|
Lerro et al. (2018) [55] | Organochlorine Pesticides (DDT metabolites) | Nested case-control | Norway | Norwegian Janus Serum Bank cohort Thyroid cancer cases (n = 108) Control (n = 216) | Blood samples | Continuous: p,p’-DDE: OR: 0.79 (95% CI: 0.64–0.97) p,p’-DDT: OR: 0.86 (95% CI: 0.71–1.05) o,p’-DDT: OR: 0.81 (95% CI: 0.64–1.02) Total DDT metabolites: OR: 0.80 (95% CI: 0.66–0.98) |
Lerro et al. (2020) [107] | Lindane | Cohort | United States | AHS cohort (n = 53,096) | Self-administered questionnaires on pesticide exposure | HR: 1.74 (95% CI: 1.06–2.84) |
Louis et al. (2017) [108] | Organochlorine pesticides (Aldrin, chlordane, dieldrin, DDT, heptachlor, lindane, toxaphene) | Cohort | United States | Female spouses of pesticide applicators in the AHS (n = 32,345) No pesticide use (n = 26,718) Pesticide use (n = 2191) | Self-administered questionnaires on OC pesticide exposure | Ever versus never exposed: Any OC: RR: 0.66 (95% CI: 0.26–1.63) Chlordane: RR: 0.97 (95% CI: 0.36–2.67) Not more than 3 exposed thyroid cancer cases for other OC pesticides so RR not calculated. |
Saracci et al. (1991) [109] | Chlorophenoxy herbicides and/or chlorophenols | Cohort | France | International register of production workers or sprayers form ten countries (n = 18,910) Exposed workers (n = 13,482) Probably exposed workers (n = 416) Non-exposed workers (n = 3951) | Questionnaires on exposure | SMR: 357 (95% CI: 97–914) (4 thyroid cancer-related deaths) |
Grimalt et al. (1994) [110] | Hexachlorobenzene (HCB) | Cohort | Spain | Community exposed to HCB (n = 5003) Reference community | Average 24-h air levels of OC compounds (including HCB, PCB, pp’DDE, chloroform, carbon tetrachloride, trichloroethylene, tetrachloroethylene) | Male: SIR: 6.7 (95% CI: 1.6–28) Female: SIR: 1.0 (95% CI: 0.14–7.4) |
Deziel et al. (2020) [56] | Organochlorine insecticides | Case control | United States | Incident female PTC cases (n = 250) Female controls (n = 250) | Interviews and serum samples | Hexachlorobenzene: OR: 1.02 (95% CI: 0.91–1.14) β-HCCH: OR: 1.00 (95% CI: 0.97–1.03) Oxychlordane: OR: 1.00 (95% CI: 0.74–1.36) trans-Nonachlor: OR: 0.94 (95% CI: 0.75–1.19) p,p’-DDE: OR: 0.97 (95% CI: 0.90–1.05) p,p’-DDT: OR: 0.99 (95% CI: 0.90–1.09) Mirex: OR: 1.02 (95% CI: 0.95–1.09) |
Ruder et al. (2011) [111] | Pentachlorophenol (PCP) | Cohort | United States | PCP production workers from four plants in the National Institute for Occupational Safety and Health Dioxin Registry (n = 2122) | PCP exposure level from registry | No cases of thyroid cancer mortality reported |
Lerro et al. (2015) [119] | Malathion, diazinon, chlorpyrifos, terbufos | Cohort | United States | Female spouses of pesticide applicators in the AHS Total (n = 29,325) OP pesticide use (n = 7589) No OP pesticide use (n = 21,736) | Self-administered questionnaires on OP pesticide exposure | Ever versus never OP pesticide use: Malathion: RR: 2.04 (95% CI: 1.14–3.36) Any OP pesticide: RR: 1.27 (95% CI: 0.70–2.30) Not more than 10 exposed thyroid cancer cases for other OP pesticides so RR not calculated. |
