Application of ZnO-Nd Nano-Photocatalyst for the Reactive Red 198 Dye Decolorization in the Falling-Film Photocatalytic Reactor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthetic Wastewater
2.3. ZnO:Nd Nanoparticle Synthesis
2.4. Experimental Setup
2.5. Effect of ZnO-Nd Nanoparticles Concentration
2.6. Effect of pH
2.7. Effect of H2O2
2.8. Effect of the Initial Dye Concentration
2.9. Analytical Methods
3. Results and Discussion
3.1. Photocatalyst Characterization
3.1.1. X-ray Diffraction
d 100 ZnO-Nd = 2.81089 Å; d 002 ZnO-Nd = 2.60122 Å
3.1.2. Scanning Electron Micrograph
3.1.3. Fourier-Transform Infrared Spectroscopy
3.2. Photocatalyst Experiments
3.2.1. Effect of Amount of ZnO-Nd
3.2.2. Effect of pH
3.2.3. Effect of Hydrogen Peroxide (H2O2)
3.2.4. Effect of Initial Dye Concentration
3.3. Mineralization
3.4. Study of Decolorization Reaction Kinetic
3.5. Response Surface Methodology (RMS) Analysis
3.5.1. Analysis of Variance (ANOVA) and Statistical Analysis
3.5.2. Optimization of Degradation of ZnO-Nd under UV Irradiation Using RSM
3.6. Cost Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Ethical Issue
References
- Salari, M.; Teymouri, E.; Nassaj, Z. Application of an Artificial Neural Network Model for estimating of Water Quality Parameters in the Karun River, Iran. J. Environ. Treat. Tech. 2021, 9, 720–727. [Google Scholar]
- Barceló, D.; Žonja, B.; Ginebreda, A. Toxicity tests in wastewater and drinking water treatment processes: A complementary assessment tool to be on your radar. J. Environ. Chem. Eng. 2020, 8, 104262. [Google Scholar] [CrossRef]
- Talaiekhozani, A.; Banisharif, F.; Eskandari, Z.; Talaei, M.R.; Park, J.; Rezania, S. Kinetic investigation of 1,9-dimethyl-methylene blue zinc chloride double salt removal from wastewater using ferrate (VI) and ultraviolet radiation. J. King Saud Univ. Sci. 2020, 32, 213–222. [Google Scholar] [CrossRef]
- Niazmand, R.; Jahani, M.; Sabbagh, F.; Rezania, S. Optimization of Electrocoagulation Conditions for the Purification of Table Olive Debittering Wastewater Using Response Surface Methodology. Water 2020, 12, 1687. [Google Scholar] [CrossRef]
- Badri, A.F.; Palapa, N.R.; Mohadi, R.; Mardiyanto, M.; Lesbani, A. Mg-Cr Layered Double Hydroxide Intercalated Oxalic Anion to Remove Cationic Dye Solutions: Rhodamine B and Methylene Blue. J. Environ. Treat. Tech. 2021, 9, 383–391. [Google Scholar]
- Lei, S.; Wang, S.; Gao, B.; Zhan, Y.; Zhao, Q.; Jin, S.; Song, G.; Lyu, X.; Zhang, Y.; Tang, Y. Ultrathin dodecyl-sulfate-intercalated Mg-Al layered double hydroxide nanosheets with high adsorption capability for dye pollution. J. Colloid Interface Sci. 2020, 577, 181–190. [Google Scholar] [CrossRef]
- Shindhal, T.; Rakholiya, P.; Varjani, S.; Pandey, A.; Ngo, H.H.; Guo, W.; Ng, H.Y.; Taherzadeh, M.J. A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater. Bioengineered 2020, 12, 70–87. [Google Scholar] [CrossRef]
- Manzoor, J.; Sharma, M. Impact of Textile Dyes on Human Health and Environment. In Impact of Textile Dyes on Public Health and the Environment; IGI Global: Hershey, PA, USA, 2020; pp. 162–169. [Google Scholar]
- Goli, A.; Shamiri, A.; Khosroyar, S.; Talaiekhozani, A.; Sanaye, R.; Azizi, K. A review on different aerobic and anaerobic treatment methods in dairy industry wastewater. J. Environ. Treat. Tech. 2019, 6, 113–141. [Google Scholar]
