Identification of Metal Contamination Sources and Evaluation of the Anthropogenic Effects in Soils near Traffic-Related Facilities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area, Sample Collection, and Analysis
2.2. NB Concentrations and Data Selection
2.3. Contamination Factor
2.4. Statistical and Multivariate Analysis
3. Results and Discussion
3.1. Distribution of Metals in Soils Nearby Contamination Sources
3.2. Contamination Factor
3.3. Correlation Analysis
3.4. Multivariate Analysis
3.4.1. Principal Component Analysis
Garage, Auto Repair Shop and Auto Salvage Yard
Parking Lot, Driving School, and Roadside
3.4.2. Cluster Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ARS | auto repair shop |
ASY | auto salvage yard |
CA | cluster analysis |
Cf | Contamination factor |
DSC | driving school |
GAR | garage |
NB | natural background (level of soil in Korea) |
PAL | parking lot |
PCA | principal component analysis |
RDS | roadside. |
References
- US EPA. Reducing Emissions of Hazardous Air Pollutants: What Is being Done to Reduce Hazardous Air Pollutants? Available online: https://epa.gov/haps/reducing-emissions-hazarouds-air-pollutants (accessed on 13 January 2021).
- Markiewicz, A.; Björklund, K.; Eriksson, E.; Kalmykova, Y.; Strömvall, A.-M.; Siopi, A. Emissions of organic pollutants from traffic and roads: Priority pollutants selection and substance flow analysis. Sci. Total Environ. 2017, 580, 1162–1174. [Google Scholar] [CrossRef] [PubMed]
- Goonetilleke, A.; Wijesiri, B.; Bandala, E.R. Water and Soil Pollution Implications of Road Traffic. In Environmental Impacts of Road Vehicles: Past, Present and Future; Royal Society of Chemistry: Cambridge, UK, 2017; pp. 86–106. [Google Scholar]
- Wang, M.; Zhang, H. Accumulation of Heavy Metals in Roadside Soil in Urban Area and the Related Impacting Factors. Int. J. Environ. Res. Public Health 2018, 15, 1064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mireles, F.; Davila, J.; Pinedo, J.; Reyes, E.; Speakman, R.; Glascock, M.D. Assessing urban soil pollution in the cities of Zacatecas and Guadalupe, Mexico by instrumental neutron activation analysis. Microchem. J. 2012, 103, 158–164. [Google Scholar] [CrossRef]
- Mihailović, A.; Budinski-Petković, L.; Popov, S.; Ninkov, J.; Vasin, J.; Ralević, N.; Vasić, M.V. Spatial distribution of metals in urban soil of Novi Sad, Serbia: GIS based approach. J. Geochem. Explor. 2015, 150, 104–114. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, C.; Tang, Y. Metal distribution in soils of an in-service urban parking lot. Environ. Monit. Assess. 2015, 187, 478. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, J.Z.; Poggere, G.C.; Teixeira, W.W.R.; Motta, A.C.V.; Prior, S.A.; Curi, N. Assessing soil contamination in automobile scrap yards by portable X-ray fluorescence spectrometry and magnetic susceptibility. Environ. Monit. Assess. 2019, 192, 1–10. [Google Scholar] [CrossRef]
- Farooq, A.K.; Hg, H.W.; Mohammad, A.A.D.H.A. Heavy Metal Contamination of Roadside Soils of Northern England. Soil Water Res. 2013, 1, 158–163. [Google Scholar] [CrossRef] [Green Version]
- Adedeji, O.H.; Olayinka, O.O.; Oyebanji, F.F. Assessment of traffic related metals pollution of roadside soils in emerging urban centres in Ijebu-North area of Ogun state, Nigeria. J. Appl. Sci. Environ. Manag. 2013, 17, 509–514. [Google Scholar]
- European Environment Agency (EEA). EMEP/EEA Air Pollutant Emission Inventory Guidebook 2019—Update Oct. 2020. Available online: https://www.eea.europa.eu/ds_resolveuid/SHNJDK8413 (accessed on 2 December 2020).
