Solid-Phase Partitioning and Leaching Behavior of Pb and Zn from Playground Soils in Kabwe, Zambia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Sampling Location
2.2. Soil Characterization
2.3. Determination of Pollution Indices
2.4. Geochemical Modeling and Multivariant Statistical Analysis
2.5. Batch Leaching Experiments
2.6. Sequential Extraction
3. Results
3.1. Chemical Composition and Mineralogy of SPs
3.2. The Extent of Pollution and Particle Size Distribution of the SPs
3.3. Leaching Characteristics of SPs
3.4. Partitioning of Pb and Zn in the SPs
3.5. The Distance of SPs from the KMWs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kamona, A.F.; Friedrich, G.H. Geology, mineralogy and stable isotope geochemistry of the Kabwe carbonate-hosted Pb–Zn deposit, Central Zambia. Ore Geol. Rev. 2007, 30, 217–243. [Google Scholar] [CrossRef]
- Blacksmith Institute and Green Cross Switzerland. 2013. Available online: https://www.worstpolluted.org/docs/TopTenThreats.pdf (accessed on 11 September 2021).
- Southwood, M.; Cairncross, B.; Rumsey, M.S. Minerals of the Kabwe (“Broken Hill”) mine, central province, Zambia. Rocks Miner. 2019, 94, 114–149. [Google Scholar] [CrossRef]
- Silwamba, M.; Ito, M.; Hiroyoshi, N.; Tabelin, C.B.; Fukushima, T.; Park, I.; Jeon, S.; Igarashi, T.; Sato, T.; Nyambe, I.; et al. Detoxification of lead-bearing zinc plant leach residues from Kabwe, Zambia by coupled extraction-cementation method. J. Environ. Chem. Eng. 2020, 8, 104197. [Google Scholar] [CrossRef]
- Ettler, V.; Štěpánek, D.; Mihaljevič, M.; Drahota, P.; Jedlicka, R.; Kříbek, B.; Nyambe, I. Slag dusts from Kabwe (Zambia): Contaminant mineralogy and oral bioaccessibility. Chemosphere 2020, 260, 127642. [Google Scholar] [CrossRef]
- Kříbek, B.; Nyambe, I.; Majer, V.; Knésl, I.; Mihaljevič, M.; Ettler, V.; Sracek, O. Soil contamination near the Kabwe Pb-Zn smelter in Zambia: Environmental impacts and remediation measures proposal. J. Geochem. Explor. 2019, 197, 159–173. [Google Scholar] [CrossRef]
- Tangviroon, P.; Noto, K.; Igarashi, T.; Kawashima, T.; Ito, M.; Sato, T.; Mufalo, W.; Chirwa, M.; Nyambe, I.; Nakata, H.; et al. Immobilization of lead and zinc leached from mining residual materials in Kabwe, Zambia: Possibility of chemical immobilization by dolomite, calcined dolomite, and magnesium oxide. Minerals 2020, 10, 763. [Google Scholar] [CrossRef]
- Mwandira, W.; Nakashima, K.; Kawasaki, S.; Ito, M.; Sato, T.; Igarashi, T.; Chirwa, M.; Banda, K.; Nyambe, I.; Nakayama, S.; et al. Solidification of sand by Pb (II)-tolerant bacteria for capping mine waste to control metallic dust: Case of the abandoned Kabwe Mine, Zambia. Chemosphere 2019, 228, 17–25. [Google Scholar] [CrossRef]
- Nakamura, S.; Igarashi, T.; Uchida, Y.; Ito, M.; Hirose, K.; Sato, T.; Mufalo, W.; Chirwa, M.; Nyambe, I.; Nakata, H.; et al. Evaluation of Dispersion of Lead-bearing Mine wastes in Kabwe District, Zambia. Minerals 2021, 11, 901. [Google Scholar] [CrossRef]
- Bello, O.; Naidu, R.; Rahman, M.M.; Liu, Y.; Dong, Z. Lead concentration in the blood of the general population living near a lead-zinc mine site, Nigeria: Exposure pathways. Sci. Total Environ. 2016, 542, 908–914. [Google Scholar] [CrossRef]
- Yabe, J.; Nakayama, S.M.; Ikenaka, Y.; Yohannes, Y.B.; Bortey-Sam, N.; Oroszlany, B.; Ishizuka, M. Lead poisoning in children from townships in the vicinity of a lead-zinc mine in Kabwe, Zambia. Chemosphere 2015, 119, 941–947. [Google Scholar] [CrossRef]
- Ljung, K.; Selinus, O.; Otabbong, E. Metals in soils of children’s urban environments in the small northern European city of Uppsala. Sci. Total Environ. 2006, 366, 749–759. [Google Scholar] [CrossRef]
- EPA, US. A Review of the Reference Dose and Reference Concentration Processes. Risk Assessment Forum, U; The Environmental Protection Agency: Washington, DC, USA, 2002.