- Aditya, W.; Notodarmodjo, S.; Helmy, Q. Decolorization of Reactive black-5 Dye by UV based photocatalytic with immobilized ZnO nanoparticles onto ceramic plate surface. IOP Conf. Ser. Mater. Sci. Eng. 2019, 536, 012068. [Google Scholar] [CrossRef]
- Fouad, K.; Bassyouni, M.; Alalm, M.G.; Saleh, M.Y. The treatment of wastewater containing pharmaceuticals. J. Environ. Treat. Tech. 2021, 9, 499–504. [Google Scholar]
- Jaafarzadeh, N.; Zarghi, M.H.; Salehin, M.; Roudbari, A.; Zahedi, A. Application of Box-Behnken Design (BBD) to Optimizing COD Removal from Fresh Leachate using Combination of Ultrasound and Ultraviolet. J. Environ. Treat. Tech. 2020, 8, 861–869. [Google Scholar]
- Liu, H.; Wang, C.; Wang, G. Photocatalytic Advanced Oxidation Processes for Water Treatment: Recent Advances and Perspective. Chem. Asian J. 2020, 15, 3239–3253. [Google Scholar] [CrossRef]
- Argun, M.E.; Karatas, M. Application of Fenton process for decolorization of reactive black 5 from synthetic wastewater: Kinetics and thermodynamics. Environ. Prog. Sustain. Energy 2010, 30, 540–548. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, X.; Sun, K.; Lin, C.; Ma, J.; He, M.; Ouyang, W. Persulfate-based advanced oxidation processes (AOPs) for organic-contaminated soil remediation: A review. Chem. Eng. J. 2019, 372, 836–851. [Google Scholar] [CrossRef]
- Talaiekhozani, A.; Rezania, S.; Kim, K.-H.; Sanaye, R.; Amani, A.M. Recent advances in photocatalytic removal of organic and inorganic pollutants in air. J. Clean. Prod. 2020, 278, 123895. [Google Scholar] [CrossRef]
- Shiri, S.; Rabori, M.M.; Gholami, Z.; Rahmati, Z.; Adiban, M.; Sarafraz, M. Enhanced degradation of reactive black 5 from aqueous solution over tio2 nanoparticles under uv light irradiation: Optimization, experimental & theoretical approaches. J. Environ. Treat. Tech. 2020, 8, 1232–1241. [Google Scholar]
- Taghipour, M.; Khodadadi, M.; Jafarbeigloo, H.R.G.; Jadidi, F.; Mehdinejad, M. The Role of Nanotechnology-Based Photodynamic Therapy in the Treatment of Ovarian Cancer. J. Infertil. Reprod. Biol. 2017, 5, 5–11. [Google Scholar]
- Abbasi, M. Nanoparticles as a Promising Innovative Treatment Towards Infertility. J. Infertil. Reprod. Biol. 2017, 5, 1–4. [Google Scholar]
- Alaee, S. Air pollution and infertility–a letter to editor. J. Environ. Treat. Tech. 2018, 6, 72–73. [Google Scholar]
- Boumaza, S.; Kaouah, F.; Hamane, D.; Trari, M.; Omeiri, S.; Bendjama, Z. Visible light assisted decolorization of azo dyes: Direct Red 16 and Direct Blue 71 in aqueous solution on the p-CuFeO2/n-ZnO system. J. Mol. Catal. A Chem. 2014, 393, 156–165. [Google Scholar] [CrossRef]
- Ghoreishian, S.M.; Badii, K.; Norouzi, M.; Rashidi, A.; Montazer, M.; Sadeghi, M.; Vafaee, M. Decolorization and mineralization of an azo reactive dye using loaded nano-photocatalysts on spacer fabric: Kinetic study and operational factors. J. Taiwan Inst. Chem. Eng. 2014, 45, 2436–2446. [Google Scholar] [CrossRef]
- Batistela, V.R.; Fogaça, L.Z.; Fávaro, S.L.; Caetano, W.; Fernandes-Machado, N.R.C.; Hioka, N. ZnO supported on zeolites: Photocatalyst design, microporosity and properties. Colloids Surf. A Physicochem. Eng. Asp. 2017, 513, 20–27. [Google Scholar] [CrossRef]
- Mohamed, R.M.; McKinney, D.; Kadi, M.W.; Mkhalid, I.A.; Sigmund, W. Platinum/zinc oxide nanoparticles: Enhanced photocatalysts degrade malachite green dye under visible light conditions. Ceram. Int. 2016, 42, 9375–9381. [Google Scholar] [CrossRef]
