Acute Changes in Thyroid Hormone Levels among Thai Pesticide Sprayers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Data Collection
2.2. Blood Analysis
2.3. Urine Sample Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Changes in Urinary Pesticide Levels after Spraying
4.2. Changes in Thyroid Hormone Levels after Spraying
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mnif, W.; Hassine, A.I.H.; Bouaziz, A.; Bartegi, A.; Thomas, O.; Roig, B. Effect of endocrine disruptor pesticides: A review. Int. J. Environ. Res. Public Health 2011, 8, 2265–2303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKinlay, R.; Plant, J.A.; Bell, J.N.B.; Voulvoulis, N. Endocrine disrupting pesticides: Implications for risk assessment. Environ. Int. 2008, 34, 168–183. [Google Scholar] [CrossRef] [PubMed]
- Calsolaro, V.; Pasqualetti, G.; Niccolai, F.; Caraccio, N.; Monzani, F. Thyroid disrupting chemicals. Int. J. Mol. Sci. 2017, 18, 2583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boas, M.; Feldt-rasmussen, U.; Mai, K.M. Thyroid effects of endocrine disrupting chemicals. Mol. Cell. Endocrinol. 2012, 355, 240–248. [Google Scholar] [CrossRef]
- Crofton, K.M.; Foss, J.A.; Hass, U.; Jensen, K.F.; Levin, E.D.; Parker, S.P. Undertaking positive control studies as part of developmental neurotoxicity testing: A report from the ILSI Research Foundation/Risk Science Institute expert working group on neurodevelopmental endpoints. Neurotoxicol. Teratol. 2008, 30, 266–287. [Google Scholar] [CrossRef]
- Diamanti-Kandarakis, E.; Bourguignon, J.P.; Giudice, L.C.; Hauser, R.; Prins, G.S.; Soto, A.M.; Zoeller, R.T.; Gore, A.C. Endocrine-disrupting chemicals: An Endocrine Society scientific statement. Endocr. Rev. 2009, 30, 293–342. [Google Scholar] [CrossRef]
- Yang, F.W.; Zhao, G.P.; Ren, F.Z.; Pang, G.; Li, Y.X. Assessment of the endocrine-disrupting effects of diethyl phosphate, a nonspecific metabolite of organophosphorus pesticides, by in vivo and in silico approaches. Environ. Int. 2020, 135, 105383. [Google Scholar] [CrossRef]
- Huang, H.-S.; Lee, K.-W.; Ho, C.-H.; Hsu, C.-C.; Su, S.-B.; Wang, J.-J.; Lin, H.-J.; Huang, C.-C. Increased risk for hypothyroidism after anticholinesterase pesticide poisoning: A nationwide population-based study. Endocrine 2017, 57, 436–444. [Google Scholar] [CrossRef]
- Shrestha, S.; Parks, C.G.; Goldner, W.S.; Kamel, F.; Umbach, D.M.; Ward, M.H.; Lerro, C.C.; Koutros, S.; Hofmann, J.N.; Freeman, L.E.B.; et al. Pesticide use and incident hypothyroidism in pesticide applicators in the Agricultural Health Study. Environ. Health Perspect. 2018, 126, 97008. [Google Scholar] [CrossRef]
- Goldner, W.S.; Sandler, D.P.; Yu, F.; Hoppin, J.A.; Kamel, F.; Levan, T.D. Pesticide use and thyroid disease among women in the Agricultural Health Study. Am. J. Epidemiol. 2010, 171, 455–464. [Google Scholar] [CrossRef]
- Goldner, W.S.; Sandler, D.P.; Yu, F.; Shostrom, V.; Hoppin, J.A.; Kamel, F.; Levan, T.D. Hypothyroidism and pesticide use among male private pesticide applicators in the Agricultural Health Study. J. Occup. Environ. Med. 2013, 55, 1171–1178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kongtip, P.; Nankongnab, N.; Kallayanatham, N.; Pundee, R.; Choochouy, N.; Yimsabai, J.; Woskie, S. Thyroid hormones in conventional and organic farmers in Thailand. Int. J. Environ. Res. Public Health 2019, 16, 2704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nankongnab, N.; Kongtip, P.; Kallayanatham, N.; Pundee, R.; Yimsabai, J.; Woskie, S. Longitudinal study of thyroid hormones between conventional and organic farmers in Thailand. Toxics 2020, 8, 82. [Google Scholar] [CrossRef]
- Lacasaña, M.; López-Flores, I.; Rodríguez-Barranco, M.; Aguilar-Garduño, C.; Blanco-Muñoz, J.; Pérez-Méndez, O.; Gamboa, R.; Bassol, S.; Cebrian, M.E. Association between organophosphate pesticides exposure and thyroid hormones in floriculture workers. Toxicol. Appl. Pharmacol. 2010, 243, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Satar, S.; Satar, D.; Kirim, S.; Leventerler, H. Effects of acute organophosphate poisoning on thyroid hormones in rats. Am. J. Ther. 2005, 12, 238–242. [Google Scholar] [CrossRef]
