Bioaccumulation of PCBs and PBDEs in Fish from a Tropical Lake Chapala, Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling
2.2. Chemical Substances and Reagents
2.3. Physicochemical Analyses
2.4. PCBs and PBDEs Analysis
2.5. Bioaccumulation Factor
2.6. Univariate and Multivariate Statistical Analysis
3. Results
3.1. Physicochemical Parameters
3.2. Polychlorinated Biphenyl Compounds (PCBs)
3.3. Polybrominated Diphenyl Ethers (PBDEs)
4. Discussion
4.1. Levels of PCBS and PBDEs in Lakes
4.2. PCBs and PBDEs in Sediments
4.3. PCBs and PBDEs in Water
4.4. Temporal Changes in PCB and PBDE Levels
4.5. Bioaccumulation of PCBs and PBDEs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wania, F.; Breivik, K.; Persson, N.J.; McLachlan, M.S. CoZMo-POP 2—A fugacity-based dynamic multi-compartmental mass balance model of the fate of persistent organic pollutants. Environ. Modell Softw. 2006, 21, 868–884. [Google Scholar] [CrossRef]
- Kallenborn, R.; Hung, H.; Brorström-Lundén, E. Atmospheric long-range transport of persistent organic pollutants (POPs) into polar regions. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2015; Volume 67, pp. 411–432. [Google Scholar]
- Simonich, S.L.; Hites, R.A. Global distribution of persistent organochlorine compounds. Science 1995, 269, 1851–1854. [Google Scholar] [CrossRef] [PubMed]
- Kosek, K.; Ruman, M. Arctic Freshwater Environment Altered by the Accumulation of Commonly Determined and Potentially New POPs. Water 2021, 13, 1739. [Google Scholar] [CrossRef]
- Lind, O.T.; Davalos-Lind, L.O. Interaction of water quantity with water quality: The Lake Chapala example. Hydrobiologia 2002, 467, 159–167. [Google Scholar] [CrossRef]
- Ontiveros-Cuadras, J.F.; Ruiz-Fernández, A.C.; Sanchez-Cabeza, J.-A.; Sericano, J.; Pérez-Bernal, L.H.; Páez-Osuna, F.; Dunbar, R.B.; Mucciarone, D.A. Recent history of persistent organic pollutants (PAHs, PCBs, PBDEs) in sediments from a large tropical lake. J. Hazard. Mater. 2019, 368, 264–273. [Google Scholar] [CrossRef]
- Ruiz-Fernández, A.C.; Ontiveros-Cuadras, J.F.; Sericano, J.L.; Sanchez-Cabeza, J.-A.; Kwong, L.L.W.; Dunbar, R.B.; Mucciarone, D.A.; Pérez-Bernal, L.H.; Páez-Osuna, F. Long-range atmospheric transport of persistent organic pollutants to remote lacustrine environments. Sci. Total Environ. 2014, 493, 505–520. [Google Scholar] [CrossRef] [PubMed]
- Instituto Nacional de Estadística y Geografía (INEGI). Glosario: Censos Económicos 2020; Instituto Nacional de Estadística y Geografía location: Aguascalientes City, Mexico, 2021; Available online: https://www.inegi.org.mx/datos/?t=0200#Areas_geograficas (accessed on 28 September 2021).
- Torres, Z.; Mora, M.A.; Taylor, R.J.; Alvarez-Bernal, D.; Buelna, H.R.; Hyodo, A. Accumulation and Hazard Assessment of Mercury to Waterbirds at Lake Chapala, Mexico. Environ. Sci. Technol. 2014, 48, 6359–6365. [Google Scholar] [CrossRef]
- RAMSAR. The Ramsar Convention on Wetlands. The List of Wetlands of International Importance: México. 2020. Available online: https://www.ramsar.org/sites/default/files/documents/library/sitelist.pdf (accessed on 28 September 2021).
- Kris-Etherton, P.M.; Harris, W.S.; Appel, L.J. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 2002, 106, 2747–2757. [Google Scholar] [CrossRef]
- Cifuentes, E.; Cortes, J.; Trasande, L.; Vanderbeek, S.; Gwynn, E.; Rothenberg, S.J. Exposure to methyl mercury and arsenic from fish consumption in Lake Chapala, Mexico. Pilot study. Epidemiology 2007, 18, S79–S80. [Google Scholar] [CrossRef]