- Hameed, A.S.H.; Karthikeyan, C.; Ahamed, A.P.; Thajuddin, N.; Alharbi, N.S.; Alharbi, S.A.; Ravi, G. In vitro antibacterial activity of ZnO and Nd doped ZnO nanoparticles against ESBL producing Escherichia coli and Klebsiella pneumoniae. Sci. Rep. 2016, 6, 24312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashemi, S.M.; Karami, D.; Mahinpey, N. Solution combustion synthesis of zirconia-stabilized calcium oxide sorbents for CO2 capture. Fuel 2020, 269, 117432. [Google Scholar] [CrossRef]
- Akar, S.T.; Akar, T.; Çabuk, A. Decolorization of a textile dye, reactive red 198 (rr198), by Aspergillus parasiticus fungal biosorbent. Braz. J. Chem. Eng. 2009, 26, 399–405. [Google Scholar] [CrossRef]
- Lou, W.; Kane, A.; Wolbert, D.; Rtimi, S.; Assadi, A.A. Study of a photocatalytic process for removal of antibiotics from wastewater in a falling film photoreactor: Scavenger study and process intensification feasibility. Chem. Eng. Process. Process. Intensif. 2017, 122, 213–221. [Google Scholar] [CrossRef]
- Chen, Z.; Jaramillo, T. The Use of UV-Visible Spectroscopy to Measure the Band Gap of a Semiconductor; Department of Chemical Engineering, Stanford University: Stanford, CA, USA, 2017. [Google Scholar]
- El Mir, L.; Amlouk, A.; Barthou, C.; Alaya, S. Synthesis and luminescence properties of ZnO/Zn2SiO4/SiO2 composite based on nanosized zinc oxide-confined silica aerogels. Phys. B Condens. Matter. 2007, 388, 412–417. [Google Scholar] [CrossRef]
- Omri, K.; Najeh, I.; Dhahri, R.; El Ghoul, J.; El Mir, L. Effects of temperature on the optical and electrical properties of ZnO nanoparticles synthesized by sol–gel method. Microelectron. Eng. 2014, 128, 53–58. [Google Scholar] [CrossRef]
- Bindu, P.; Thomas, S. Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J. Theor. Appl. Phys. 2014, 8, 123–134. [Google Scholar] [CrossRef] [Green Version]
- Harish, S.; Archana, J.; Sabarinathan, M.; Navaneethan, M.; Nisha, K.; Ponnusamy, S.; Muthamizhchelvan, C.; Ikeda, H.; Aswal, D.; Hayakawa, Y. Controlled structural and compositional characteristic of visible light active ZnO/CuO photocatalyst for the degradation of organic pollutant. Appl. Surf. Sci. 2017, 418, 103–112. [Google Scholar] [CrossRef]
- Lin, S.-T.; Thirumavalavan, M.; Jiang, T.-Y.; Lee, J.-F. Synthesis of ZnO/Zn nano photocatalyst using modified polysaccharides for photodegradation of dyes. Carbohydr. Polym. 2014, 105, 1–9. [Google Scholar] [CrossRef]
- Mailoud, O.M.; Elsayed, A.; Abo-Elazm, A.; Fetouh, H. Synthesis and study the structure, optical, thermal and dielectric properties of promising Glycine Copper Nitrate (GCN) single crystals. Results Phys. 2018, 10, 512–520. [Google Scholar] [CrossRef]
- Talaiekhozani, A.; Banisharif, F.; Bazrafshan, M.; Eskandari, Z.; Heydari Chaleshtari, A.; Moghadam, G. Comparing the ZnO/Fe (VI), UV/ZnO and UV/Fe (VI) processes for removal of Reactive Blue 203 from aqueous solution. Environ. Health Eng. Manag. J. 2019, 6, 27–39. [Google Scholar] [CrossRef]
- Bazrafshan, M. Comparing the ZnO/Fe(VI), UV/ZnO and UV/Fe(VI) Processes for Degradation of Reactive Blue 203 in Aqueous Solution; Jami Institute of Technology: Isfahan, Iran, 2018. [Google Scholar]
- Talaiekhozani, A.; Chaleshtori, A.H.; Banisharif, F.; Eskandari, Z.; Nasiri, M.; Aminsharei, F.; Park, J.; Rezania, S.; Bazrafshan, M. Removal of Acid Orange 7 dye from wastewater using combination of ultraviolet radiation, ultrasonic method, and MgO nanoparticles. Environ. Health Eng. Manag. J. 2019, 6, 157–170. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Dutta, B.K. Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. J. Hazard. Mater. 2004, 112, 269–278. [Google Scholar] [CrossRef]
