Analysis of Toxic Metals in Aerosols from Devices Associated with Electronic Cigarette, or Vaping, Product Use Associated Lung Injury
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vaping Procedures
2.2. Aerosol Collection
2.3. Aerosol Sample Capture Procedures
2.4. Analysis of the Samples
2.5. Instrument Parameters
2.6. Scanning Electron Microscopy (SEM-EDS)
2.7. EVALI Application
2.8. Validation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Disclaimer
References
- Gentzke, A.S.; Wang, T.W.; Jamal, A.; Park-Lee, E.; Ren, C.; Cullen, K.A.; Neff, L. Tobacco Product Use Among Middle and High School Students—United States, 2020. Morb. Mortal Wkly. Rep. 2020, 69, 1881–1888. [Google Scholar] [CrossRef]
- Cullen, K.A.; Ambrose, B.K.; Gentzke, A.S.; Apelberg, B.J.; Jamal, A.; King, B.A. Notes from the Field: Use of Electronic Cigarettes and Any Tobacco Product Among Middle and High School Students—United States, 2011–2018. Morb. Mortal Wkly. Rep. 2018, 67, 1276–1277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T.W.; Gentzke, A.S.; Creamer, M.R.; Cullen, K.A.; Holder-Hayes, E.; Sawdey, M.D.; Anic, G.M.; Portnoy, D.; Hu, S.; Homa, D.M.; et al. Tobacco Product Use and Associated Factors Among Middle and High School Students—United States, 2019. MMWR Surveill. Summ. 2019, 68, 1–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cornelius, M.E.; Wang, T.W.; Jamal, A.; Loretan, C.G.; Neff, L.J. Tobacco Product Use Among Adults—United States, 2019. Morb. Mortal Wkly. Rep. 2020, 69, 1736–1742. [Google Scholar] [CrossRef] [PubMed]
- Study Finds Surge of Teen Vaping Levels Off, but Remains High in Early 2020. Available online: https://www.nih.gov/news-events/news-releases/study-finds-surge-teen-vaping-levels-remains-high-early-2020 (accessed on 4 February 2021).
- Vaping & Cannabis Trends Among Young Adults (19–22). Available online: https://www.drugabuse.gov/drug-topics/trends-statistics/infographics/vaping-cannabis-trends-among-young-adults-19-22 (accessed on 3 October 2020).
- Gray, N.; Halstead, M.; Gonzalez-Jimenez, N.; Valentin-Blasini, L.; Watson, C.; Pappas, R.S. Analysis of Toxic Metals in Liquid from Electronic Cigarettes. Int. J. Environ. Res. Public Health 2019, 16, 4450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halstead, M.; Gray, N.; Gonzalez-Jimenez, N.; Fresquez, M.; Valentin-Blasini, L.; Watson, C.; Pappas, R.S. Analysis of Toxic Metals in Electronic Cigarette Aerosols Using a Novel Trap Design. J. Anal. Toxicol. 2020, 44, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Gray, N.; Halstead, M.; Valentin-Blasini, L.; Watson, C.; Pappas, R.S. Toxic Metals in Liquid and Aerosol from Pod-Type Electronic Cigarettes. J. Anal. Toxicol. 2020, 45, 337–347. [Google Scholar] [CrossRef]
- Pappas, R.S.; González-Jiménez, N.; Gray, N.; Halstead, M. Measurement of Elemental Constituents of Cannabis Vaping Liquids and Aerosols by ICP-MS. In Measuring Heavy Metal Contaminants in Cannabis and Hemp; Thomas, R.J., Ed.; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Blount, B.C.; Karwowski, M.P.; Morel-Espinosa, M.; Rees, J.; Sosnoff, C.; Cowan, E.; Gardner, M.; Wang, L.; Valentin-Blasini, L.; Silva, L.; et al. Evaluation of Bronchoalveolar Lavage Fluid from Patients in an Outbreak of E-cigarette, or Vaping, Product Use-Associated Lung Injury—10 States, August–October 2019. Morb. Mortal Wkly. Rep. 2019, 68, 1040–1041. [Google Scholar] [CrossRef] [PubMed]