- Torres, Z.; Mora, M.A.; Taylor, R.J.; Alvarez-Bernal, D. Tracking Metal Pollution in Lake Chapala: Concentrations in Water, Sediments, and Fish. B Environ. Contam. Toxicol. 2016, 97, 418–424. [Google Scholar] [CrossRef]
- Silva, M.R.; Hernandez, A.A.; Velasco, A.F.; Moya, C.A. Genetic damage in Goodea atripinnis (Goodeidae) and persistent organic compounds in both Chapala and Sayula Lakes, in Mexico. Hidrobiologica 2014, 24, 215–221. [Google Scholar]
- Moncayo-Estrada, R.; Buelna-Osben, H.R. Fish fauna of Lake Chapala. In The Lerma-Chapala Watershed; Springer: Berlin, Germany, 2001; pp. 215–242. [Google Scholar]
- Membrillo-Abad, A.S.; Torres-Vera, M.A.; Alcocer, J.; Prol-Ledesma, R.M.; Oseguera, L.A.; Ruiz-Armenta, J.R. Trophic State Index estimation from remote sensing of lake Chapala, Mexico. Rev. Mex. Cienc. Geol. 2016, 33, 183–191. [Google Scholar]
- Seligmann, E.B., Jr.; Farber, J.F. Freeze drying and residual moisture. Cryobiology 1971, 8, 138–144. [Google Scholar] [CrossRef]
- Khodabux, K.; L’Omelette, M.S.S.; Jhaumeer-Laulloo, S.; Ramasami, P.; Rondeau, P. Chemical and near-infrared determination of moisture, fat and protein in tuna fishes. Food Chem. 2007, 102, 669–675. [Google Scholar] [CrossRef]
- ISO. 1444. International Organisation for Standardisation; ISO: Geneva, Switzerland, 1996. [Google Scholar]
- Horwitz, W. Agricultural Chemicals, Contaminants, Drugs. In Official Methods of Analysis of AOAC International; Horwitz, W., Ed.; AOAC International: Gaithersburg, MD, USA, 2010; Volume 1. [Google Scholar]
- Aboul Ezz, A.; Abdel-Razek, S. Heavy metal accumulation in the Tilapia nilotica L. and in the waters of Lake Manzalah. Egyptian J. Appl. Sci. 1991, 6, 37–52. [Google Scholar]
- Authman, M.M.; Abbas, H.H. Accumulation and Distribution of Copper and Zinc in Both Water and Some Vital Tissues of Two Fish Species(Tilapia zillii and Mugil cephalus) of Lake Qarun, Fayoum Province, Egypt. Pak. J. Biol. Sci. 2007, 10, 2106–2122. [Google Scholar] [CrossRef]
- Badii, M.H.; Cuevas, R.G.; Almanza, V.G.; Flores, J.L. Los indicadores biológicos en la evaluación de la contaminación por agroquímicos en Ecosistemas acuáticos y asociados. CULCyT Cult. Cient. Tecnol. 2005, 2, 1. [Google Scholar]
- Armenta-Arteaga, G.; Elizalde-González, M.P. Contamination by PAHs, PCBs, PCPs and heavy metals in the mecoácfin lake estuarine water and sediments after oil spilling. J. Soils Sediments 2003, 3, 35–40. [Google Scholar] [CrossRef]
- Hernandez, A.R.; Boada, L.D.; Mendoza, Z.; Ruiz-Suarez, N.; Valeron, P.F.; Camacho, M.; Zumbado, M.; Almeida-Gonzalez, M.; Henriquez-Hernandez, L.A.; Luzardo, O.P. Consumption of organic meat does not diminish the carcinogenic potential associated with the intake of persistent organic pollutants (POPs). Environ. Sci. Pollut. Res. 2017, 24, 4261–4273. [Google Scholar] [CrossRef]
- Zhao, Q.; Bai, J.; Lu, Q.; Gao, Z.; Jia, J.; Cui, B.; Liu, X. Polychlorinated biphenyls (PCBs) in sediments/soils of different wetlands along 100-year coastal reclamation chronosequence in the Pearl River Estuary, China. Environ. Pollut. 2016, 213, 860–869. [Google Scholar] [CrossRef] [Green Version]
- Habibullah-Al-Mamun, M.; Ahmed, M.K.; Islam, M.S.; Tokumura, M.; Masunaga, S. Occurrence, distribution and possible sources of polychlorinated biphenyls (PCBs) in the surface water from the Bay of Bengal coast of Bangladesh. Ecotoxicol. Environ. Safe. 2019, 167, 450–458. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Song, J.; Liu, Z.; Zheng, G.; Zhang, N.; He, Z. PCBs and its coupling with eco-environments in Southern Yellow Sea surface sediments. Mar. Pollut. Bull. 2007, 54, 1105–1115. [Google Scholar] [CrossRef] [PubMed]