- Ciarkowska, K.; Gambus, F.; Antonkiewicz, J.; Koliopoulos, T. Polycyclic aromatic hydrocarbon and heavy metal contents in the urban soils in southern Poland. Chemosphere 2019, 229, 214–226. [Google Scholar] [CrossRef]
- Bradl, H. Chapter I: Sources and Origins of Metals. In Metals in the Environment: Origin, Interaction and Remediation; Bradl, H.B., Ed.; Elsevier Academic Press: London, UK, 2005; Volume 6, pp. 1–25. [Google Scholar]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy Metal Toxicity and the Environment. In Heavy Metal Toxicity and the Environment; Springer: Berlin/Heidelberg, Germany, 2012; Volume 101, pp. 133–164. [Google Scholar]
- Jia, Z.; Li, S.; Wang, L. Assessment of soil heavy metals for eco-environment and human health in a rapidly urbanization area of the upper Yangtze Basin. Sci. Rep. 2018, 8, 3256. [Google Scholar] [CrossRef] [Green Version]
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Arsenic. Available online: https://atsdr.cdc.gov/toxprofiles/tp2.pdf (accessed on 11 January 2021).
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxguide for Nickel. Available online: https://atsdr.cdc.gov/toxguides/toxguide-15.pdf (accessed on 11 January 2021).
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxguide for Zinc. Available online: https://atsdr.cdc.gov/toxguides/toxguide-60.pdf (accessed on 11 January 2021).
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxguide for Lead. Available online: https://atsdr.cdc.gov/toxguides/toxguide-13.pdf (accessed on 11 January 2021).
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Copper. 2004. Available online: https://atsdr.cdc.gov/toxprofiles/tp132.pdf (accessed on 11 January 2021).
- Kowalska, J.B.; Mazurek, R.; Gąsiorek, M.; Zaleski, T. Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination—A review. Environ. Geochem. Health 2018, 40, 2395–2420. [Google Scholar] [CrossRef] [Green Version]
- Adimalla, N.; Qian, H.; Nandan, M.; Hursthouse, A. Potentially toxic elements (PTEs) pollution in surface soils in a typical urban region of south India: An application of health risk assessment and distribution pattern. Ecotoxicol. Environ. Saf. 2020, 203, 111055. [Google Scholar] [CrossRef] [PubMed]
- Jadoon, S.; Muhammad, S.; Hilal, Z.; Ali, M.; Khan, S.; Khattak, N.U. Spatial distribution of potentially toxic elements in urban soils of Abbottabad city, (N Pakistan): Evaluation for potential risk. Microchem. J. 2019, 153, 104489. [Google Scholar] [CrossRef]
- Egbueri, J.C. Groundwater quality assessment using pollution index of groundwater (PIG), ecological risk index (ERI) and hierarchical cluster analysis (HCA): A case study. Groundw. Sustain. Dev. 2019, 10, 100292. [Google Scholar] [CrossRef]
- Paul, V.; Sankar, M.; Vattikutti, S.; Dash, P.; Arslan, Z. Pollution assessment and land use land cover influence on trace metal distribution in sediments from five aquatic systems in southern USA. Chemosphere 2020, 263, 128243. [Google Scholar] [CrossRef] [PubMed]
- Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Sinharay, S. An Overview of Statistics in Education. In International Encyclopedia of Education, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2010; pp. 1–11. [Google Scholar]
- Pham, V.-D.; Fatimah, M.-S.; Sasaki, A.; Duong, V.-H.; Pham, K.-L.; Susan, P.; Watanabe, T. Seasonal variation and source identification of heavy metal(loid) contamination in peri-urban farms of Hue city, Vietnam. Environ. Pollut. 2021, 278, 116813. [Google Scholar] [CrossRef]