- Rauf, M.; Ashraf, S. Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem. Eng. J. 2009, 151, 10–18. [Google Scholar] [CrossRef]
- Laohaprapanon, S.; Matahum, J.; Tayo, L.; You, S.-J. Photodegradation of Reactive Black 5 in a ZnO/UV slurry membrane reactor. J. Taiwan Inst. Chem. Eng. 2015, 49, 136–141. [Google Scholar] [CrossRef]
- Cuerda-Correa, E.M.; Alexandre-Franco, M.F.; Fernández-González, C. Advanced Oxidation Processes for the Removal of Antibiotics from Water. An Overview. Water 2019, 12, 102. [Google Scholar] [CrossRef] [Green Version]
- Kritikos, D.E.; Xekoukoulotakis, N.P.; Psillakis, E.; Mantzavinos, D. Photocatalytic degradation of reactive black 5 in aqueous solutions: Effect of operating conditions and coupling with ultrasound irradiation. Water Res. 2007, 41, 2236–2246. [Google Scholar] [CrossRef] [PubMed]
- Akpan, U.; Hameed, B.H. Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: A review. J. Hazard. Mater. 2009, 170, 520–529. [Google Scholar] [CrossRef]
- Mohammadzadeh, S.; Olya, M.; Arabi, A.; Shariati, A.; Nikou, M.K. Synthesis, characterization and application of ZnO-Ag as a nanophotocatalyst for organic compounds degradation, mechanism and economic study. J. Environ. Sci. 2015, 35, 194–207. [Google Scholar] [CrossRef] [PubMed]
- Mahmoodi, N.M.; Arami, M.; Limaee, N. Photocatalytic degradation of triazinic ring-containing azo dye (Reactive Red 198) by using immobilized TiO2 photoreactor: Bench scale study. J. Hazard. Mater. 2006, 133, 113–118. [Google Scholar] [CrossRef]
- Debnath, S.; Ballav, N.; Nyoni, H.; Maity, A.; Pillay, K. Optimization and mechanism elucidation of the catalytic photo-degradation of the dyes Eosin Yellow (EY) and Naphthol blue black (NBB) by a polyaniline-coated titanium dioxide nanocomposite. Appl. Catal. B Environ. 2015, 163, 330–342. [Google Scholar] [CrossRef]
- Behnajady, M.A.; Vahid, B.; Modirshahla, N.; Shokri, M. Evaluation of electrical energy per order (EEO) with kinetic modeling on the removal of Malachite Green by US/UV/H2O2 process. Desalination 2009, 249, 99–103. [Google Scholar] [CrossRef]
Dye Concentration (ppm) | k (min−1) | R2 |
---|---|---|
10 | 0.0188 | 0.9979 |
20 | 0.0157 | 0.9903 |
30 | 0.0075 | 0.9912 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biglar, F.; Talaiekhozani, A.; Aminsharei, F.; Park, J.; Barghi, A.; Rezania, S. Application of ZnO-Nd Nano-Photocatalyst for the Reactive Red 198 Dye Decolorization in the Falling-Film Photocatalytic Reactor. Toxics 2021, 9, 254. https://doi.org/10.3390/toxics9100254
Biglar F, Talaiekhozani A, Aminsharei F, Park J, Barghi A, Rezania S. Application of ZnO-Nd Nano-Photocatalyst for the Reactive Red 198 Dye Decolorization in the Falling-Film Photocatalytic Reactor. Toxics. 2021; 9(10):254. https://doi.org/10.3390/toxics9100254
Chicago/Turabian StyleBiglar, Fatemeh, Amirreza Talaiekhozani, Farham Aminsharei, Junboum Park, Anahita Barghi, and Shahabaldin Rezania. 2021. "Application of ZnO-Nd Nano-Photocatalyst for the Reactive Red 198 Dye Decolorization in the Falling-Film Photocatalytic Reactor" Toxics 9, no. 10: 254. https://doi.org/10.3390/toxics9100254
APA StyleBiglar, F., Talaiekhozani, A., Aminsharei, F., Park, J., Barghi, A., & Rezania, S. (2021). Application of ZnO-Nd Nano-Photocatalyst for the Reactive Red 198 Dye Decolorization in the Falling-Film Photocatalytic Reactor. Toxics, 9(10), 254. https://doi.org/10.3390/toxics9100254