- Guzzella, L.; Roscioli, C.; Vigano, L.; Saha, M.; Sarkar, S.; Bhattacharya, A. Evaluation of the concentration of HCH, DDT, HCB, PCB and PAH in the sediments along the lower stretch of Hugli estuary, West Bengal, northeast India. Environ. Int. 2005, 31, 523–534. [Google Scholar] [CrossRef]
- Jönsson, A.; Gustafsson, Ö.; Axelman, J.; Sundberg, H. Global accounting of PCBs in the continental shelf sediments. Environ. Sci. Technol. 2003, 37, 245–255. [Google Scholar] [CrossRef]
- Vitale, C.M.; Terzaghi, E.; Zati, D.; Di Guardo, A. How good are the predictions of mobility of aged polychlorinated biphenyls (PCBs) in soil? Insights from a soil column experiment. Sci. Total Environ. 2018, 645, 865–875. [Google Scholar] [CrossRef]
- Johnson, L.L.; Anulacion, B.F.; Arkoosh, M.R.; Burrows, D.G.; da Silva, D.A.M.; Dietrich, J.P.; Myers, M.S.; Spromberg, J.; Ylitalo, G.M. Effects of Legacy Persistent Organic Pollutants (Pops) in Fish-Current and Future Challenges. Fish Physiol. 2014, 33, 53–140. [Google Scholar] [CrossRef]
- Pathiraja, G.; Egodawatta, P.; Goonetilleke, A.; Te’o, V.S.J. Solubilization and degradation of polychlorinated biphenyls (PCBs) by naturally occurring facultative anaerobic bacteria. Sci. Total Environ. 2019, 651, 2197–2207. [Google Scholar] [CrossRef]
- Cajthaml, T. Biodegradation of endocrine-disrupting compounds by ligninolytic fungi: Mechanisms involved in the degradation. Environ. Microbiol. 2015, 17, 4822–4834. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Bao, J.; Shan, M.; Qin, H.; Wang, H.; Yu, X.; Chen, J.; Xu, Q. Dynamic changes of polychlorinated biphenyls (PCBs) degradation and adsorption to biochar as affected by soil organic carbon content. Chemosphere 2018, 211, 120–127. [Google Scholar] [CrossRef]
- Horri, K.; Alfonso, S.; Cousin, X.; Munschy, C.; Loizeau, V.; Aroua, S.; Begout, M.-L.; Ernande, B. Fish life-history traits are affected after chronic dietary exposure to an environmentally realistic marine mixture of PCBs and PBDEs. Sci. Total Environ. 2018, 610, 531–545. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Avila, J.; Bonet, J.; Velasco, G.; Lacorte, S. Determination and occurrence of phthalates, alkylphenols, bisphenol A, PBDEs, PCBs and PAHs in an industrial sewage grid discharging to a Municipal Wastewater Treatment Plant. Sci. Total Environ. 2009, 407, 4157–4167. [Google Scholar] [CrossRef]
- Miao, X.-S.; Chu, S.-G.; Xu, X.-B. Degradation pathways of PCBs upon UV irradiation in hexane. Chemosphere 1999, 39, 1639–1650. [Google Scholar] [CrossRef]
- Huang, C.; Zeng, Y.; Luo, X.; Ren, Z.; Tian, Y.; Mai, B. Comprehensive exploration of the ultraviolet degradation of polychlorinated biphenyls in different media. Sci. Total Environ. 2021, 755, 142590. [Google Scholar] [CrossRef] [PubMed]
- Bastos, P.M.; Eriksson, J.; Vidarson, J.; Bergman, Å. Oxidative transformation of polybrominated diphenyl ether congeners (PBDEs) and of hydroxylated PBDEs (OH-PBDEs). Environ. Sci. Pollut. R 2008, 15, 606–613. [Google Scholar] [CrossRef] [PubMed]
- Masset, T.; Frossard, V.; Perga, M.; Cottin, N.; Piot, C.; Cachera, S.; Naffrechoux, E. Trophic position and individual feeding habits as drivers of differential PCB bioaccumulation in fish populations. Sci. Total Environ. 2019, 674, 472–481. [Google Scholar] [CrossRef] [PubMed]
- Kelly, B.C.; Gobas, F.A.; McLachlan, M.S. Intestinal absorption and biomagnification of organic contaminants in fish, wildlife, and humans. Environ. Toxicol. Chem. Int. J. 2004, 23, 2324–2336. [Google Scholar] [CrossRef] [PubMed]