- Liu, P.; Song, X.; Yuan, W.; Wen, W.; Wu, X.; Li, J.; Chen, X. Effects of cypermethrin and methyl parathion mixtures on hormone levels and immune functions in Wistar rats. Arch. Toxicol. 2006, 80, 449–457. [Google Scholar] [CrossRef]
- Bicker, W.; Lammerhofer, M.; Lindner, W. Determination of chlorpyrifos metabolites in human urine by reversed-phase/weak anion exchange liquid chromatography–electrospray ionisation–tandem mass spectrometry. J. Chromatogr. B 2005, 822, 160–169. [Google Scholar] [CrossRef]
- Eaton, D.L.; Daroff, R.B.; Autrup, H.; Bridges, J.; Buffler, P.; Costa, L.G.; Coyle, J.; McKhann, G.; Mobley, W.C.; Nadel, L.; et al. Review of the toxicology of chlorpyrifos with an emphasis on human exposure and neurodevelopment. Crit. Rev. Toxicol. 2008, S2, 1–125. [Google Scholar] [CrossRef]
- Sanchez-Fortun, S.; Barahona, M.V. Comparative study on the environmental risk induced by several pyrethroids in estuarine and freshwater invertebrate organisms. Chemosphere 2005, 59, 553–559. [Google Scholar] [CrossRef]
- Julien, R.; Adamkiewicz, G.; Levy, J.I.; Bennett, D.; Nishioka, M.; Spengler, J.D. Pesticide loadings of select organophosphate and pyrethroid pesticides in urban public housing. J. Expo. Sci. Environ. Epidemiol. 2008, 18, 167–174. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Yadav, B.; Rohatgi, S.; Yadav, B. Cypermethrin Toxicity: A Review. J. Forensic. Sci. Crim. Investig. 2018, 9, 555767. [Google Scholar]
- Sharma, P.; Firdous, S.; Singh, R. Neurotoxic effect of cypermethrin and protective role of resveratrol in Wistar rats. Int. J. Nutr. Pharmacol. Neurol. Dis. 2014, 4, 104–111. [Google Scholar]
- Sun, H.; Xu, X.L.; Xu, L.C.; Song, L.; Hong, X.; Chen, J.F.; Cui, L.B.; Wang, X.R. Antiandrogenic activity of pyrethroid pesticides and their metabolite in reporter gene assay. Chemosphere 2007, 66, 474–479. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Hisada, A.; Yoshinaga, J.; Shiraishi, H.; Shimodaira, K.; Okai, T.; Noda, Y.; Shirakawa, M.; Kato, N. Exposure to pyrethroids insecticides and serum levels of thyroid-related measures in pregnant women. Environ. Res. 2013, 127, 16–21. [Google Scholar] [CrossRef]
- Manna, S.; Bhattacharyya, D.; Mandal, T.K.; Dey, S. Neuropharmacological effects of alfa-cypermethrin in rats. Indian J. Pharmacol. 2005, 37, 18–20. [Google Scholar] [CrossRef]
- Simescu, M.; Igna, C.P.; Nicolaescu, E.; Ion, I.; Ion, A.C.; Caragheorgheopol, A.; Neagu, C.; Negru, M.; Pribu, M.; Kochanska-dziurowicz, A.; et al. Multiple pesticide exposure of greenhouse workers and thyroid parameters. Int. J. Sus. Dev. Plan. 2014, 9, 15–28. [Google Scholar] [CrossRef] [Green Version]
- Vivancos, P.D.; Driscoll, S.P.; Bulman, C.A.; Ying, L.; Emami, K.; Treumann, A.; Mauve, C.; Noctor, G.; Foyer, C.H. Perturbations of amino acid metabolism associated with glyphosate-dependent inhibition of shikimic acid metabolism affect cellular redox homeostasis and alter the abundance of proteins involved in photosynthesis and photorespiration. Plant Physiol. 2011, 157, 256–268. [Google Scholar] [CrossRef] [Green Version]
- Roberts, D.M.; Buckley, N.A.; Mohamed, F.; Eddleston, M.; Goldstein, D.A.; Mehrsheikh, A.; Bleeke, M.S.; Dawson, A.H. A prospective observational study of the clinical toxicology of glyphosate-containing herbicides in adults with acute self-poisoning. Clin. Toxicol. 2010, 48, 129–136. [Google Scholar] [CrossRef]
- Lerro, C.C.; Koutros, S.; Andreotti, G.; Friesen, M.C.; Alavanja, M.C.; Blair, A.; Hoppin, J.A.; Sandler, D.P.; Lubin, J.H.; Ma, X.; et al. Organophosphate insecticide use and cancer incidence among spouses of pesticide applicators in the Agricultural Health Study. Occup. Environ. Med. 2015, 72, 736–744. [Google Scholar] [CrossRef] [Green Version]
- Gawarammana, I.B.; Buckley, N.A. Medical management of paraquat ingestion. Br. J. Clin. Pharmacol. 2011, 72, 745–757. [Google Scholar] [CrossRef] [Green Version]
- Watts, M. Paraquat. Available online: http://wssroc.agron.ntu.edu.tw/note/Paraquat.pdf (accessed on 15 November 2020).