- Choi, J.Y.; Jeong, H.; Choi, K.-Y.; Hong, G.H.; Yang, D.B.; Kim, K.; Ra, K. Source identification and implications of heavy metals in urban roads for the coastal pollution in a beach town, Busan, Korea. Mar. Pollut. Bull. 2020, 161, 111724. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.; Song, I.; Shin, J.; Oh, C.; Kim, E.; Kim, K.; Kim, H.; Kim, J.; Choi, Y. A Study on Soil Contamination of Children’s Parks within the Gyeonggi-do Province Area. Korean J. Environ. Health Sci. 2017, 43, 233–239. [Google Scholar] [CrossRef]
- Lee, C.D.; Lee, Y.J.; Cho, N.Y. Evaluation of heavy metal pollution in soil on the playgrounds for children in I area. Korean J. Environ. Health Soc. 2001, 27, 57–62. [Google Scholar]
- Kim, K.H.; Park, S.N. Distribution of NO3−, SO42− and metals in some urban-forest soils of central Korea. Korean. J. Environ. Agric. 2000, 19, 351–357. [Google Scholar]
- Chon, H.-T.; Kim, K.-W.; Kim, J.-Y. Metal contamination of soils and dusts in Seoul metropolitan city, Korea. Environ. Geochem. Health 1995, 17, 139–146. [Google Scholar] [CrossRef]
- Park, K.H. Pb, Cu, Zn contaminants and their correlation of soil, leave and bark of Ginkgo.B and ambient air adjacent to a heavy traffic road side. Korean J. Environ. Health Soc. 1992, 18, 19–25. [Google Scholar]
- Benhaddya, M.L.; Boukhelkhal, A.; Halis, Y.; Hadjel, M. Human Health Risks Associated with Metals from Urban Soil and Road Dust in an Oilfield Area of Southeastern Algeria. Arch. Environ. Contam. Toxicol. 2015, 70, 556–571. [Google Scholar] [CrossRef]
- Yuswir, N.S.; Praveena, S.M.; Aris, A.Z.; Ismail, S.N.S.; Hashim, Z. Health Risk Assessment of Heavy Metal in Urban Surface Soil (Klang District, Malaysia). Bull. Environ. Contam. Toxicol. 2015, 95, 80–89. [Google Scholar] [CrossRef]
- Wuana, R.A.; Okieimen, F.E. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. ISRN Ecol. 2011, 2011, 1–20. [Google Scholar] [CrossRef] [Green Version]
- USEPA. Guidance for Data Quality Assessment: Practical Methods for Data Analysis, EPA QA/G-9, QA00. 2000. Available online: https://epa.gov/sites/default/files/2015-06-documents/g9-final.pdf (accessed on 19 January 2021).
- Helsel, D.R. Nondetects and Data Analysis: Statistics for Censored Environmental Data, 1st ed.; Wiley-Interscience: Hoboken, NJ, USA, 2005. [Google Scholar]
- Shoari, N.; Dubé, J.-S. Toward improved analysis of concentration data: Embracing nondetects. Environ. Toxicol. Chem. 2017, 37, 643–656. [Google Scholar] [CrossRef] [Green Version]
- National Institute of Environmental Research (NIER). Evaluation and Establishment of the Soil Pollution Standards (I), South Korea. 2004. Available online: https://ecolibrary.me.go.kr/nier/#/ (accessed on 3 March 2021). (In Korean)
- National Institute of Environmental Research (NIER). Evaluation and Establishment of the Soil Pollution Standards (II), South Korea. 2005. Available online: https://ecolibrary.me.go.kr/nier/#/ (accessed on 3 March 2021). (In Korean)
- Rijkswaterstaat Ministry of Infrasturcture and the Environment. Into Dutch Soils, WVL1114VH2374. 2014. Available online: https://rwsenvironment.eu/subjects/soil/publications/ (accessed on 28 January 2021).
- British Geological Survey (BGS), Normal Background Concentrations (NBCs) of Contaminants in English and Welsh Soils. Available online: https://bgs.ac.uk/geology-projects/applied-geochemistry/g-base-environmental-geochemistry/nbc-defra-project (accessed on 28 January 2021).