- Arnot, J.A.; Arnot, M.I.; Mackay, D.; Couillard, Y.; MacDonald, D.; Bonnell, M.; Doyle, P. Molecular size cutoff criteria for screening bioaccumulation potential: Fact or fiction? Integr. Environ. Assess. Manag. Int. J. 2010, 6, 210–224. [Google Scholar]
- Bœuf, G.; Payan, P. How should salinity influence fish growth? Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2001, 130, 411–423. [Google Scholar] [CrossRef]
- Borgå, K.; Gabrielsen, G.; Skaare, J. Biomagnification of organochlorines along a Barents Sea food chain. Environ. Pollut. 2001, 113, 187–198. [Google Scholar] [CrossRef]
- Moermond, C.T.; Roozen, F.C.; Zwolsman, J.J.; Koelmans, A.A. Uptake of sediment-bound bioavailable polychlorobiphenyls by benthivorous carp (Cyprinus carpio). Environ. Sci. Technol. 2004, 38, 4503–4509. [Google Scholar] [CrossRef]
- Pérez-Fuentetaja, A.; Lupton, S.; Clapsadl, M.; Samara, F.; Gatto, L.; Biniakewitz, R.; Aga, D.S. PCB and PBDE levels in wild common carp (Cyprinus carpio) from eastern Lake Erie. Chemosphere 2010, 81, 541–547. [Google Scholar] [CrossRef]
- Çağdaş, B.; Kocagöz, R.; Onat, İ.; Perçin, F.; Özaydın, O.; Orhan, H. Periodic monitoring of persistent organic pollutants and molecular damage in Cyprinus carpio from Büyük Menderes River. Environ. Sci. Pollut. R 2017, 24, 4241–4251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ge, F.; Wang, X.; Zhang, K.; Jin, X.; Guo, R.; Liu, Y.; Qiao, X.; Zhao, X.; Zheng, B.; Zheng, X. The correlation study between PCBs and δ15N values or FAs in fish collected from Dongting Lake. Chemosphere 2019, 234, 763–768. [Google Scholar] [CrossRef] [PubMed]
- Polder, A.; Muller, M.B.; Lyche, J.L.; Mdegela, R.H.; Nonga, H.E.; Mabiki, F.P.; Mbise, T.J.; Skaare, J.U.; Sandvik, M.; Skjerve, E.; et al. Levels and patterns of persistent organic pollutants (POPs) in tilapia (Oreochromis sp.) from four different lakes in Tanzania: Geographical differences and implications for human health. Sci. Total Environ. 2014, 488, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Said, T.O.; El Moselhy, K.M.; Rashad, A.A.M.; Shreadah, M.A. Organochlorine contaminants in water, sediment and fish of Lake Burullus, Egyptian Mediterranean Sea. B Environ. Contam. Toxicol. 2008, 81, 136–146. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Wang, Y.; Li, A.; Zhang, Q.; Jing, C.; Wang, T.; Wang, P.; Li, Y.; Jiang, G. Organochlorine pesticides and PCBs in fish from lakes of the Tibetan Plateau and the implications. Environ. Pollut. 2010, 158, 2310–2316. [Google Scholar] [CrossRef] [PubMed]
- Hinck, J.E.; Blazer, V.S.; Schmitt, C.J.; Papoulias, D.M.; Tillitt, D.E. Widespread occurrence of intersex in black basses (Micropterus spp.) from US rivers, 1995–2004. Aquat. Toxicol. 2009, 95, 60–70. [Google Scholar] [CrossRef] [Green Version]
- Jørgensen, E.H.; Vijayan, M.M.; Killie, J.-E.A.; Aluru, N.; Aas-Hansen, Ø.; Maule, A. Toxicokinetics and effects of PCBs in Arctic fish: A review of studies on Arctic charr. J. Toxicol. Environ. Health Part A 2006, 69, 37–52. [Google Scholar] [CrossRef]
- Marabini, L.; Calò, R.; Fucile, S. Genotoxic effects of polychlorinated biphenyls (PCB 153, 138, 101, 118) in a fish cell line (RTG-2). Toxicol. Vitro 2011, 25, 1045–1052. [Google Scholar] [CrossRef]
Sediment | Electrical Conductivity (ms) | pH | Total Nitrogen (%) | Inorganic Carbon (%) | Organic Carbon (%) | Organic Matter (%) | |
2018 | 1.01 ± 0.14 a | 7.45 ± 0.207 a | 0.22 ± 0.056 a | 0.39 ± 0.023 a | 1.85 ± 0.26 a | 3.2 ± 0.448 a | |
2019 | 1.22 ± 0.09 a | 7.30 ± 0.166 a | 0.15 ± 0.042 a | 0.56 ± 0.181 a | 2.04 ± 0.30 a | 3.54 ± 0.539 a | |