- Zervas, E.; Matsouki, N.; Kyriakopoulos, G.; Poulopoulos, S.; Ioannides, T.; Katsaounou, P. Transfer of metals in the liquids of electronic cigarettes. Inhal. Toxicol. 2020, 32, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Pappas, R.S.; Gray, N.; Halstead, M.; Valentin-Blasini, L.; Watson, C. Toxic Metal-Containing Particles in Aerosols from Pod-Type Electronic Cigarettes. J. Anal. Toxicol. 2020, 45, 337–347. [Google Scholar] [CrossRef] [PubMed]
- Muthumalage, T.; Friedman, M.R.; McGraw, M.D.; Ginsberg, G.; Friedman, A.E.; Rahman, I. Chemical Constituents Involved in E-Cigarette, or Vaping Product Use-Associated Lung Injury (EVALI). Toxics 2020, 8, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fels Elliott, D.R.; Shah, R.; Hess, C.A.; Elicker, B.; Henry, T.S.; Rule, A.M.; Chen, R.; Golozar, M.; Jones, K.D. Giant cell interstitial pneumonia secondary to cobalt exposure from e-cigarette use. Eur. Respir. J. 2019, 54, 1901922. [Google Scholar] [CrossRef] [PubMed]
- Hess, C.A.; Olmedo, P.; Navas-Acien, A.; Goessler, W.; Cohen, J.E.; Rule, A.M. E-cigarettes as a source of toxic and potentially carcinogenic metals. Environ. Res. 2017, 152, 221–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, R.P.; Strongin, R.M.; Peyton, D.H. Solvent Chemistry in the Electronic Cigarette Reaction Vessel. Sci. Rep. 2017, 7, 42549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Hellani, A.; Salman, R.; El-Hage, R.; Talih, S.; Malek, N.; Baalbaki, R.; Karaoghlanian, N.; Nakkash, R.; Shihadeh, A.; Saliba, N.A. Nicotine and Carbonyl Emissions from Popular Electronic Cigarette Products: Correlation to Liquid Composition and Design Characteristics. Nicotine Tob. Res. 2018, 20, 215–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooperation Centre for Scientific Research Relative to Tobacco (CORESTA). Method Number 81. Routine Analytical Machine for E-Cigarette Aerosol Generation and Collection—Definitions and Standard Conditions; CORESTA: Paris, France, 2015; pp. 1–6. [Google Scholar]
- Caudill, S.P.; Schleicher, R.L.; Pirkle, J.L. Multi-rule quality control for the age-related eye disease study. Stat. Med. 2008, 27, 4094–4106. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.K. Quality Asssurance of Chemical Measurements; Lewis Publishers: Boca Raton, LA, USA, 1987. [Google Scholar]
- Clinical Laboratory Standards Institute. Protocols for Determination of Limits of Detection and Limits of Quantitation; CLSI: Wayne, PA, USA, 2004; Volume 24, pp. 9–35. [Google Scholar]
- World Health Organization. WHO TobLabNet Official Method SOP 01, Standard Operating Procedure for Intense Smoking of Cigarettes; World Health Organization: Geneva, Switzerland, 2012; pp. 1–7. Available online: https://apps.who.int/iris/bitstream/handle/10665/75261/9789241503891_eng.pdf;sequence=1 (accessed on 26 September 2021).
- Artman, J. Ceramic Vape Wicks: Pros and Cons. Available online: https://ecigone.com/e-cigarette-basics/ceramic-vape-wicks-pros-cons/ (accessed on 29 March 2021).