- Ander, E.L.; Johnson, C.C.; Cave, M.; Palumbo-Roe, B.; Nathanail, C.P.; Lark, R. Methodology for the determination of normal background concentrations of contaminants in English soil. Sci. Total. Environ. 2013, 454–455, 604–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hakanson, L. An ecological risk index for aquatic pollution control.a sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Pulles, T.; van der Gon, H.D.; Appelman, W.; Verheul, M. Emission factors for heavy metals from diesel and petrol used in European vehicles. Atmos. Environ. 2012, 61, 641–651. [Google Scholar] [CrossRef]
- Piscitello, A.; Bianco, C.; Casasso, A.; Sethi, R. Non-exhaust traffic emissions: Sources, characterization, and mitigation measures. Sci. Total Environ. 2021, 766, 144440. [Google Scholar] [CrossRef]
- Chen, X.; Lu, X. Contamination characteristics and source apportionment of heavy metals in topsoil from an area in Xi’an city, China. Ecotoxicol. Environ. Saf. 2018, 151, 153–160. [Google Scholar] [CrossRef]
- Pam, A.A.; Sha’Ato, R.; Offem, J.O. Evaluation of metals in soils around auto mechanic workshop clusters in Gboko and Makurdi, Central Nigeria. J. Environ. Chem. Ecotox. 2013, 5, 298–306. [Google Scholar] [CrossRef]
- Jeong, H.; Choi, J.Y.; Ra, K. Characteristics of Heavy Metal Pollution in Road Dust from Urban Areas: Comparison by Land Use Types. J. Environ. Anal. Health Toxicol. 2020, 23, 101–111. [Google Scholar] [CrossRef]
- Khan, A.B.; Kathi, S. Evaluation of heavy metal and total petroleum hydrocarbon contamination of roadside surface soil. Int. J. Environ. Sci. Technol. 2014, 11, 2259–2270. [Google Scholar] [CrossRef] [Green Version]
- Hamzeh, M.A.; Aftabi, A.; Mirzaee, M. Assessing geochemical influence of traffic and other vehicle-related activities on heavy metal contamination in urban soils of Kerman city, using a GIS-based approach. Environ. Geochem. Health 2011, 33, 577–594. [Google Scholar] [CrossRef]
- National Environmental Research Institute (NERI). Heavy Metal Emissions for Danish Road Transport; Technical Report No. 780; National Environmental Research Institute: Roskile, Denmark, 2010. [Google Scholar]
- Coufalík, P.; Matoušek, T.; Křůmal, K.; Vojtíšek-Lom, M.; Beránek, V.; Mikuška, P. Content of metals in emissions from gasoline, diesel, and alternative mixed biofuels. Environ. Sci. Pollut. Res. 2019, 26, 29012–29019. [Google Scholar] [CrossRef] [PubMed]
- MobilTM. Mobil 1 Engine Oil Product Guide. Available online: https://www.mobil.com (accessed on 9 February 2021).
- Penrite Oil. Zinc in Engine Oil Updated (Technical Bulletin No. 149). Available online: http://www.penriteoil.co.nz/tech_pdfs/149%20LATEST%2020ZINC%20LEVELS.pdf (accessed on 9 February 2021).
- Lucasoil Products Inc. Lucas Motor Oil & Motorcycle Oil Typical Zinc Values. Available online: https://www.lucasoil.com/pdf/Zinc_Values_MotorcycleOil.pdf (accessed on 9 February 2021).
- Pant, P.; Harrison, R.M. Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: A review. Atmos. Environ. 2013, 77, 78–97. [Google Scholar] [CrossRef]
- Adachi, K.; Tainosho, Y. Characterization of heavy metal particles embedded in tire dust. Environ. Int. 2004, 30, 1009–1017. [Google Scholar] [CrossRef] [PubMed]
- Shayler, H.; McBride, M.; Harrison, E. Sources and Impacts of Contaminants in Soils; Cornell Waste Management Institute, Department of Crop & Soil Sciences, Cornell University: New York, NY, USA, 2009; Available online: https://ecommons.cornell.edu/handle/1813/14282 (accessed on 23 February 2021).