- Government of Thailand. Ministry of Industry Notification, B.E. 2563 (2020) re: List of Hazardous Substances (Issue No. 6) [in Thai]. R. Gaz. 2020, 137, 117. [Google Scholar]
- Santos, R.; Piccoli, C.; Cremonese, C.; Freire, C. Thyroid and reproductive hormones in relation to pesticide use in an agricultural population in Southern Brazil. Environ. Res. 2019, 173, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, C.; Ostan, R.; Stefano Mariotti, S.; Monti, D.; Vitale, G. The aging thyroid: A reappraisal within the geroscience integrated perspective. Endocr. Rev. 2019, 40, 1250–1270. [Google Scholar] [CrossRef] [PubMed]
- Ostan, R.; Monti, D.; Mari, D.; Arosio, B.; Gentilini, D.; Ferri, E.; Passarino, G.; De Rango, F.; D’Aquila, P.; Mariotti, S. Heterogeneity of thyroid function and impact of peripheral thyroxine deiodination in centenarians and semi-supercentenarians: Association with functional status and mortality. J. Gerontol. A Biol. Sci. Med. Sci. 2019, 74, 802–810. [Google Scholar] [CrossRef]
- Kongtip, P.; Nankongnab, N.; Tipayamongkholgul, M.; Bunngamchairat, A.; Pataitiemthong, A.; Woskie, S. A cross-sectional investigation of cardiovascular and metabolic biomarkers among conventional and organic farmers in Thailand. Int. J. Environ. Res. Public Health 2018, 15, 2590. [Google Scholar] [CrossRef] [Green Version]
- Kongtip, P.; Nankongnab, N.; Kallayanatham, N.; Pundee, R.; Yimsabai, J.; Woskie, S. Longitudinal Study of Metabolic Biomarkers among Conventional and Organic Farmers in Thailand. Int. J. Environ. Res. Public Health 2020, 17, 4178. [Google Scholar] [CrossRef]
- Kumar, C.R. A study of serum thyroid hormones in organophosphorus compounds poisoning patients. Int. J. Clin. Biochem. Res. 2020, 7, 272–275. [Google Scholar] [CrossRef]
- Buranasatitnon, S.; Kongtip, P.; Nankongnab, N.; Tipayamongkholgul, M.; Cheepsattayakorn, A.; Bunkerd, B. Urinary chlorpyrifos metabolite concentrations and chlorpyrifos use behaviors among occupational sprayers in Suphan Buri Province [in Thai]. Dis. Control J. 2020, 26, 473–482. [Google Scholar]
- Prapamontol, T.; Sutan, K.; Laoyang, S.; Hongsibsong, S.; Lee, G.; Yano, Y.; Hunter, R.E.; Ryan, P.B.; Barr, D.B.; Panuwet, P. Cross validation of gas chromatographyflame photometric detection and gas chromatography–mass spectrometry methods for measuring dialkylphosphate metabolites of organophosphate pesticides in human urine. Int. J. Hyg. Environ. Health 2014, 217, 554–566. [Google Scholar] [CrossRef]
- Singleton, S.T.; Lein, P.J.; Farahat, F.M.; Farahat, T.; Bonner, M.R.; Knaak, J.B.; Olson, J.R. Characterization of α-cypermethrin Exposure in Egyptian Agricultural Workers. Int. J. Hyg. Environ. Health 2014, 217, 538–545. [Google Scholar] [CrossRef] [Green Version]
- Konthonbut, P.; Kongtip, P.; Nankongnab, N.; Tipayamongkholgul, M.; Yoosook, W.; Woskie, W. Paraquat Exposure of Pregnant Women and Neonates in Agricultural Areas in Thailand. Int. J. Environ. Res. Public Health 2018, 15, 1163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bootsikeaw, S.; Kongtip, P.; Nankongnab, N.; Chantanakul, S.; Sujirarat, D.; Mahaboonpeeti, R.; Khangkhun, P.; Woskie, S. Urinary glyphosate biomonitoring of sprayers in vegetable farm in Thailand. Hum. Ecol. Risk Assess. Int. J. 2020. [Google Scholar] [CrossRef]
- Hornung, R.W.; Reed, L.D. Estimation of average concentration in the presence of nondetectable values. Appl. Occup. Environ. Hyg. 1990, 5, 46–51. [Google Scholar] [CrossRef]
- Beckmann Coulter, Instruction for Use. Creatinine. Available online: https://www.beckmancoulter.com/wsrportal/techdocs?docname=/cis/A69463/%%/EN (accessed on 15 November 2020).