- Toyomaki, H.; Yabe, J.; Nakayama, S.M.; Yohannes, Y.B.; Muzandu, K.; Mufune, T.; Nakata, H.; Ikenaka, Y.; Kuritani, T.; Nakagawa, M.; et al. Lead concentrations and isotope ratios in blood, breastmilk and feces: Contribution of both lactation and soil/dust exposure to infants in a lead mining area, Kabwe, Zambia. Environ. Pollut. 2021, 286, 117456. [Google Scholar] [CrossRef]
- Yabe, J.; Nakayama, S.M.; Nakata, H.; Toyomaki, H.; Yohannes, Y.B.; Muzandu, K.; Ishizuka, M. Current trends of blood lead levels, distribution patterns and exposure variations among household members in Kabwe, Zambia. Chemosphere 2020, 243, 125412. [Google Scholar] [CrossRef]
- Bose-O’Reilly, S.; Yabe, J.; Makumba, J.; Schutzmeier, P.; Ericson, B.; Caravanos, J. Lead intoxicated children in Kabwe, Zambia. Environ. Res. 2018, 165, 420–424. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; O’Connor, D.; Ok, Y.S.; Tsang, D.C.; Liu, A.; Hou, D. Assessment of sources of heavy metals in soil and dust at children’s playgrounds in Beijing using GIS and multivariate statistical analysis. Environ. Int. 2019, 124, 320–328. [Google Scholar] [CrossRef]
- Peng, T.; O’Connor, D.; Zhao, B.; Jin, Y.; Zhang, Y.; Tian, L.; Hou, D. Spatial distribution of lead contamination in soil and equipment dust at children’s playgrounds in Beijing, China. Environ. Pollut. 2019, 245, 363–370. [Google Scholar] [CrossRef]
- Yan, B.; Xu, D.M.; Chen, T.; Yan, Z.A.; Li, L.L.; Wang, M.H. Leachability characteristic of heavy metals and associated health risk study in typical copper mining-impacted sediments. Chemosphere 2020, 239, 124748. [Google Scholar] [CrossRef]
- Huyen, D.T.; Tabelin, C.B.; Thuan, H.M.; Dang, D.H.; Truong, P.T.; Vongphuthone, B.; Igarashi, T. The solid-phase partitioning of arsenic in unconsolidated sediments of the Mekong Delta, Vietnam and its modes of release under various conditions. Chemosphere 2019, 233, 512–523. [Google Scholar] [CrossRef]
- Tabelin, C.B.; Silwamba, M.; Paglinawan, F.C.; Mondejar, A.J.S.; Duc, H.G.; Resabal, V.J.; Opiso, E.M.; Igarashi, T.; Tomiyama, S.; Ito, M.; et al. Solid-phase partitioning and release-retention mechanisms of copper, lead, zinc and arsenic in soils impacted by artisanal and small-scale gold mining (ASGM) activities. Chemosphere 2020, 260, 127574. [Google Scholar] [CrossRef]
- Tabelin, C.B.; Igarashi, T.; Villacorte-Tabelin, M.; Park, I.; Opiso, E.M.; Ito, M.; Hiroyoshi, N. Arsenic, selenium, boron, lead, cadmium, copper, and zinc in naturally contaminated rocks: A review of their sources, modes of enrichment, mechanisms of release, and mitigation strategies. Sci. Total Environ. 2018, 645, 1522–1553. [Google Scholar] [CrossRef]
- Muller, G. Index of geo-accumulation in sediments of the Rhine River. GeoJournal 1969, 2, 108–118. [Google Scholar]