Water | Temperature (°C) | Dissolved oxygen (mg/mL) | Electrical conductivity (uS/cm) | Total soluble solids (mg/L) | Salinity (ng/L) | Nitrates (mg/L) | |
2018 | 23.54 ± 0.37 a | 5.12 ± 0.50 a | 767.88 ± 130.82 a | 519.36 ± 86.74 a | 0.000388 ± 0.0 b | 6.5743 ± 1.58 b | |
2019 | 23.57 ± 1.40 a | 5.26 ± 1.2 a | 869.84 ± 28.08 a | 581.32 ± 6.01 a | 0.000438 ± 0.0 a | 13.455 ± 4.89 a | |
Fish | Fat (%) | Protein (%) | Weight (gr) | Length (cm) | Width (cm) | Length tail (cm) | |
Chirostoma spp. | 4.17 ± 0.69 d | 72.19 ± 1.14 a | 7.00 ± 3.00 d | 5.00 ± 1.00 e | 0.70 ± 0.30 c | 2.0 ± 0.60 c | |
Cyprinus carpio | 2018 | 21.97 ± 3.68 b | 62.59 ± 1.90 b | 3339.00 ± 130 b | 28.00 ± 3.00 b | 9.20 ± 1.20 a | 6.20 ± 1.90 a |
Oreochromis aureus | 14.71 ± 4.63 c | 58.54 ± 2.35 c | 213.00 ± 35 c | 15.50 ± 2.30 c | 5.10 ± 1.20 b | 3.70 ± 0.75 b | |
Chirostoma spp. | 3.71 ± 0.61 d | 70.38 ± 0.81 a | 7.50 ± 2.30 d | 7.00 ± 1.30 d | 0.70 ± 0.20 c | 1.80 ± 0.40 c | |
Cyprinus carpio | 2019 | 26.10 ± 2.33 a | 71.83 ± 3.35 a | 3542.00 ± 115.00 a | 32.00 ± 2.00 a | 9.50 ± 1.35 a | 6.80 ± 2.20 a |
Oreochromis aureus | 12.30 ± 2.23 c | 59.92 ± 2.54 c | 205.00 ± 32.00 c | 17.00 ± 3.00 c | 5.80 ± 1.40 b | 4.10 ± 0.87 b |
2018 | 2019 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Name | Sediments | Water | Chirostoma spp. | Cyprinus carpio | Oreochromis aureus | Sediments | Water | Chirostoma spp. | Cyprinus carpio | Oreochromis aureus |
PCB 1 | 2.31 ± 1.25 | 2.50 ± 1.24 | 1.28 ± 0.63 | 1.54 ± 0.72 | 1.43 ± 0.78 | 2.33 ± 1.54 | 2.14 ± 1.0 | 4.57 ± 2.05 | 3.32 ± 1.51 | 3.27 ± 2.84 |
PCB 2 | 2.45 ± 1.06 | 2.71 ± 1.49 | 1.32 ± 0.76 | 1.86 ± 0.90 | 1.04 ± 0.67 | 2.24 ± 1.26 | 2.21 ± 1.41 | 4.00 ± 1.76 | 3.45 ± 1.97 | 4.34 ± 2.57 |
PCB 3 | 2.07 ± 1.16 | 2.98 ± 1.75 | 1.11 ± 0.65 | 1.47 ± 0.77 | 1.07 ± 0.60 | 2.02 ± 1.41 | 2.61 ± 1.53 | 3.75 ± 0.17 | 3.55 ± 2.33 | 4.81 ± 1.70 |
PCB 4 | 2.15 ± 1.34 | 2.72 ± 1.71 | 0.91 ± 0.60 | 1.59 ± 0.84 | 1.78 ± 0.70 | 2.16 ± 1.31 | 2.45 ± 1.45 | 4.39 ± 2.60 | 4.72 ± 2.52 | 4.45 ± 1.85 |
PCB 5 | 2.30 ± 1.01 | 2.13 ± 1.73 | 0.30 ± 0.18 | 1.40 ± 0.90 | 1.27 ± 1.13 | 1.66 ± 0.78 | 2.51 ± 1.38 | 3.78 ± 1.80 | 4.89 ± 1.42 | 2.46 ± 0.06 |
PCB 7 | 2.47 ± 1.29 | 2.59 ± 1.49 | 1.30 ± 0.61 | 1.39 ± 1.02 | 1.35 ± 0.87 | 2.30 ± 1.55 | 2.48 ± 1.41 | 3.45 ± 2.78 | 4.34 ± 2.28 | 3.74 ± 2.21 |
PCB 9 | 2.28 ± 1.56 | 2.60 ± 1.68 | 1.30 ± 0.66 | 1.55 ± 1.09 | 1.50 ± 0.85 | 2.22 ± 1.39 | 2.48 ± 1.42 | 3.34 ± 2.33 | 5.52 ± 2.74 | 4.55 ± 2.60 |
PCB 16 | 2.14 ± 1.31 | 2.28 ± 1.45 | 1.79 ± 0.60 | 1.96 ± 1.16 | 1.36 ± 0.77 | 2.30 ± 1.66 | 1.73 ± 1.26 | 3.96 ± 3.18 | 5.17 ± 3.37 | 5.20 ± 3.78 |
PCB 18 | 2.51 ± 1.15 | 2.75 ± 1.86 | 1.23 ± 0.87 | 1.82 ± 1.12 | 1.51 ± 0.84 | 2.30 ± 1.30 | 2.49 ± 1.25 | 4.39 ± 2.99 | 5.54 ± 3.10 | 5.87 ± 2.10 |
PCB 19 | 1.98 ± 1.26 | 2.09 ± 1.48 | 1.24 ± 0.85 | 2.08 ± 0.90 | 1.58 ± 1.00 | 2.69 ± 1.61 | 1.85 ± 1.12 | 4.30 ± 2.14 | 5.29 ± 2.79 | 4.36 ± 3.18 |
PCB 22 | 2.14 ± 1.36 | 2.33 ± 1.32 | 1.40 ± 0.77 | 1.95 ± 1.09 | 1.70 ± 0.87 | 2.62 ± 1.42 | 2.13 ± 1.49 | 4.79 ± 3.25 | 4.14 ± 2.68 | 4.97 ± 2.72 |
PCB 25 | 2.35 ± 1.57 | 2.22 ± 1.51 | 1.69 ± 0.71 | 1.96 ± 1.11 | 1.74 ± 0.84 | 2.46 ± 1.57 | 1.87 ± 1.37 | 3.71 ± 2.95 | 3.67 ± 2.21 | 4.53 ± 2.67 |
PCB 28 | 2.05 ± 1.34 | 2.30 ± 1.44 | 1.10 ± 0.53 | 1.85 ± 0.87 | 1.21 ± 0.61 | 2.70 ± 1.57 | 2.20 ± 1.46 | 3.68 ± 3.30 | 6.07 ± 3.35 | 6.00 ± 2.93 |
PCB 44 | 2.48 ± 1.53 | 2.25 ± 1.39 | 1.39 ± 0.73 | 1.53 ± 1.00 | 1.87 ± 0.85 | 2.54 ± 1.56 | 2.27 ± 1.17 | 4.90 ± 3.13 | 5.64 ± 3.61 | 5.48 ± 2.94 |
PCB 52 | 2.35 ± 1.43 | 2.32 ± 1.48 | 1.71 ± 1.05 | 2.23 ± 0.89 | 1.76 ± 0.98 | 2.51 ± 1.40 | 1.94 ± 1.17 | 5.21 ± 2.95 | 3.15 ± 1.78 | 5.00 ± 4.07 |