- Zaidi, S.S.; Bhatnagar, V.K.; Gandhi, S.J.; Shah, M.P.; Kulkarni, P.K.; Saiyed, H.N. Assessment of thyroid function in pesticide formulators. Hum. Exp. Toxicol. 2000, 19, 497–501. [Google Scholar] [CrossRef]
- Campos, É.; Freire, C. Exposure to non-persistent pesticides and thyroid function: A systematic review of epidemiological evidence. Int. J. Hyg. Environ. Health 2016, 219, 481–497. [Google Scholar] [CrossRef]
- Schreinemachers, P.; Chen, H.; Nguyen, T.T.L.; Buntong, B.; Bouapaoe, L.; Gautam, S.; Le, N.T.; Pinn, T.; Vilaysone, P.; Srinivasan, R. Too much to handle? Pesticide dependence of smallholder vegetable farmers in Southeast Asia. Sci. Total Environ. 2017, 593–594, 470–477. [Google Scholar] [CrossRef]
- Fávero, J.L.; Meucci, R.D.; Faria, N.M.X.; Fiori, N.S.; Fassa, A.G. Alcohol consumption among tobacco farmers: Prevalence and associated factors. Ciênc. Saúde Coletiva 2018, 23, 871–882. [Google Scholar] [CrossRef] [Green Version]
- Nolan, R.J.; Rick, D.L.; Freshour, N.L.; Saunders, J.H. Chlorpyrifos: Pharmacokinetics in human volunteers. Toxicol. Appl. Pharmacol. 1984, 73, 8–15. [Google Scholar] [CrossRef]
- Hines, C.J.; Deddens, J.A. Determinants of chlorpyrifos exposures and urinary 3,5,6-trichloro-2-pyridinol levels among termiticide applicators. Ann. Occup. Hyg. 2001, 45, 309–321. [Google Scholar] [CrossRef]
- Phung, D.T.; Connell, D.; Miller, G.; Hodge, M.; Patel, R.; Cheng, R.; Abeyewardene, M.; Chu, C. Biological monitoring of chlorpyrifos exposure to rice farmers in Vietnam. Chemosphere 2012, 87, 294–300. [Google Scholar] [CrossRef] [Green Version]
- Griffin, P.; Mason, H.; Heywood, K.; Cocker, J. Oral and dermal absorption of chlorpyrifos: A human volunteer study. Occup. Environ. Med. 1999, 56, 10–13. [Google Scholar] [CrossRef] [Green Version]
- Ratelle, M.; Côté, J.; Bouchard, M. Toxicokinetics of permethrin biomarkers of exposure in orally exposed volunteers. Toxicol. Lett. 2015, 232, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Heudorf, U.; Angerer, J. Metabolites of pyrethroid insecticides in urine specimens: Current exposure in an urban population in Germany. Environ. Health Perspect. 2001, 109, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Hung, C.-C.; Simaremare, S.R.S.; Hsieh, C.-J.; Yiin, L.-M. Simultaneous determination of pyrethroid, organophosphate and carbamate metabolites in human urine by gas chromatography–mass spectrometry (GCMS). Appl. Sci. 2019, 9, 879. [Google Scholar] [CrossRef] [Green Version]
- Panuwet, P.; Prapamontol, T.; Chantara, S.; Olsson, A.O.; Barr, D.B. A Pilot Survey of Pesticide-Specific Urinary Metabolites among Farmers in Chiang Mai Highland Agricultural Area. CMU J. 2004, 3, 25–34. [Google Scholar]
- Lee, K.; Park, E.K.; Stoecklin-Marois, M.; Koivunen, M.E.; Gee, S.J.; Hammock, B.D.; Beckett, L.A.; Schenker, M.B. Occupational paraquat exposure of agricultural workers in large Costa Rican farms. Int. Arch. Occup. Environ. Health 2009, 82, 455–462. [Google Scholar] [CrossRef] [Green Version]