- Wagner, J.; Chen, W.; Vrdoljak, G. Vaping cartridge heating element compositions and evidence of high temperatures. PLoS ONE 2020, 15, e0240613. [Google Scholar] [CrossRef]
- Pappas, R.S. Toxic elements in tobacco and in cigarette smoke: Inflammation and sensitization. Metallomics 2011, 3, 1181–1198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Element Isotope | Instrument Mode | Cell Gas | Quantitated Ion | Quantitated Mass | Internal Standard |
---|---|---|---|---|---|
27Al | MS-MS | H2 | 27Al+ | 27 | 169Tm+ |
52Cr | MS-MS | NH3 | 52Cr(NH3)2+ | 86 | 103Rh(NH3)4+ |
56Fe | MS-MS | NH3 | 56Fe(NH3)2+ | 90 | 103Rh(NH3)4+ |
59Co | MS-MS | NH3 | 59Co(NH3)2+ | 93 | 103Rh(NH3)4+ |
60Ni | MS-MS | O2 | 60NiO+ | 76 | 103RhO+ |
63Cu | MS-MS | NH3 | 63Cu(NH3)2+ | 97 | 103Rh(NH3)4+ |
111Cd | MS-MS | O2 | 111Cd+ | 111 | 103RhO+ |
118Sn | SQ | No Gas | 118Sn+ | 118 | 103Rh+ |
137Ba | SQ | No Gas | 137Ba+ | 137 | 169Tm+ |
206+207+208Pb | SQ | No Gas | 206+207+208Pb+ | 206 + 207 + 208 | 103Rh+ |
Analyte | Accuracy Levels | Targets (μg/L) | Average (μg/L) | % RSD | % Accuracy |
---|---|---|---|---|---|
Al | Low | 7.5 | 7.38 | 2.9 | 98 |
Mid | 25 | 25.3 | 2.6 | 101 | |
High | 40 | 40.4 | 3.3 | 101 | |
Cr | Low | 0.375 | 0.374 | 3.7 | 99 |
Mid | 1.25 | 1.24 | 1.5 | 99 | |
High | 2 | 1.98 | 1.1 | 99 | |
Fe | Low | 1.88 | 1.98 | 12.1 | 105 |
Mid | 6.25 | 6.16 | 1.5 | 99 | |
High | 10 | 10 | 4 | 100 | |
Co | Low | 0.375 | 0.367 | 1.3 | 98 |
Mid | 1.25 | 1.24 | 1 | 99 | |
High | 2 | 1.97 | 1.3 | 99 | |
Ni | Low | 0.375 | 0.379 | 4.7 | 91 |
Mid | 1.25 | 1.23 | 1.6 | 96 | |
High | 2 | 1.98 | 2 | 97 | |
Cu | Low | 0.75 | 0.727 | 1.8 | 96 |
Mid | 2.5 | 2.43 | 1.7 | 97 | |
High | 4 | 3.86 | 1.1 | 96 | |
Cd | Low | 0.075 | 0.073 | 1.5 | 97 |
Mid | 0.25 | 0.239 | 2.7 | 95 | |
High | 0.4 | 0.385 | 1.5 | 96 | |
Sn | Low | 0.15 | 0.145 | 1.5 | 96 |
Mid | 0.5 | 0.482 | 1.3 | 96 | |
High | 0.8 | 0.772 | 2 | 96 | |
Ba | Low | 0.375 | 0.345 | 5.3 | 92 |
Mid | 1.25 | 1.19 | 0.9 | 95 | |
High | 2 | 1.93 | 1.2 | 96 | |
Pb | Low | 0.375 | 0.361 | 1.4 | 96 |
Mid | 1.25 | 1.21 | 1.7 | 96 | |
High | 2 | 1.93 | 1.7 | 97 |
Analyte | Accuracy Levels | Targets (μg/L) | Average (μg/L) | % RSD | % Accuracy |
---|---|---|---|---|---|
Al | Low | 7.5 | 7.52 | 2.1 | 100 |
Mid | 25 | 25.8 | 2.6 | 103 | |
High | 40 | 41.4 | 2.1 | 103 | |