PCB 56 | 2.44 ± 1.50 | 2.07 ± 1.36 | 1.60 ± 0.87 | 2.02 ± 0.98 | 1.57 ± 0.79 | 2.37 ± 1.29 | 2.22 ± 1.22 | 4.29 ± 3.79 | 5.09 ± 3.67 | 5.95 ± 3.82 |
PCB 66 | 2.34 ± 1.67 | 2.32 ± 1.27 | 1.84 ± 0.62 | 2.40 ± 1.21 | 1.71 ± 1.10 | 2.07 ± 1.56 | 2.36 ± 1.10 | 3.05 ± 2.19 | 5.97 ± 3.27 | 5.76 ± 3.03 |
PCB 67 | 2.80 ± 1.43 | 2.62 ± 1.25 | 1.84 ± 0.80 | 1.77 ± 1.01 | 2.13 ± 0.85 | 2.09 ± 1.43 | 2.28 ± 1.26 | 4.50 ± 3.17 | 3.72 ± 1.55 | 5.93 ± 3.89 |
PCB 71 | 2.37 ± 1.45 | 2.65 ± 1.75 | 1.75 ± 0.78 | 1.73 ± 0.98 | 1.96 ± 0.59 | 3.16 ± 1.29 | 1.83 ± 1.12 | 4.31 ± 3.32 | 5.43 ± 2.42 | 5.57 ± 2.78 |
PCB 74 | 2.30 ± 1.83 | 2.52 ± 1.11 | 0.45 ± 0.24 | 1.06 ± 0.81 | 0.55 ± 0.34 | 2.20 ± 1.29 | 1.91 ± 1.33 | 4.93 ± 3.02 | 5.92 ± 2.88 | 4.28 ± 3.20 |
PCB 82 | 2.74 ± 1.53 | 2.47 ± 1.51 | 1.38 ± 0.90 | 2.52 ± 0.92 | 2.00 ± 1.04 | 2.59 ± 1.47 | 2.01 ± 1.22 | 4.81 ± 3.65 | 5.52 ± 3.82 | 6.34 ± 2.44 |
PCB 87 | 3.10 ± 1.64 | 2.53 ± 1.73 | 1.54 ± 0.73 | 1.79 ± 1.18 | 1.99 ± 1.05 | 2.66 ± 1.43 | 1.98 ± 1.05 | 5.31 ± 2.91 | 5.62 ± 4.13 | 7.20 ± 1.60 |
PCB 99 | 2.49 ± 1.47 | 1.89 ± 1.23 | 1.41 ± 0.88 | 1.74 ± 1.24 | 1.89 ± 0.93 | 2.57 ± 1.61 | 1.69 ± 1.15 | 4.83 ± 3.57 | 5.56 ± 2.24 | 3.69 ± 2.89 |
PCB 110 | 2.84 ± 1.41 | 2.32 ± 1.34 | 1.88 ± 1.06 | 1.78 ± 1.22 | 1.58 ± 0.76 | 2.82 ± 1.48 | 1.95 ± 1.20 | 5.09 ± 2.72 | 5.02 ± 3.60 | 4.93 ± 3.76 |
PCB 138 | 2.80 ± 1.78 | 2.41 ± 1.56 | 1.54 ± 0.69 | 2.14 ± 1.01 | 1.70 ± 0.96 | 2.43 ± 1.75 | 1.43 ± 1.01 | 4.16 ± 2.67 | 4.52 ± 2.84 | 4.58 ± 2.76 |
PCB 146 | 2.61 ± 1.60 | 1.89 ± 1.46 | 1.51 ± 0.93 | 1.72 ± 1.04 | 1.87 ± 0.89 | 2.66 ± 1.68 | 1.87 ± 1.10 | 4.35 ± 2.69 | 5.10 ± 2.86 | 5.92 ± 3.17 |
PCB 147 | 2.48 ± 1.76 | 2.48 ± 1.58 | 1.16 ± 0.87 | 2.21 ± 0.98 | 1.51 ± 0.93 | 2.67 ± 1.91 | 1.77 ± 1.12 | 4.70 ± 3.12 | 4.54 ± 3.20 | 5.60 ± 2.67 |
PCB 153 | 2.69 ± 1.78 | 2.49 ± 1.45 | 1.31 ± 0.84 | 1.75 ± 1.09 | 2.00 ± 0.65 | 3.20 ± 1.77 | 2.04 ± 1.09 | 4.56 ± 3.23 | 4.08 ± 2.37 | 4.31 ± 3.92 |
PCB 173 | 2.23 ± 1.63 | 2.38 ± 1.33 | 1.16 ± 0.64 | 1.34 ± 1.02 | 1.64 ± 0.84 | 2.74 ± 1.41 | 1.81 ± 1.05 | 3.48 ± 2.57 | 4.59 ± 3.17 | 4.15 ± 2.36 |
PCB 174 | 2.72 ± 1.60 | 2.14 ± 1.48 | 1.14 ± 0.60 | 1.34 ± 0.85 | 1.69 ± 0.93 | 3.04 ± 1.83 | 1.71 ± 1.20 | 3.98 ± 3.05 | 5.06 ± 2.50 | 4.48 ± 2.20 |
PCB 177 | 2.69 ± 1.47 | 1.78 ± 1.31 | 1.40 ± 0.94 | 1.67 ± 1.10 | 1.46 ± 0.71 | 3.11 ± 1.64 | 1.64 ± 1.18 | 5.03 ± 2.81 | 4.29 ± 3.39 | 3.61 ± 2.67 |
PCB 179 | 2.70 ± 1.59 | 1.96 ± 1.10 | 0.85 ± 0.60 | 1.16 ± 0.76 | 1.77 ± 0.74 | 3.21 ± 1.64 | 1.51 ± 0.99 | 4.07 ± 2.71 | 5.72 ± 3.35 | 3.78 ± 2.69 |
PCB 180 | 2.35 ± 1.53 | 1.75 ± 1.32 | 1.42 ± 0.67 | 1.58 ± 0.78 | 1.47 ± 0.74 | 2.96 ± 1.79 | 1.81 ± 1.15 | 3.46 ± 2.14 | 4.63 ± 2.46 | 4.91 ± 2.73 |
PCB 187 | 2.65 ± 1.80 | 2.08 ± 1.23 | 1.16 ± 0.80 | 1.81 ± 0.78 | 1.16 ± 0.58 | 2.91 ± 1.83 | 1.90 ± 0.91 | 3.66 ± 2.71 | 3.71 ± 2.60 | 4.98 ± 2.81 |
PCB 194 | 2.58 ± 1.30 | 1.91 ± 1.20 | 1.39 ± 0.66 | 1.74 ± 0.82 | 1.72 ± 0.78 | 2.95 ± 1.62 | 2.03 ± 1.11 | 4.01 ± 2.55 | 3.96 ± 2.08 | 4.27 ± 2.44 |
PCB 195 | 2.39 ± 1.91 | 1.84 ± 1.16 | 0.79 ± 0.67 | 1.80 ± 0.92 | 1.52 ± 0.80 | 3.2 ± 1.71 | 1.78 ± 1.20 | 3.93 ± 2.88 | 3.70 ± 2.62 | 4.46 ± 2.90 |
PCB 199 | 2.76 ± 1.44 | 1.83 ± 1.15 | 1.08 ± 0.84 | 1.26 ± 0.88 | 1.41 ± 0.76 | 2.97 ± 1.46 | 1.95 ± 1.11 | 4.00 ± 2.38 | 3.68 ± 1.99 | 5.05 ± 2.69 |
PCB 203 | 2.73 ± 1.83 | 1.83 ± 1.22 | 1.26 ± 0.74 | 1.18 ± 0.72 | 1.64 ± 0.69 | 3.27 ± 1.88 | 1.47 ± 1.08 | 4.69 ± 3.34 | 3.93 ± 2.44 | 4.80 ± 2.66 |
PCB 206 | 2.52 ± 1.84 | 2.27 ± 0.85 | 1.38 ± 0.66 | 1.50 ± 0.93 | 1.38 ± 0.87 | 3.17 ± 1.84 | 1.59 ± 1.02 | 3.15 ± 2.31 | 3.81 ± 2.26 | 5.60 ± 3.34 |