- Houzé, P.; Baud, F.J.; Mouy, R.; Bismuth, C.; Bourdon, R.; Scherrmann, J.M. Toxicokinetics of paraquat in humans. Hum. Exp. Toxicol. 1990, 9, 5–12. [Google Scholar] [CrossRef]
- Kongtip, P.; Nankongnab, N.; Phupancharoensuk, R.; Palarach, C.; Sujirarat, D.; Sangprasert, S.; Sermsuk, M.; Sawattrakool, N.; Woskie, S.R. Glyphosate and Paraquat in Maternal and Fetal Serums in Thai Women. J. Agromed. 2017, 22, 282–289. [Google Scholar] [CrossRef]
- Acquavella, J.F.; Alexander, B.H.; Mandel, J.S.; Gustin, C.; Baker, B.; Chapman, P.; Bleeke, M. Glyphosate biomonitoring for farmers and their families: Results from the Farm Family Exposure Study. Environ. Health Perspect. 2004, 112, 321–326. [Google Scholar] [CrossRef] [Green Version]
- Heinonen-Tanski, H. The effect of temperature and liming on the degradation of glyphosate in two artic forest soils. Soil Biol. Biochem. 1989, 21, 313–317. [Google Scholar] [CrossRef]
- Connolly, A.; Jones, K.; Basinas, I.; Galea, K.S.; Kenny, L.; McGowan, P.; Coggins, M.A. Exploring the half-life of glyphosate in human urine samples. Int. J. Hyg. Environ. Health 2019, 222, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Connolly, A.; Basinas, I.; Jones, K.; Galea, K.S.; Kenny, L.; McGowan, P.; Coggins, M.A. Characterising glyphosate exposures among amenity horticulturists using multiple spot urine samples. Int. J. Hyg. Environ. Health 2018, 221, 1012–1022. [Google Scholar] [CrossRef] [PubMed]
- Khatun, N.; Mahanta, R. A Study on the Effect of Chlorpyrifos (20% EC) on Thyroid Hormones in Freshwater Fish, Heteropneustes fossilis (Bloch.) by using EIA Technique. Sci. Probe 2014, 2, 8–16. [Google Scholar]
- Chebab, S.; Mekircha, F.; Leghouchi, E. Potential protective effect of Pistacia lentiscus oil against chlorpyrifos-induced hormonal changes and oxidative damage in ovaries and thyroid of female rats. Biomed. Pharmacother. 2017, 96, 1310–1316. [Google Scholar] [CrossRef]
- Chang, J.; Hao, W.; Xu, Y.; Xu, P.; Li, W.; Li, J.; Wang, H. Stereoselective degradation and thyroid endocrine disruption of lambda-cyhalothrin in lizards (Eremias argus) following oral exposure. Environ. Pollut. 2018, 232, 300–309. [Google Scholar] [CrossRef]
- Tu, W.; Xu, C.; Lu, B.; Lin, C.; Wu, Y.; Liu, W. Acute exposure to synthetic pyrethroids causes bioconcentration and disruption of the hypothalamus-pituitary-thyroid axis in zebrafish embryos. Sci. Total Environ. 2016, 542, 876–885. [Google Scholar] [CrossRef]
- El-Magd, S.A.A.; Sabik, L.M.E.; Shoukry, A. Pyrethroid Toxic Effects on some Hormonal Profile and Biochemical Markers among Workers in Pyrethroid Insecticides Company. Life Sci. J. 2011, 8, 311–322. [Google Scholar]
- de Souza, J.S.; Kizys, M.M.; da Conceicao, R.R.; Glebocki, G.; Romano, R.M.; Ortiga-Carvalho, T.M.; Giannocco, G.; da Silva, I.D.; da Silva, M.R.D.; Romano, M.A.; et al. Perinatal exposure to glyphosate-based herbicide alters the thyrotrophic axis and causes thyroid hormone homeostasis imbalance in male rats. Toxicology 2017, 377, 25–37. [Google Scholar] [CrossRef]