Cr | Low | 0.375 | 0.373 | 0.8 | 99 |
Mid | 1.25 | 1.25 | 0.8 | 100 | |
High | 2 | 2.01 | 1.2 | 101 | |
Fe | Low | 1.88 | 1.94 | 6.8 | 103 |
Mid | 6.25 | 6.17 | 2.5 | 99 | |
High | 10 | 10 | 1.6 | 100 | |
Co | Low | 0.375 | 0.372 | 0.8 | 99 |
Mid | 1.25 | 1.24 | 1.1 | 99 | |
High | 2 | 2.01 | 1.4 | 101 | |
Ni | Low | 0.375 | 0.405 | 9.1 | 106 |
Mid | 1.25 | 1.26 | 2.2 | 100 | |
High | 2 | 2.02 | 1.8 | 101 | |
Cu | Low | 0.75 | 0.74 | 1.5 | 96 |
Mid | 2.5 | 2.4 | 1.6 | 97 | |
High | 4 | 4 | 1 | 98 | |
Cd | Low | 0.075 | 0.073 | 2.7 | 95 |
Mid | 0.25 | 0.246 | 1.8 | 98 | |
High | 0.4 | 0.388 | 1.9 | 97 | |
Sn | Low | 0.15 | 0.162 | 2.1 | 96 |
Mid | 0.5 | 0.502 | 2.2 | 97 | |
High | 0.8 | 0.802 | 2.8 | 98 | |
Ba | Low | 0.375 | 0.347 | 2.5 | 93 |
Mid | 1.25 | 1.21 | 1 | 97 | |
High | 2 | 1.97 | 1 | 98 | |
Pb | Low | 0.375 | 0.369 | 1.8 | 99 |
Mid | 1.25 | 1.23 | 1.9 | 98 | |
High | 2 | 1.99 | 2.1 | 99 |
Precision (%RSD) (n = 8) | |||||
---|---|---|---|---|---|
Analyte | QC Sample | Target | Mean | Repeatability (%) | Intermediate Precision (%) |
Al | Low Spike | 7.50 | 7.48 | 2.7 | 3.2 |
High Spike | 40.0 | 40.9 | 1.4 | 2.7 | |
Cr | Low Spike | 0.375 | 0.360 | 1.8 | 3.7 |
High Spike | 2.00 | 1.95 | 1.8 | 3.1 | |
Fe | Low spike | 1.88 | 1.85 | 2.8 | 1.1 |
High spike | 10.0 | 10.1 | 1.7 | 4.0 | |
Co | Low spike | 0.375 | 0.390 | 2.8 | 3.7 |
High spike | 2.00 | 2.09 | 2.1 | 3.8 | |
Ni | Low spike | 0.375 | 0.394 | 3.5 | 9.6 |
High spike | 2.00 | 2.01 | 0.9 | 2.1 | |
Cu | Low spike | 0.750 | 0.744 | 1.7 | 2.9 |
High spike | 4.00 | 3.97 | 1.2 | 2.8 | |
Cd | Low spike | 0.0750 | 0.0725 | 2.5 | 2.2 |
High spike | 0.400 | 0.394 | 1.4 | 2.6 | |
Sn | Low spike | 0.150 | 0.169 | 2.3 | 13.7 |
High spike | 0.800 | 0.817 | 1.0 | 1.1 | |
Ba | Low spike | 0.375 | 0.385 | 2.1 | 0.0 |
High spike | 2.00 | 2.02 | 0.5 | 2.4 | |
Pb | Low spike | 0.375 | 0.368 | 1.5 | 0.4 |
High spike | 2.00 | 2.01 | 1.5 | 0.8 |
EVPs Samples | Aerosol Mass (mg) | Al | Cr | Fe | Co | Ni | Cu | Cd | Sn | Ba | Pb |
---|---|---|---|---|---|---|---|---|---|---|---|
LOD | 29.3 | 1.07 | 107 | 0.212 | 3.56 | 7.50 | 0.120 | 2.96 | 7.30 | 1.37 | |
Lowest standard | 133 | 6.67 | 33.3 | 6.67 | 6.67 | 13.3 | 1.33 | 2.67 | 6.67 | 6.67 | |
Sample 1 | 32 | <LOD | <LOD | <LOD | <LOD | <LOD | 73.2 | <LOD | 4.77 | <LOD | <LOD |
Sample 2 | 70 | <LOD | <LOD | <LOD | <LOD | 15.5 | 447 | <LOD | 202 | <LOD | <LOD |