- Wei, B.; Yang, L. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem. J. 2010, 94, 99–107. [Google Scholar] [CrossRef]
- Saito, H.; Sutton, M.; Zhao, P.; Lee, S.D.; Magnuson, M. Review of technologies for preventing secondary transport of soluble and particulate radiological contamination from roadways, roadside vegetation, and adjacent soils. Environ. Adv. 2020, 1, 100003. [Google Scholar] [CrossRef]
- Bagshaw, N. Lead alloys: Past, present and future. J. Power Source 1995, 53, 25–30. [Google Scholar] [CrossRef]
- De Silva, S.; Ball, A.S.; Indrapala, D.V.; Reichman, S.M. Review of the interactions between vehicular emitted potentially toxic elements, roadside soils, and associated biota. Chemosphere 2020, 263, 128135. [Google Scholar] [CrossRef]
- Ferreira, A.J.D.; Soares, D.; Serrano, L.M.V.; Walsh, R.P.D.; Dias-Ferreira, C.; Ferreira, C.S.S. Roads as sources of heavy metals in urban areas. The Covões catchment experiment, Coimbra, Portugal. J. Soils Sedim. 2016, 16, 2622–2639. [Google Scholar] [CrossRef]
- Thorpe, A.; Harrison, R.M. Sources and properties of non-exhaust particulate matter from road traffic: A review. Sci. Total Environ. 2008, 400, 270–282. [Google Scholar] [CrossRef] [PubMed]
- Sager, M. Urban Soils and Road Dust—Civilization Effects and Metal Pollution—A Review. Environments 2020, 7, 98. [Google Scholar] [CrossRef]
- Chen, H.Y. The distributional characteristics of Cu and else 13 kinds of elements in city soil of Fuzhou. Geol. Fujian 2008, 27, 211–218. (In Chinese) [Google Scholar]
- Taghipour, H.; Mosaferi, M.; Armanfar, F.; Gaemmagami, S.J. Heavy metals pollution in the soils of suburban areas in big cities: A case study. Int. J. Environ. Sci. Technol. 2013, 10, 243–250. [Google Scholar] [CrossRef] [Green Version]
- Birke, M. Urban Geochemistry: Investigations in the Berlin Metropolitan Area. Environ. Geochem. Health 2000, 22, 233–248. [Google Scholar] [CrossRef]
- European Commission (EU). Particulates: Characterisation of Exhaust Particulate Emissions from Road Vehicles, Deliverable 8—Measurement of Non-Exhaust Particulate Matter. European Commission 5th Framework Programme. 2004. Available online: https://ec.europa.eu/transport/road_safety/sites/default/files/pdf/projects_sources/particulates_d8.pdf (accessed on 23 February 2021).
- Chicharromartin, A.; Calarivero, V.; Larreamarin, M.; Martín, A.C.; Rivero, M.V.C.; Marín, M.L. Contamination by heavy metals in soils in the neighbourhood of a scrapyard of discarded vehicles. Sci. Total Environ. 1998, 212, 145–152. [Google Scholar] [CrossRef]
- Olafisoye, O.B.; Adefioye, T.; Osibote, O.A. Metals contamination of water, soil and plants around an electronic waste dumpsite. Pol. J. Environ. Stud. 2013, 22, 1431–1439. [Google Scholar]
- Ololade, I.A. An Assessment of Heavy-Metal Contamination in Soils within Auto-Mechanic Workshops Using Enrichment and Contamination Factors with Geoaccumulation Indexes. J. Environ. Prot. 2014, 5, 970–982. [Google Scholar] [CrossRef] [Green Version]
- Ajah, K.C.; Ademiluyi, J.; Nnaji, C.C. Spatiality, seasonality and ecological risks of heavy metals in the vicinity of a degenerate municipal central dumpsite in Enugu, Nigeria. J. Environ. Health Sci. Eng. 2015, 13, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Nabulo, G.; Oryem-Origa, H.; Diamond, M. Assessment of lead, cadmium, and zinc contamination of roadside soils, surface films, and vegetables in Kampala City, Uganda. Environ. Res. 2006, 101, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Environment Agency Austria. Austria’s Informative Inventory Report (IIR). 2012. Available online: https://umweltbundesamt.at/fileadmin/site/publikationen/REP0380.pdf (accessed on 23 February 2021).