- Matthews, A.R.; Sutter, M.E.; Rentz, D.E. Serum paraoxonase-1 (PON-1) genotype and exposure to organophosphorous insectides—Is there a high-risk population? J. Med. Toxicol. 2011, 7, 243–247. [Google Scholar] [CrossRef] [Green Version]
Variables | n (%) |
---|---|
Age | |
Min-max | 18–69 |
Mean (SD) | 49.6 (12.3) |
Sex | |
Male | 58 (74.4) |
Female | 20 (25.6) |
Educational level | |
Elementary | 34 (44.2) |
High school | 42 (54.5) |
Bachelor or higher | 1 (1.3) |
Marital status | |
Single | 10 (13.5) |
Married | 62 (83.8) |
Widowed/divorced | 2 (2.8) |
Expense adequacy | |
Enough for saving | 6 (7.7) |
Just enough | (46.2) |
In debt | 36 (46.2) |
Agricultural work time (h/week) | |
Mean (SD) | 27.5 (9.5) |
Have Second Job | |
Number | 40 (51.3) |
Second job work time (h/week) | |
Mean (SD) | 20.9 (10.3) |
Risk Factors | n (%) |
---|---|
Alcohol intake | |
Current drinker | 52 (66.7) |
Not current drinker | 26 (33.3) |
Smoking | |
Current smoker | 15 (19.2) |
Not current smoker | 63 (80.8) |
Heavy exercise in past month | |
Yes | 25 (32.1) |
No | 53 (67.9) |
Stress in past 2–4 weeks | |
Yes | 60 (76.9) |
Almost Never | 18 (23.1) |
Years of pesticide use | |
Mean (SD) | 25.0 (14.4) |
Living near farm (1 km) | |
Yes | 74 (94.9) |
No | 4 (5.1) |
Insecticide use in home | |
Yes | 77 (98.7) |
No | 1 (1.3) |
Types of crop | |
Rice | 65 (83.3) |
Sugarcane | 77 (98.7) |
others | 41 (52.6) |
Other parameters | Mean (SD) |
Triglyceride | 147.6 (122.5) |
BMI (kg/m2) | 25.5 (6.4) |
Amount of time spraying (min) | |
Chlorpyrifos | 37.8 (21.5) |
Cypermethrin | 49.3 (37.7) |
Paraquat | 61.0 (31.1) |
Glyphosate | 37.4 (20.8) |
Volume of pesticide spray (L) | |
Chlorpyrifos | 88.4 (81.3) |
Cypermethrin | 194.0 (257.2) |
Paraquat | 394.8 (392.1) |
Glyphosate | 79.6 (59.1) |
Size of area sprayed (Rai) | |
Chlorpyrifos | 2.9 (2.1) |
Cypermethrin | 5.3 (3.8) |
Paraquat | 5.9 (3.5) |
Glyphosate | 2.2 (1.5) |
Urinary Metabolites | Sprayed Chlorpyrifos | Sprayed Cypermethrin | |||
---|---|---|---|---|---|
TCP (n = 51) (µg/g Creatinine) | TDEP (n = 47) (nmol/g Creatinine) | 3PBA (n = 47) (nmol/g Creatinine) | DCCA (n = 47) (nmol/g Creatinine) | TCyper (n =47) (nmol/g Creatinine) | |
First morning urine on day before spraying | |||||
Detection frequency (%) | 51 (100) | 47 (100) | 47 (100) | 32 (68.1) | 47 (100) |
(1) GM (GSD) | 4.31 (2.93) | 458.38 (3.48) | 82.32 (1.87) | 18.61 (2.17) | 108.56 (1.73) |
Range | 0.4–139.8 | 54.1–6634.2 | 21.54–311.06 | 5.81–106.70 | 37.71–323.76 |
Urine at the end of spraying event | |||||
Detection frequency (%) | 51 (100) | 47 (100) | 47 (100) | 39 (83.0) | 47 (100) |
(2) GM (GSD) | 7.79 (3.39) | 346.99 (4.05) | 149.35 (2.02) | 29.12 (2.01) | 190.01 (1.81) |
Range | 0.3–164.0 | 21.5–7044.5 | 43.38–533.79 | 4.53–129.02 | 58.56–584.06 |
First morning urine the next day after spraying | |||||
Detection frequency (%) | 51 (100) | 47 (100) | 47 (100) | 35 (74.5) | 47 (100) |
(3) GM (GSD) | 14.06 (2.34) | 540.61 (3.10) | 169.93 (1.88) | 30.53 (2.42) | 212.98 (1.76) |
Range | 2.41–141.20 | 51.42–7863.60 | 49.90–828.82 | 5.70–162.39 | 75.19–992.27 |