Author (Year) | EDC Type | Study Design | Country | Investigated Population | Measurement of Exposure | Association with Thyroid Cancer |
---|---|---|---|---|---|---|
Lee et al. (2004) [122] | Alachlor | Cohort | United States | AHS (n = 49,980) Alachlor exposed applicators (n = 26,510) Non-exposed applicators (n = 23,470) | Self-administered exposure assessment questionnaire | Alachlor exposed population: SIR: 1.26 (95% CI: 0.61–2.33) Alachlor unexposed population: SIR: 0.90 (95% CI: 0.33–1.97) Exposed vs. unexposed: RR: 1.63 (95% CI: 0.42–6.37) |
Acquavella et al. (2004) [123] | Alachlor | Cohort | United States | Muscatine manufactoring workers Mortality analysis (n = 1206) | The State Health Registry of Iowa, Personnel records | No thyroid cancer case reported in this study |
Beane Freeman et al. (2011) [126] | Atrazine | Cohort | United States | AHS (n = 57,310) Atrazine use (n = 17,305) | Self-administered questionnaires on pesticide exposure | Intensity-weighted lifetime days of use in the highest quartile versus lowest quartile: RR: 4.30 (95% CI: 1.19–15.57) |
Lerro et al. (2016) [127] | Atrazine, dicamba, metolachlor carbaryl | Cohort | United States | AHS female spouses (n = 31,055) Thyroid cancer cases (n = 104) | Self-administered questionnaires on pesticide exposure | Atrazine: RR: 2.00 (95% CI: 0.88–4.57) Dicamba: RR: 2.34 (95% CI: 1.03–5.35) Metolachlor: RR: 2.22, 95% CI: 0.92–5.35) Carbaryl: RR: 0.61, 95% CI: 0.36–1.03 |
Lerro et al. (2018) [55] | Chlorimuron-ethyl, carbaryl, metalaxyl | Cohort | United States | AHS (n = 53,096) | Self-administered questionnaires on pesticide exposure | HR: 0.52 (95% CI: 0.28–0.96) (Papillary thyroid cancer) High exposure to Carboryl (>median intensity-weighted days HR: 0.30 (95% CI: 0.08–0.53)) Metalaxyl: HR: 2.03 (95% CI: 1.16–3.52) |
Nordby et al. (2005) [132] | Mancozeb | Cohort | Norway | Central population register in Norway (n = 105,403 female farmers) (n = 131,243 male farmers) Thyroid cancer case: 319 | Population registry | Potato farming (yes vs. no): Thyroid cancer: RR: 0.87 (95% CI 0.69–1.10) Papillary subgroup: RR: 0.89 (95% CI: 0.67–1.18) Fungal forecasts: 0 seasons: ref 1–2 seasons: RR: 1.01 (95% CI: 0.71–1.43) 3–5 seasons: RR: 1.16 (95% CI: 0.76–1.77) 6–13 seasons: RR: 1.27 (95% CI: 0.83–1.93) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsen, M.; Sinclair, C.; Cooke, P.; Ziadkhanpour, K.; Genden, E.; van Gerwen, M. Endocrine Disrupting Chemicals and Thyroid Cancer: An Overview. Toxics 2021, 9, 14. https://doi.org/10.3390/toxics9010014
Alsen M, Sinclair C, Cooke P, Ziadkhanpour K, Genden E, van Gerwen M. Endocrine Disrupting Chemicals and Thyroid Cancer: An Overview. Toxics. 2021; 9(1):14. https://doi.org/10.3390/toxics9010014
Chicago/Turabian StyleAlsen, Mathilda, Catherine Sinclair, Peter Cooke, Kimia Ziadkhanpour, Eric Genden, and Maaike van Gerwen. 2021. "Endocrine Disrupting Chemicals and Thyroid Cancer: An Overview" Toxics 9, no. 1: 14. https://doi.org/10.3390/toxics9010014
APA StyleAlsen, M., Sinclair, C., Cooke, P., Ziadkhanpour, K., Genden, E., & van Gerwen, M. (2021). Endocrine Disrupting Chemicals and Thyroid Cancer: An Overview. Toxics, 9(1), 14. https://doi.org/10.3390/toxics9010014