- Korean Ministry of Environment (KMOE). Investigation of Fugitive Dust Emission & Risk Caused by Tire and Brake Pad Wear. 2012. Available online: http://dl.nanet.go.kr/law/SearchDetailView.do?cn=MONO201316959 (accessed on 23 February 2021). (In Korean).
- US EPA. Emission Factor Documentation for AP-42 Section 13.2.1 Paved Roads. 2011. Available online: https://www3.epa.gov/ttn/chief/ap42/ch13/bgdocs/b13s0201.pdf (accessed on 23 February 2021).
- Ondráček, J.; Schwarz, J.; Ždímal, V.; Andělová, L.; Vodička, P.; Bízek, V.; Tsai, C.-J.; Chen, S.-C.; Smolík, J. Contribution of the road traffic to air pollution in the Prague city (busy speedway and suburban crossroads). Atmos. Environ. 2011, 45, 5090–5100. [Google Scholar] [CrossRef]
- Harrison, R.M.; Jones, A.M.; Gietl, J.; Yin, J.; Green, D.C. Estimation of the contributions of brake dust, tire wear, and resus-pension to non-exhaust traffic particles derived from atmospheric measurements. Environ. Sci. Technol. 2012, 46, 6523–6529. [Google Scholar] [CrossRef] [PubMed]
- Hagino, H.; Oyama, M.; Sasaki, S. Laboratory testing of airborne brake wear particle emissions using a dynamometer system under urban city driving cycles. Atmos. Environ. 2016, 131, 269–278. [Google Scholar] [CrossRef] [Green Version]
- Gustafsson, M.; Blomqvist, G.; Gudmundsson, A.; Dahl, A.; Swietlicki, E.; Bohgard, M.; Lindbom, J.; Ljungman, A. Properties and toxicological effects of particles from the interaction between tyres, road pavement and winter traction material. Sci. Total Environ. 2008, 393, 226–240. [Google Scholar] [CrossRef] [Green Version]
Source | n | Median | Range | Source | n | Median | Range |
---|---|---|---|---|---|---|---|
Zn | Pb | ||||||
GAR | 283 | 115.8 a | 28.7–1810.9 | GAR | 283 | 25.9 a | 2.4–642.5 |
ARS | 201 | 119.2 a | 28.4–3372.9 | ARS | 201 | 22.7 a | 4.5–586.8 |
ASY | 77 | 112.7 ab | 36.5–1255.1 | ASY | 77 | 25.1 a | 7.9–304.8 |
PAL | 170 | 94.9 b | 23.8–536.7 | PAL | 170 | 19.3 b | 4.1–231.3 |
DSC | 41 | 128.1 a | 53.2–476.0 | DSC | 41 | 31.4 a | 8.1–289.0 |
RDS | 29 | 89.4 b | 22.1–246.2 | RDS | 29 | 21.0 b | 3.5–176.6 |
NB | 88 | 52 | 21.3–103.4 | NB | 88 | 15.7 | 4.1–78.3 |
Cu | As | ||||||
GAR | 283 | 23.2 ab | 0.5–719.1 | GAR | 283 | 4.2 a | 0.15–42.57 |
ARS | 201 | 27.7 a | 0.5–489.7 | ARS | 201 | 4.0 a | 0.75–40.94 |
ASY | 77 | 29.1 a | 0.5–438.3 | ASY | 77 | 5.2 a | 0.39–45.83 |
PAL | 170 | 21.3 ab | 0.5–165.3 | PAL | 170 | 4.0 a | 0.35–39.36 |
DSC | 41 | 28.6 ab | 0.5–216.4 | DSC | 41 | 2.6 a | 0.11–27.79 |
RDS | 29 | 22.3 ab | 0.5–132.5 | RDS | 29 | 4.9 a | 0.55–22.10 |
NB | 88 | 13 | 2.8–50 | NB | 88 | 6 | 0.6–20.6 |