Paired comparisons of time points | |||||
p value from repeated measures ANOVA on ln values | (1)–(2) p = 0.002 | (1)–(2) p = 0.234 | (1)–(2) p < 0.001 | (1)–(2) p < 0.001 | (1)–(2) p < 0.001 |
(1)–(3) p < 0.001 | (1)–(3) p = 0.421 | (1)–(3) p < 0.001 | (1)–(3) p < 0.001 | (1)–(3) p < 0.001 | |
(2)–(3) p < 0.001 | (2)–(3) p = 0.008 | (2)–(3) p = 0.108 | (2)–(3) p = 0.710 | (2)–(3) p = 0.132 |
Parameter | Paraquat (n = 51) (µg/g Creatinine) | Glyphosate (n = 48) (µg/g Creatinine) |
---|---|---|
First morning urine on day before spraying | ||
Detection frequency (%) | 32 (62.7) | 48 (100) |
(1) GM (GSD) | 1.80 (2.74) | 23.36 (2.61) |
Range | 0.30–10.68 | 3.05–138.07 |
Urine at the end of spraying event | ||
Detection frequency (%) | 48 (94.1) | 48 (100) |
(2) GM (GSD) | 5.96 (2.59) | 39.90 (2.54) |
Range | 0.34–46.51 | 6.15–195.62 |
First morning urine the next day after spraying | ||
Detection frequency (%) | 39 (76.5) | 48 (100) |
(3) GM (GSD) | 2.99 (3.09) | 48.47 (2.62) |
Range | 0.41–124.2 | 5.02–321.56 |
Paired comparison of time points | ||
p value from repeated measures ANOVA on ln values | (1)–(2) p < 0.001 | (1)–(2) p < 0.001 |
(1)–(3) p = 0.016 | (1)–(3) p < 0.001 | |
(2)–(3) p = 0.001 | (2)–(3) p = 0.194 |
Thyroid Hormone | Sprayed Chlorpyrifos (n = 51) | Sprayed Cypermethrin (n = 48) | |||||
---|---|---|---|---|---|---|---|
Before Spraying | After Spraying | p-Value a | Before Spraying | After Spraying | p-Value a | ||
TSH (µIU/mL) | GM (GSD) Range | 1.44 (1.99) 0.15–8.6 | 1.51 (1.76) 0.32–7.88 | 0.551 | 1.55 (1.66) 0.53–7.85 | 1.51 (1.99) 0.15–5.87 | 0.660 |
FT3 (ng/dL) | GM (GSD) Range | 0.29 (1.18) 0.21–0.65 | 0.30 (1.18) 0.20–0.60 | 0.056 | 0.29 (1.15) 0.19–0.40 | 0.29 (1.12) 0.22–0.41 | 0.625 |
FT4 (ng/dL) | GM (GSD) Range | 0.92 (1.17) 0.7–1.33 | 0.97 (1.17) 0.7–1.51 | 0.002* | 0.99 (1.16) 0.71–1.34 | 0.99 (1.12) 0.80–1.39 | 0.990 |
T3 (µg/dL) | GM (GSD) Range | 0.90 (1.23) 0.59–1.88 | 0.86 (1.24) 0.57–1.43 | 0.073 | 0.84 (1.27) 0.51–1.62 | 0.86 (1.24) 0.53–1.45 | 0.541 |
T4 (µg/dL) | GM (GSD) Range | 8.14 (1.22) 4.8–12.43 | 7.94 (1.24) 4.55–12.35 | 0.265 | 8.05 (1.18) 5.47–11.25 | 7.82 (1.19) 5.10–12.06 | 0.069 |
Thyroid Hormone | Sprayed Paraquat (n = 51) | Sprayed Glyphosate (n = 48) | |||||
---|---|---|---|---|---|---|---|
Before Spraying | After Spraying | p-Value a | Before Spraying | After Spraying | p-Value a | ||
TSH (µIU/mL) | GM (GSD) Range | 1.30 (2.07) 0.16–6.4 | 1.21 (1.90) 0.23–6.48 | 0.490 | 1.30 (2.07) 0.14–4.44 | 1.21 (1.90) 0.14–6.94 | 0.426 |
FT3 (ng/dL) | GM (GSD) Range | 0.30 (1.14) 0.24–0.44 | 0.31 (1.12) 0.23–0.39 | 0.203 | 0.30 (0.05) 0.21–0.39 | 0.30 (0.04) 0.22–0.40 | 0.674 |
FT4 (ng/dL) | GM (GSD) Range | 0.95 (1.16) 0.75–1.44 | 0.96 (1.15) 0.76–1.4 | 0.357 | 1.00 (0.18) 0.65–1.55 | 0.98 (0.17) 0.67–1.46 | 0.409 |
T3 (µg/dL) | GM (GSD) Range | 0.89 (1.26) 0.56–1.74 | 0.93 (1.24) 0.58–1.48 | 0.078 | 0.89 (0.20) 0.39–1.26 | 0.89 (0.15) 0.59–1.26 | 0.978 |
T4 (µg/dL) | GM (GSD) Range | 7.99 (1.20) 5.16–11.86 | 7.80 (1.17) 5.51–11.32 | 0.274 | 7.75 (1.33) 5.16–11.30 | 7.99 (1.58) 5.18–11.27 | 0.202 |