- Towett, E.K.; Shepherd, K.D.; Tondoh, J.E.; Winowiecki, L.A.; Lulseged, T.; Nyambura, M.; Cadisch, G. Total elemental composition of soils in Sub-Saharan Africa and relationship with soil-forming factors. Geoderma Reg. 2015, 5, 157–168. [Google Scholar] [CrossRef] [Green Version]
- Buat-Menard, P.; Chesselet, R. Variable influence of the atmospheric flux on the trace metal chemistry of oceanic suspended matter. Earth Planet Sci. Lett. 1979, 42, 399–411. [Google Scholar] [CrossRef]
- Turekian, K.; Wedepohl, K. Distribution of the elements in some major units of the earth’s crust. Geol. Soc. Am. Bull. 1961, 72, 175–192. [Google Scholar] [CrossRef]
- Sutherland, R.A.; Tolosa, C.A.; Tack, F.M.G.; Verloo, M.G. Characterization of selected element concentrations and enrichment ratios in background and anthropogenically impacted roadside areas. Arch. Environ. Contam. Toxicol. 2000, 38, 428–438. [Google Scholar] [CrossRef]
- Parkhurst, D.L.; Appelo, C.A.J. Users guide to PHREEQ (Version 2)—A Computer Program for Speciation, Batch Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations; Department of the Interior and U.S. Geological Survey: Denver, CO, USA, 1999; pp. 99–4259. [Google Scholar]
- Tessier, A.; Campbell, G.C.; Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- Marumo, K.; Ebashi, T.; Ujiie, T. Heavy metal concentrations, leachabilities, and lead isotope ratios of Japanese soils. Shigen-Chihsitsu 2003, 53, 125–146. [Google Scholar]
- Kok, J.F.; Parteli, E.J.; Michaels, T.I.; Karam, D.B. The physics of wind-blown sand and dust. Rep. Prog. Phys. 2012, 75, 106901. [Google Scholar] [CrossRef] [Green Version]
- Tabelin, C.B.; Igarashi, T. Mechanisms of arsenic and lead release from hydrothermally altered rock. J. Hazard. Mater. 2009, 169, 980–990. [Google Scholar] [CrossRef] [Green Version]
- Różański, S.Ł.; Kwasowski, W.; Castejón, J.M.P.; Hardy, A. Heavy metal content and mobility in urban soils of public playgrounds and sport facility areas, Poland. Chemosphere 2018, 212, 456–466. [Google Scholar] [CrossRef]
- Chen, T.B.; Zheng, Y.M.; Lei, M.; Huang, Z.C.; Wu, H.T.; Chen, H.; Tian, Q.Z. Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China. Chemosphere 2005, 60, 542–551. [Google Scholar] [CrossRef] [PubMed]
- Akinwunmi, F.; Akinhanmi, T.F.; Atobatele, Z.A.; Adewole, O.; Odekunle, K.; Arogundade, L.A.; Ademuyiwa, O. Heavy metal burdens of public primary school children related to playground soils and classroom dusts in Ibadan North-West local government area, Nigeria. Environ. Toxicol. Pharmacol. 2017, 49, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.S.L.; Li, X.; Shi, W.; Cheung, S.C.N.; Thornton, I. Metal contamination in urban, suburban, and country park soils of Hong Kong: A study based on GIS and multivariate statistics. Sci. Total Environ. 2006, 356, 45–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, M.; Min, X.; Ke, Y.; Lin, Z.; Yang, Z.; Wang, S.; Wei, Y. Recent progress in understanding the mechanism of heavy metals retention by iron (oxyhydr) oxides. Sci. Total Environ. 2020, 752, 141930. [Google Scholar] [CrossRef]