Ni | |||||||
GAR | 283 | 11.0 a | 0.2–139 | ||||
ARS | 201 | 12.3 a | 0.2–90.5 | ||||
ASY | 77 | 14.3 a | 0.2–67.7 | ||||
PAL | 170 | 11.3 a | 0.2–63.3 | ||||
DSC | 41 | 16.6 a | 2.3–40.7 | ||||
RDS | 29 | 8.7 a | 2.5–37.7 | ||||
NB | 88 | 14.4 | 1.1–114.4 |
Element | Zn | Pb | Cu | As | Element | Zn | Pb | Cu | As |
---|---|---|---|---|---|---|---|---|---|
Garage (GAR) | Auto repair shop (ARS) | ||||||||
Pb | 0.454 *** | - | - | - | Pb | 0.481 *** | - | - | - |
Cu | 0.399 *** | 0.445 *** | - | - | Cu | 0.441 *** | 0.422 *** | - | - |
As | 0.190 *** | 0.210 *** | 0.278 *** | - | As | 0.130 * | 0.222 *** | 0.206 *** | - |
Ni | 0.164 *** | 0.169 *** | 0.342 *** | 0.209 *** | Ni | 0.400 ** | 0.175 *** | 0.420 *** | 0.237 *** |
Auto salvage yard (ASY) | Parking lot (PAL) | ||||||||
Pb | 0.386 *** | - | - | - | Pb | 0.349 *** | - | - | - |
Cu | 0.357 *** | 0.435 *** | - | - | Cu | 0.368 *** | 0.295 *** | - | - |
As | −0.013 | 0.294 *** | 0.138 | - | As | 0.123 * | 0.243 *** | 0.220 *** | - |
Ni | 0.168 * | 0.328 ** | 0.389 *** | 0.249 ** | Ni | 0.146 ** | 0.155 ** | 0.380 *** | 0.159 ** |
Driving school (DSC) | Roadside (RDS) | ||||||||
Pb | 0.441 *** | - | - | - | Pb | 0.123 | - | - | - |
Cu | 0.300 ** | 0.373 *** | - | - | Cu | 0.005 | 0.379 *** | - | - |
As | 0.184 | 0.234 * | 0.336 ** | - | As | 0.135 | 0.354 ** | 0.249 | - |
Ni | 0.127 | 0.236 * | 0.337 ** | 0.248 * | Ni | 0.193 | 0.128 | 0.069 | 0.200 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.-g.; Byun, Y.J.; Chun, Y.-W.; Noh, H.-J.; Kim, D.-J.; Kim, H.-K.; Kim, J.-I. Identification of Metal Contamination Sources and Evaluation of the Anthropogenic Effects in Soils near Traffic-Related Facilities. Toxics 2021, 9, 278. https://doi.org/10.3390/toxics9110278
Lee H-g, Byun YJ, Chun Y-W, Noh H-J, Kim D-J, Kim H-K, Kim J-I. Identification of Metal Contamination Sources and Evaluation of the Anthropogenic Effects in Soils near Traffic-Related Facilities. Toxics. 2021; 9(11):278. https://doi.org/10.3390/toxics9110278
Chicago/Turabian StyleLee, Hong-gil, Yoon Joo Byun, Young-Woo Chun, Hoe-Jung Noh, Dong-Jin Kim, Hyun-Koo Kim, and Ji-In Kim. 2021. "Identification of Metal Contamination Sources and Evaluation of the Anthropogenic Effects in Soils near Traffic-Related Facilities" Toxics 9, no. 11: 278. https://doi.org/10.3390/toxics9110278
APA StyleLee, H. -g., Byun, Y. J., Chun, Y. -W., Noh, H. -J., Kim, D. -J., Kim, H. -K., & Kim, J. -I. (2021). Identification of Metal Contamination Sources and Evaluation of the Anthropogenic Effects in Soils near Traffic-Related Facilities. Toxics, 9(11), 278. https://doi.org/10.3390/toxics9110278