2018 | 2019 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Name | Sediments | Water | Chirostoma spp. | Cyprinus carpio | Oreochromis aureus | Sediments | Water | Chirostoma spp. | Cyprinus carpio | Oreochromis aureus |
PBDE 1 | 0.18 ± 0.10 | 0.26 ± 0.16 | 0.14 ± 0.06 | 0.12 ± 0.11 | 0.20 ± 0.04 | 0.24 ± 0.14 | 0.25 ± 0.13 | 0.02 ± 0.04 | 0.02 ± 0.07 | 0.01 ± 0.03 |
PBDE 2 | 0.17 ± 0.10 | 0.29 ± 0.16 | 0.15 ± 0.07 | 0.13 ± 0.07 | 0.14 ± 0.02 | 0.23 ± 0.11 | 0.24 ± 0.14 | 0.02 ± 0.05 | 0.01 ± 0.02 | 0.03 ± 0.06 |
PBDE 3 | 0.22 ± 0.15 | 0.32 ± 0.16 | 0.15 ± 0.13 | 0.17 ± 0.06 | 0.17 ± 0.07 | 0.19 ± 0.11 | 0.26 ± 0.13 | 0.02 ± 0.04 | 0.03 ± 0.09 | 0.01 ± 0.03 |
PBDE 7 | 0.22 ± 0.11 | 0.28 ± 0.20 | 0.14 ± 0.10 | 0.15 ± 0.04 | 0.11 ± 0.05 | 0.29 ± 0.14 | 0.17 ± 0.12 | 0.03 ± 0.06 | 0.06 ± 0.09 | 0.02 ± 0.07 |
PBDE 8 | 0.26 ± 0.16 | 0.25 ± 0.18 | 0.13 ± 0.10 | 0.25 ± 0.04 | 0.14 ± 0.05 | 0.19 ± 0.13 | 0.26 ± 0.13 | 0.07 ± 0.09 | 0.04 ± 0.09 | 0.02 ± 0.07 |
PBDE 10 | 0.18 ± 0.12 | 0.24 ± 0.14 | 0.13 ± 0.05 | 0.16 ± 0.10 | 0.18 ± 0.06 | 0.24 ± 0.12 | 0.22 ± 0.13 | 0.04 ± 0.07 | 0.05 ± 0.10 | 0.03 ± 0.05 |
PBDE 11 | 0.26 ± 0.12 | 0.22 ± 0.15 | 0.14 ± 0.06 | 0.12 ± 0.08 | 0.18 ± 0.11 | 0.23 ± 0.13 | 0.19 ± 0.12 | 0.04 ± 0.07 | 0.03 ± 0.07 | 0.06 ± 0.10 |
PBDE 12 | 0.19 ± 0.13 | 0.26 ± 0.13 | 0.23 ± 0.05 | 0.11 ± 0.08 | 0.16 ± 0.08 | 0.24 ± 0.15 | 0.26 ± 0.14 | 0.03 ± 0.07 | 0.02 ± 0.06 | 0.05 ± 0.08 |
PBDE 13 | 0.25 ± 0.13 | 0.29 ± 0.16 | 0.14 ± 0.09 | 0.24 ± 0.03 | 0.22 ± 0.12 | 0.24 ± 0.13 | 0.18 ± 0.12 | 0.04 ± 0.09 | 0.02 ± 0.02 | 0.04 ± 0.08 |
PBDE 15 | 0.29 ± 0.12 | 0.18 ± 0.13 | 0.21 ± 0.06 | 0.16 ± 0.12 | 0.19 ± 0.05 | 0.18 ± 0.13 | 0.19 ± 0.09 | 0.03 ± 0.07 | 0.02 ± 0.08 | 0.01 ± 0.03 |
PBDE 17 | 0.24 ± 0.15 | 0.23 ± 0.13 | 0.14 ± 0.06 | 0.19 ± 0.11 | 0.21 ± 0.10 | 0.22 ± 0.18 | 0.19 ± 0.15 | 0.03 ± 0.07 | 0.08 ± 0.11 | 0.10 ± 0.13 |
PBDE 21 | 0.17 ± 0.11 | 0.21 ± 0.13 | 0.19 ± 0.06 | 0.18 ± 0.04 | 0.11 ± 0.09 | 0.22 ± 0.14 | 0.17 ± 0.13 | 0.05 ± 0.09 | 0.06 ± 0.11 | 0.03 ± 0.07 |
PBDE 28 | 0.20 ± 0.14 | 0.22 ± 0.16 | 0.10 ± 0.09 | 0.14 ± 0.08 | 0.17 ± 0.15 | 0.26 ± 0.16 | 0.23 ± 0.14 | 0.12 ± 0.09 | 0.17 ± 0.12 | 0.12 ± 0.10 |
PBDE 30 | 0.26 ± 0.14 | 0.25 ± 0.16 | 0.15 ± 0.06 | 0.16 ± 0.10 | 0.17 ± 0.10 | 0.21 ± 0.15 | 0.16 ± 0.11 | 0.04 ± 0.08 | 0.04 ± 0.09 | 0.03 ± 0.08 |
PBDE 32 | 0.24 ± 0.12 | 0.19 ± 0.16 | 0.10 ± 0.06 | 0.18 ± 0.02 | 0.10 ± 0.06 | 0.28 ± 0.18 | 0.19 ± 0.14 | 0.02 ± 0.06 | 0.06 ± 0.11 | 0.02 ± 0.05 |
PBDE 33 | 0.26 ± 0.13 | 0.21 ± 0.14 | 0.12 ± 0.06 | 0.14 ± 0.09 | 0.14 ± 0.13 | 0.20 ± 0.16 | 0.22 ± 0.07 | 0.01 ± 0.03 | 0.03 ± 0.07 | 0.05 ± 0.10 |
PBDE 35 | 0.24 ± 0.18 | 0.20 ± 0.11 | 0.11 ± 0.05 | 0.23 ± 0.13 | 0.21 ± 0.10 | 0.25 ± 0.14 | 0.21 ± 0.12 | 0.03 ± 0.06 | 0.03 ± 0.08 | 0.05 ± 0.11 |
PBDE 37 | 0.27 ± 0.17 | 0.23 ± 0.13 | 0.16 ± 0.05 | 0.31 ± 0.07 | 0.17 ± 0.10 | 0.18 ± 0.14 | 0.24 ± 0.12 | 0.04 ± 0.09 | 0.04 ± 0.08 | 0.03 ± 0.06 |
PBDE 47 | 0.24 ± 0.14 | 0.26 ± 0.16 | 0.17 ± 0.08 | 0.22 ± 0.09 | 0.18 ± 0.07 | 0.24 ± 0.17 | 0.18 ± 0.12 | 0.16 ± 0.09 | 0.13 ± 0.11 | 0.16 ± 0.11 |
PBDE 49 | 0.24 ± 0.16 | 0.23 ± 0.15 | 0.16 ± 0.07 | 0.25 ± 0.10 | 0.11 ± 0.10 | 0.23 ± 0.15 | 0.17 ± 0.11 | 0.04 ± 0.08 | 0.04 ± 0.09 | 0.01 ± 0.02 |
PBDE 66 | 0.26 ± 0.13 | 0.24 ± 0.14 | 0.18 ± 0.09 | 0.20 ± 0.10 | 0.19 ± 0.10 | 0.27 ± 0.12 | 0.19 ± 0.12 | 0.11 ± 0.09 | 0.18 ± 0.12 | 0.15 ± 0.13 |
PBDE 71 | 0.21 ± 0.16 | 0.21 ± 0.13 | 0.18 ± 0.07 | 0.28 ± 0.09 | 0.16 ± 0.09 | 0.26 ± 0.15 | 0.18 ± 0.15 | 0.08 ± 0.11 | 0.06 ± 0.10 | 0.05 ± 0.08 |