- Trivedi, P.; Dyer, J.A.; Sparks, D.L.; Pandya, K. Mechanistic and thermodynamic interpretations of zinc sorption onto ferrihydrite. J. Colloid Interface Sci. 2004, 270, 77–85. [Google Scholar] [CrossRef]
- Prathumratana, L.; Kim, R.; Kim, K.W. Lead contamination of the mining and smelting district in Mitrovica, Kosovo. Environ. Geochem. Health 2020, 42, 1033–1044. [Google Scholar] [CrossRef]
- Khan, B.; Ullah, H.; Khan, S.; Aamir, M.; Khan, A.; Khan, W. Sources and contamination of heavy metals in sediments of Kabul River: The role of organic matter in metals retention and accumulation. Soil Sediment Contam. An Int. J. 2016, 25, 891–904. [Google Scholar] [CrossRef]
- Baran, A.; Mierzwa-Hersztek, M.; Gondek, K.; Tarnawski, M.; Szara, M.; Gorczyca, O.; Koniarz, T. The influence of the quantity and quality of sediment organic matter on the potential mobility and toxicity of trace elements in bottom sediment. Environ. Geochem. Health 2019, 41, 2893–2910. [Google Scholar] [CrossRef] [Green Version]
- Sethurajan, M.; Huguenot, D.; Lens, P.N.; Horn, H.A.; Figueiredo, L.H.; Van Hullebusch, E.D. Fractionation and leachability of heavy metals from aged and recent Zn metallurgical leach residues from the Três Marias zinc plant (Minas Gerais, Brazil). Environ. Sci. Pollut. Res. 2016, 23, 7504–7516. [Google Scholar] [CrossRef]
- Helser, J.; Cappuyns, V. Trace elements leaching from pbzn mine waste (plombières, belgium) and environmental implications. J. Geochem. Explor. 2021, 220, 106659. [Google Scholar] [CrossRef]
- Vollprecht, D.; Riegler, C.; Ahr, F.; Stuhlpfarrer, S.; Wellacher, M. Sequential chemical extraction and mineralogical bonding of metals from Styrian soils. Int. J. Environ. Sci. Technol. 2020, 17, 3663–3676. [Google Scholar] [CrossRef] [Green Version]
Phase | Extractant | L/S Ratio (mL/g) | Temperature (°C) | Duration (h) | Speed (rpm) | Extracted Phase |
---|---|---|---|---|---|---|
1 | 1 M MgCl2 at pH 7 | 20/1 | 25 | 1 | 200 | Exchangeable |
2 | 1 M CH3COONa at pH 5 | 20/1 | 25 | 5 | 200 | Carbonates |
3 | 0.04 M NH2OH·HCl in 25% acetic acid | 20/1 | 80 | 5 | 120 | Reducible |
4 | 0.04 M NH2OH·HCl in 25% acetic acid; 30% H2O2; 0.02 M HNO3 | 36/1 | 80 | 5 | 120 | Oxidizable |
5 | 60% HNO3 | 20/1 | 120 | 1 | Residue |
SPs | ||||||||
---|---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | |
SiO2 (wt%) | 56.4 | 56.1 | 72.2 | 67.7 | 60.7 | 69.9 | 75.4 | 83.7 |
TiO2 (wt%) | 0.9 | 1.6 | 0.8 | 1.4 | 1.0 | 1.0 | 1.3 | 1.0 |
Al2O3 (wt%) | 22.8 | 29.7 | 16.6 | 23.9 | 15.9 | 8.5 | 15.2 | 6.4 |
Fe2O3 (wt%) | 7.2 | 4 | 7.6 | 6.2 | 6.9 | 6.2 | 4 | 2.2 |
MnO (wt%) | 0.54 | 0.10 | 0.10 | 0.06 | 0.24 | 0.17 | 0.11 | 0.09 |
MgO (wt%) | 0.8 | 1.9 | 1.2 | 2.8 | 2.3 | 0.9 | 1 | 0.6 |