ΔLNthyroid Hormones | ΔLNTCP (µg/g Creatinine) | ΔLNTDEP (nmol/g Creatinine) | ||||
---|---|---|---|---|---|---|
B | Standard Error | p-Value | B | Standard Error | p-Value | |
ΔLNTSH (nIU/mL) | 1.2 | 78.6 | 0.988 | 41.1 | 64.1 | 0.521 |
ΔLNFT3 (pg/dL) | −27.0 | 12.7 | 0.033 * | −0.16 | 12.7 | 0.990 |
ΔLNFT4 (pg/dL) | 9.1 | 14.3 | 0.526 | 14.5 | 9.5 | 0.128 |
ΔLNT3 (ng/dL) | −46.6 | 17.1 | 0.007 * | 23.6 | 13.4 | 0.077 |
ΔLNT4 (ng/dL) | 26.1 | 17.6 | 0.139 | −9.0 | 17.8 | 0.612 |
Δthyroid Hormone | ΔLN3PBA a (nmol/g Creatinine) | ΔLNcis, trans-DCCA b (nmol/g Creatinine) | ΔLNTCyper c (nmol/g Creatinine) | ||||||
---|---|---|---|---|---|---|---|---|---|
B | Standard Error | p-Value | B | Standard Error | p-Value | B | Standard Error | p-Value | |
ΔLNTSH (nIU/mL) | 43.2 | 88.9 | 0.627 | 47.9 | 56.6 | 0.397 | 65.8 | 94.7 | 0.487 |
ΔLNFT3 (pg/dL) | 24.3 | 18.3 | 0.185 | 26.4 | 17.1 | 0.122 | 35.1 | 19.2 | 0.067 |
ΔLNFT4 (pg/dL) | 2.7 | 28.8 | 0.925 | 13.6 | 22.2 | 0.539 | 11.7 | 32.5 | 0.718 |
ΔLNT3 (ng/dL) | −4.1 | 41.7 | 0.921 | 17.7 | 25.8 | 0.492 | 4.3 | 46.3 | 0.926 |
ΔLNT4 (ng/dL) | −18.1 | 22.9 | 0.431 | 34.8 | 17.5 | 0.046 * | −1.1 | 22.5 | 0.962 |
Δthyroid Hormone | ΔLNparaquat a (µg/g Creatinine) | ΔLNglyphosate b (µg/g Creatinine) | ||||
---|---|---|---|---|---|---|
B | Standard Error | p-Value | B | Standard Error | p-Value | |
ΔLNTSH (nIU/mL) | 29.5 | 60.6 | 0.627 | 68.1 | 51.1 | 0.183 |
ΔLNFT3 (pg/dL) | −30.0 | 14.3 | 0.036 * | 1.7 | 12.1 | 0.888 |
ΔLNFT4 (pg/dL) | −7.0 | 10.2 | 0.493 | 11.1 | 10.9 | 0.311 |
ΔLNT3 (ng/dL) | −38.1 | 18.2 | 0.036 * | 11.7 | 25.1 | 0.642 |
ΔLNT4 (ng/dL) | 9.4 | 15.4 | 0.539 | 24.5 | 12.2 | 0.045 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kongtip, P.; Nankongnab, N.; Pundee, R.; Kallayanatham, N.; Pengpumkiat, S.; Chungcharoen, J.; Phommalachai, C.; Konthonbut, P.; Choochouy, N.; Sowanthip, P.; et al. Acute Changes in Thyroid Hormone Levels among Thai Pesticide Sprayers. Toxics 2021, 9, 16. https://doi.org/10.3390/toxics9010016
Kongtip P, Nankongnab N, Pundee R, Kallayanatham N, Pengpumkiat S, Chungcharoen J, Phommalachai C, Konthonbut P, Choochouy N, Sowanthip P, et al. Acute Changes in Thyroid Hormone Levels among Thai Pesticide Sprayers. Toxics. 2021; 9(1):16. https://doi.org/10.3390/toxics9010016
Chicago/Turabian StyleKongtip, Pornpimol, Noppanun Nankongnab, Ritthirong Pundee, Nichcha Kallayanatham, Sumate Pengpumkiat, Jutamanee Chungcharoen, Chavisa Phommalachai, Pajaree Konthonbut, Nattagorn Choochouy, Preecha Sowanthip, and et al. 2021. "Acute Changes in Thyroid Hormone Levels among Thai Pesticide Sprayers" Toxics 9, no. 1: 16. https://doi.org/10.3390/toxics9010016
APA StyleKongtip, P., Nankongnab, N., Pundee, R., Kallayanatham, N., Pengpumkiat, S., Chungcharoen, J., Phommalachai, C., Konthonbut, P., Choochouy, N., Sowanthip, P., Khangkhun, P., Yimsabai, J., & Woskie, S. (2021). Acute Changes in Thyroid Hormone Levels among Thai Pesticide Sprayers. Toxics, 9(1), 16. https://doi.org/10.3390/toxics9010016