Sample 3 | 109 | <LOD | <LOD | <LOD | <LOD | <LOD | 15.4 | <LOD | <LOD | <LOD | <LOD |
Sample 4 | 92 | <LOD | <LOD | <LOD | <LOD | 36.0 | <LOD | <LOD | <LOD | <LOD | 6.71 |
Sample 5 | 22 | <LOD | <LOD | <LOD | <LOD | <LOD | 16.1 | <LOD | <LOD | <LOD | <LOD |
Analyte | Nicotine Product | Cannabinoid Product | ||||||
---|---|---|---|---|---|---|---|---|
n | Detect * | Mean ± Stdev | Concentration Range | n | Detect * | Mean ± Stdev | Concentration Range | |
Al | 11 | 0 | ND | ND | 33 | 0 | ND | ND |
Ba | 11 | 0 | ND | ND | 33 | 0 | ND | ND |
Cd | 11 | 0 | ND | ND | 33 | 0 | ND | ND |
Co | 11 | 0 | ND | ND | 33 | 0 | ND | ND |
Cr | 11 | 0 | ND | ND | 33 | 0 | ND | ND |
Cu | 11 | 3 | 179 (± 235) | [15.4–447] | 33 | 1 | 16.1 | 16.1 |
Fe | 11 | 0 | ND | ND | 33 | 0 | ND | ND |
Ni | 11 | 2 | 25.8 (± 14.5) | [15.5–36.0] | 33 | 0 | ND | ND |
Pb | 11 | 1 | 6.71 | [6.71–6.71] | 33 | 0 | ND | ND |
Sn | 11 | 2 | 104 (± 140) | [4.77–202.7] | 33 | 0 | ND | ND |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalez-Jimenez, N.; Gray, N.; Pappas, R.S.; Halstead, M.; Lewis, E.; Valentin-Blasini, L.; Watson, C.; Blount, B. Analysis of Toxic Metals in Aerosols from Devices Associated with Electronic Cigarette, or Vaping, Product Use Associated Lung Injury. Toxics 2021, 9, 240. https://doi.org/10.3390/toxics9100240
Gonzalez-Jimenez N, Gray N, Pappas RS, Halstead M, Lewis E, Valentin-Blasini L, Watson C, Blount B. Analysis of Toxic Metals in Aerosols from Devices Associated with Electronic Cigarette, or Vaping, Product Use Associated Lung Injury. Toxics. 2021; 9(10):240. https://doi.org/10.3390/toxics9100240
Chicago/Turabian StyleGonzalez-Jimenez, Nathalie, Naudia Gray, R. Steven Pappas, Mary Halstead, Erica Lewis, Liza Valentin-Blasini, Clifford Watson, and Benjamin Blount. 2021. "Analysis of Toxic Metals in Aerosols from Devices Associated with Electronic Cigarette, or Vaping, Product Use Associated Lung Injury" Toxics 9, no. 10: 240. https://doi.org/10.3390/toxics9100240
APA StyleGonzalez-Jimenez, N., Gray, N., Pappas, R. S., Halstead, M., Lewis, E., Valentin-Blasini, L., Watson, C., & Blount, B. (2021). Analysis of Toxic Metals in Aerosols from Devices Associated with Electronic Cigarette, or Vaping, Product Use Associated Lung Injury. Toxics, 9(10), 240. https://doi.org/10.3390/toxics9100240