CaO (wt%) | 0.3 | 0.6 | 1.2 | 0.1 | 2.2 | 2 | 0.7 | 0.8 |
Na2O (wt%) | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 |
K2O (wt%) | 0.9 | 0.8 | 1.1 | 1.1 | 0.7 | 0.7 | 1.5 | 0.7 |
P2O5 (wt%) | 0.26 | 0.14 | 0.17 | 0.08 | 0.06 | 0.12 | 0.26 | 0.24 |
S (wt%) | 0.2 | 0.07 | 0.07 | 0.05 | 0.06 | 0.2 | 0.15 | 0.93 |
TOC (wt%) | 2.46 | 1.86 | 2.79 | 0.52 | 0.33 | 0.77 | 1.55 | 5.02 |
Pb (mg/kg) | 3320 | 1080 | 1070 | 265 | 633 | 863 | 1770 | 3170 |
Zn (mg/kg) | 2600 | 1990 | 750 | 359 | 399 | 1370 | 1840 | 090 |
PCA1 | PCA2 | PCA3 | |
---|---|---|---|
SiO2 (wt%) | 0.24 | −0.35 | −0.31 |
Al2O3 (wt%) | −0.22 | 0.49 | −0.04 |
Fe2O3 (wt%) | −0.24 | −0.01 | 0.44 |
MnO (wt%) | 0.07 | 0.25 | 0.55 |
MgO (wt%) | −0.37 | 0.04 | −0.17 |
CaO (wt%) | −0.09 | −0.47 | 0.25 |
K2O (wt%) | −0.02 | 0.21 | −0.25 |
P2O5 (wt%) | 0.37 | 0.23 | 0.02 |
S (wt%) | 0.36 | −0.18 | −0.12 |
TOC (wt%) | 0.37 | −0.01 | −0.07 |
Pb (mg/kg) | 0.39 | 0.19 | 0.16 |
Zn (mg/kg) | 0.32 | 0.33 | 0.08 |
Eigenvalue | 5.47 | 2.68 | 2.45 |
Variance (%) | 42.0 | 20.6 | 18.8 |
Cumulative | 42.0 | 62.6 | 81.5 |
PCA 1 | PCA 2 | PCA 3 | |
---|---|---|---|
pH | −0.24 | −0.31 | 0.38 |
Eh (mV) | 0.2 | 0.42 | −0.29 |
EC (mS/cm) | −0.27 | 0.36 | 0.24 |
alkalinity | −0.24 | −0.29 | 0.38 |
Ca (mg/L) | −0.34 | 0.12 | 0.32 |
Si (mg/L) | 0.36 | −0.02 | 0.29 |
Fe (mg/L) | 0.34 | −0.03 | 0.32 |
Al (mg/L) | 0.35 | −0.04 | 0.31 |
SO42- (mg/L) | −0.2 | 0.46 | 0.16 |
Pb (mg/L) | 0.36 | 0.09 | 0.25 |
Zn (mg/L) | 0.28 | 0.29 | 0.25 |
Mg (mg/L) | −0.19 | 0.44 | 0.19 |
Eigenvalue | 6.19 | 3.26 | 2.01 |
Variance (%) | 52 | 27 | 17 |
Cumulative | 52 | 79 | 96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mufalo, W.; Tangviroon, P.; Igarashi, T.; Ito, M.; Sato, T.; Chirwa, M.; Nyambe, I.; Nakata, H.; Nakayama, S.; Ishizuka, M. Solid-Phase Partitioning and Leaching Behavior of Pb and Zn from Playground Soils in Kabwe, Zambia. Toxics 2021, 9, 248. https://doi.org/10.3390/toxics9100248
Mufalo W, Tangviroon P, Igarashi T, Ito M, Sato T, Chirwa M, Nyambe I, Nakata H, Nakayama S, Ishizuka M. Solid-Phase Partitioning and Leaching Behavior of Pb and Zn from Playground Soils in Kabwe, Zambia. Toxics. 2021; 9(10):248. https://doi.org/10.3390/toxics9100248
Chicago/Turabian StyleMufalo, Walubita, Pawit Tangviroon, Toshifumi Igarashi, Mayumi Ito, Tsutomu Sato, Meki Chirwa, Imasiku Nyambe, Hokuto Nakata, Shouta Nakayama, and Mayumi Ishizuka. 2021. "Solid-Phase Partitioning and Leaching Behavior of Pb and Zn from Playground Soils in Kabwe, Zambia" Toxics 9, no. 10: 248. https://doi.org/10.3390/toxics9100248
APA StyleMufalo, W., Tangviroon, P., Igarashi, T., Ito, M., Sato, T., Chirwa, M., Nyambe, I., Nakata, H., Nakayama, S., & Ishizuka, M. (2021). Solid-Phase Partitioning and Leaching Behavior of Pb and Zn from Playground Soils in Kabwe, Zambia. Toxics, 9(10), 248. https://doi.org/10.3390/toxics9100248