PBDE 75 | 0.26 ± 0.14 | 0.19 ± 0.08 | 0.19 ± 0.06 | 0.15 ± 0.12 | 0.12 ± 0.10 | 0.24 ± 0.15 | 0.19 ± 0.11 | 0.03 ± 0.08 | 0.11 ± 0.13 | 0.05 ± 0.09 |
PBDE 77 | 0.24 ± 0.15 | 0.23 ± 0.16 | 0.18 ± 0.07 | 0.21 ± 0.11 | 0.17 ± 0.06 | 0.34 ± 0.23 | 0.25 ± 0.12 | 0.06 ± 0.10 | 0.09 ± 0.12 | 0.05 ± 0.11 |
PBDE 85 | 0.27 ± 0.17 | 0.22 ± 0.14 | 0.15 ± 0.05 | 0.18 ± 0.16 | 0.19 ± 0.07 | 0.31 ± 0.16 | 0.20 ± 0.12 | 0.04 ± 0.07 | 0.07 ± 0.11 | 0.06 ± 0.09 |
PBDE 99 | 0.26 ± 0.15 | 0.24 ± 0.14 | 0.16 ± 0.07 | 0.23 ± 0.09 | 0.18 ± 0.08 | 0.28 ± 0.18 | 0.16 ± 0.09 | 0.13 ± 0.09 | 0.18 ± 0.09 | 0.13 ± 0.08 |
PBDE 100 | 0.29 ± 0.15 | 0.21 ± 0.12 | 0.19 ± 0.07 | 0.20 ± 0.10 | 0.15 ± 0.08 | 0.24 ± 0.17 | 0.17 ± 0.11 | 0.11 ± 0.09 | 0.13 ± 0.11 | 0.18 ± 0.11 |
PBDE 116 | 0.26 ± 0.16 | 0.24 ± 0.14 | 0.14 ± 0.08 | 0.20 ± 0.11 | 0.17 ± 0.07 | 0.29 ± 0.17 | 0.21 ± 0.11 | 0.11 ± 0.08 | 0.19 ± 0.13 | 0.16 ± 0.09 |
PBDE 118 | 0.20 ± 0.13 | 0.21 ± 0.13 | 0.16 ± 0.06 | 0.21 ± 0.09 | 0.12 ± 0.09 | 0.28 ± 0.16 | 0.18 ± 0.12 | 0.11 ± 0.09 | 0.12 ± 0.11 | 0.11 ± 0.09 |
PBDE 119 | 0.26 ± 0.16 | 0.20 ± 0.14 | 0.17 ± 0.06 | 0.17 ± 0.11 | 0.21 ± 0.08 | 0.26 ± 0.19 | 0.18 ± 0.10 | 0.13 ± 0.08 | 0.11 ± 0.11 | 0.11 ± 0.08 |
PBDE 126 | 0.29 ± 0.16 | 0.22 ± 0.13 | 0.18 ± 0.05 | 0.27 ± 0.00 | 0.22 ± 0.08 | 0.29 ± 0.17 | 0.19 ± 0.10 | 0.06 ± 0.09 | 0.05 ± 0.09 | 0.02 ± 0.05 |
PBDE 137 | 0.26 ± 0.16 | 0.22 ± 0.13 | 0.10 ± 0.07 | 0.23 ± 0.07 | 0.17 ± 0.08 | 0.30 ± 0.17 | 0.17 ± 0.11 | 0.03 ± 0.07 | 0.07 ± 0.12 | 0.04 ± 0.08 |
PBDE 153 | 0.28 ± 0.16 | 0.20 ± 0.11 | 0.10 ± 0.06 | 0.18 ± 0.11 | 0.16 ± 0.07 | 0.27 ± 0.17 | 0.16 ± 0.11 | 0.10 ± 0.08 | 0.12 ± 0.10 | 0.11 ± 0.09 |
PBDE 154 | 0.28 ± 0.15 | 0.21 ± 0.11 | 0.12 ± 0.08 | 0.19 ± 0.10 | 0.18 ± 0.10 | 0.31 ± 0.20 | 0.16 ± 0.10 | 0.10 ± 0.07 | 0.16 ± 0.11 | 0.13 ± 0.09 |
PBDE 155 | 0.22 ± 0.19 | 0.16 ± 0.13 | 0.14 ± 0.07 | 0.21 ± 0.08 | 0.15 ± 0.06 | 0.35 ± 0.19 | 0.13 ± 0.09 | 0.05 ± 0.08 | 0.04 ± 0.09 | 0.04 ± 0.07 |
PBDE 166 | 0.31 ± 0.15 | 0.19 ± 0.15 | 0.12 ± 0.06 | 0.14 ± 0.09 | 0.15 ± 0.06 | 0.27 ± 0.17 | 0.23 ± 0.11 | 0.03 ± 0.06 | 0.03 ± 0.06 | 0.01 ± 0.06 |
PBDE 182 | 0.23 ± 0.13 | 0.23 ± 0.14 | 0.10 ± 0.05 | 0.15 ± 0.08 | 0.19 ± 0.07 | 0.33 ± 0.17 | 0.18 ± 0.12 | 0.02 ± 0.05 | 0.07 ± 0.10 | 0.04 ± 0.08 |
PBDE 183 | 0.29 ± 0.16 | 0.21 ± 0.14 | 0.12 ± 0.07 | 0.13 ± 0.09 | 0.14 ± 0.07 | 0.27 ± 0.18 | 0.16 ± 0.11 | 0.10 ± 0.08 | 0.15 ± 0.10 | 0.14 ± 0.08 |
PBDE 190 | 0.34 ± 0.17 | 0.20 ± 0.13 | 0.11 ± 0.07 | 0.15 ± 0.08 | 0.12 ± 0.00 | 0.34 ± 0.21 | 0.16 ± 0.09 | 0.11 ± 0.07 | 0.14 ± 0.11 | 0.13 ± 0.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oregel-Zamudio, E.; Alvarez-Bernal, D.; Franco-Hernandez, M.O.; Buelna-Osben, H.R.; Mora, M. Bioaccumulation of PCBs and PBDEs in Fish from a Tropical Lake Chapala, Mexico. Toxics 2021, 9, 241. https://doi.org/10.3390/toxics9100241
Oregel-Zamudio E, Alvarez-Bernal D, Franco-Hernandez MO, Buelna-Osben HR, Mora M. Bioaccumulation of PCBs and PBDEs in Fish from a Tropical Lake Chapala, Mexico. Toxics. 2021; 9(10):241. https://doi.org/10.3390/toxics9100241
Chicago/Turabian StyleOregel-Zamudio, Ernesto, Dioselina Alvarez-Bernal, Marina Olivia Franco-Hernandez, Hector Rene Buelna-Osben, and Miguel Mora. 2021. "Bioaccumulation of PCBs and PBDEs in Fish from a Tropical Lake Chapala, Mexico" Toxics 9, no. 10: 241. https://doi.org/10.3390/toxics9100241
APA StyleOregel-Zamudio, E., Alvarez-Bernal, D., Franco-Hernandez, M. O., Buelna-Osben, H. R., & Mora, M. (2021). Bioaccumulation of PCBs and PBDEs in Fish from a Tropical Lake Chapala, Mexico. Toxics, 9(10), 241. https://doi.org/10.3390/toxics9100241