Assessment of Environmental Pollution and Human Exposure to Pesticides by Wastewater Analysis in a Seven-Year Study in Athens, Greece
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Wastewater Sampling
2.3. Analytical Method
2.4. Quantification and Quality Assurance—Quality Control Measures
2.5. Detection and Identification Criteria
2.6. Human Exposure
3. Results and Discussion
3.1. Occurrence in Influent Wastewater
3.1.1. Fungicides
3.1.2. Herbicides
3.1.3. Insect Repellents
3.1.4. Insecticides
3.1.5. Plant Growth Regulators
3.1.6. Transformation Products and/or Metabolites
3.2. Wastewater-Based Epidemiology and Human Exposure
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Karasali, H.; Maragou, N. Pesticides and Herbicides: Types of Pesticide. In Encyclopedia of Food and Health; Caballero, B., Finglas, P., Toldrá, F., Eds.; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Cooper, J.; Dobson, H. The benefits of pesticides to mankind and the environment. Crop. Prot. 2007, 26, 1337–1348. [Google Scholar] [CrossRef]
- Rani, L.; Thapa, K.; Kanojia, N.; Sharma, N.; Singh, S.; Grewal, A.S.; Srivastav, A.L.; Kaushal, J. An extensive review on the consequences of chemical pesticides on human health and environment. J. Clean. Prod. 2021, 283, 124657. [Google Scholar] [CrossRef]
- de Souza, R.M.; Seibert, D.; Quesada, H.B.; de Jesus Bassetti, F.; Fagundes-Klen, M.R.; Bergamasco, R. Occurrence, impacts and general aspects of pesticides in surface water: A review. Process. Saf. Environ. Prot. 2020, 135, 22–37. [Google Scholar] [CrossRef]
- Pietrzak, D.; Kania, J.; Malina, G.; Kmiecik, E.; Wątor, K. Pesticides from the EU first and second watch lists in the water environment. CLEAN Soil Air Water 2019, 47, 1800376. [Google Scholar] [CrossRef]
- Jurado, A.; Walther, M.; Díaz-Cruz, M.S. Occurrence, fate and environmental risk assessment of the organic microcontaminants included in the Watch Lists set by EU Decisions 2015/495 and 2018/840 in the groundwater of Spain. Sci. Total Environ. 2019, 663, 285–296. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, A.F.; Ribeiro, J.S.; Kummrow, F.; Nogueira, A.J.A.; Montagner, C.C.; Umbuzeiro, G.A. Pesticides in Brazilian freshwaters: A critical review. Environ. Sci. Process. Impacts 2016, 18, 779–787. [Google Scholar] [CrossRef]
- Stehle, S.; Bline, A.; Bub, S.; Petschick, L.L.; Wolfram, J.; Schulz, R. Aquatic pesticide exposure in the U.S. as a result of non-agricultural uses. Environ. Int. 2019, 133, 105234. [Google Scholar] [CrossRef]
- Garcia, F.P.; Ascencio, S.Y.C.; Oyarzun, J.C.G.; Hernandez, A.C.; Alavarado, P.V. Pesticides: Classification, uses and toxicity. Measures of exposure and genotoxic risks. J. Res. Environ. Sci. Toxicol. 2012, 1, 279–293. [Google Scholar]
- Taylor, A.C.; Fones, G.R.; Mills, G.A. Trends in the use of passive sampling for monitoring polar pesticides in water. Trends Environ. Anal. Chem. 2020, 27, e00096. [Google Scholar] [CrossRef]
- Dodds, J.N.; Alexander, N.L.M.; Kirkwood, K.I.; Foster, M.R.; Hopkins, Z.R.; Knappe, D.R.U.; Baker, E.S. From Pesticides to Per- and Polyfluoroalkyl Substances: An Evaluation of Recent Targeted and Untargeted Mass Spectrometry Methods for Xenobiotics. Anal. Chem. 2021, 93, 641–656. [Google Scholar] [CrossRef]
- Mohammad, S.; Khademi, S.; Salemi, A.; Jochmann, M.; Joksimoski, S.; Telgheder, U. Development and comparison of direct immersion solid phase micro extraction Arrow-GC-MS for the determination of selected pesticides in water. Microchem. J. 2021, 164, 106006. [Google Scholar] [CrossRef]
- Rousis, N.I.; Zuccato, E.; Castiglioni, S. Monitoring population exposure to pesticides based on liquid chromatography-tandem mass spectrometry measurement of their urinary metabolites in urban wastewater: A novel biomonitoring approach. Sci. Total Environ. 2016, 571, 1349–1357. [Google Scholar] [CrossRef]
- Geerdink, R.B.; Hassing, M.; Ayarza, N.; Bruggink, C.; Wielheesen, M.; Claassen, J.; Epema, O.J. Analysis of glyphosate, AMPA, Glufosinate and MPPA with ION chromatography tandem mass spectrometry using A membrane suppressor in the ammonium form application to surface water of low to moderate salinity. Anal. Chim. Acta 2020, 1133, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Rickert, D.A.; Singh, V.; Thirukumaran, M.; Grandy, J.J.; Belinato, J.R.; Lashgari, M.; Pawliszyn, J. Comprehensive Analysis of Multiresidue Pesticides from Process Water Obtained from Wastewater Treatment Facilities Using Solid-Phase Microextraction. Environ. Sci. Technol. 2020, 54, 15789–15799. [Google Scholar] [CrossRef] [PubMed]
- Kiefer, K.; Müller, A.; Singer, H.; Hollender, J. New relevant pesticide transformation products in groundwater detected using target and suspect screening for agricultural and urban micropollutants with LC-HRMS. Water Res. 2019, 165, 114972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bijlsma, L.; Pitarch, E.; Hernández, F.; Fonseca, E.; Marín, J.M.; Ibáñez, M.; Portolés, T.; Rico, A. Ecological risk assessment of pesticides in the Mijares River (eastern Spain) impacted by citrus production using wide-scope screening and target quantitative analysis. J. Hazard. Mater. 2021, 412, 125277. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yu, N.; Yang, J.; Jin, L.; Guo, H.; Shi, W.; Zhang, X.; Yang, L.; Yu, H.; Wei, S. Suspect and non-target screening of pesticides and pharmaceuticals transformation products in wastewater using QTOF-MS. Environ. Int. 2020, 137, 105599. [Google Scholar] [CrossRef] [PubMed]
- Rousis, N.I.; Bade, R.; Bijlsma, L.; Zuccato, E.; Sancho, J.V.; Hernandez, F.; Castiglioni, S. Monitoring a large number of pesticides and transformation products in water samples from Spain and Italy. Environ. Res. 2017, 156, 31–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gago-Ferrero, P.; Bletsou, A.A.; Damalas, D.E.; Aalizadeh, R.; Alygizakis, N.A.; Singer, H.P.; Hollender, J.; Thomaidis, N.S. Wide-scope target screening of >2000 emerging contaminants in wastewater samples with UPLC-Q-ToF-HRMS/MS and smart evaluation of its performance through the validation of 195 selected representative analytes. J. Hazard. Mater. 2020, 387, 121712. [Google Scholar] [CrossRef]
- Gracia-Lor, E.; Rousis, N.I.; Hernández, F.; Zuccato, E.; Castiglioni, S. Wastewater-Based Epidemiology as a Novel Biomonitoring Tool to Evaluate Human Exposure To Pollutants. Environ. Sci. Technol. 2018, 52, 10224–10226. [Google Scholar] [CrossRef] [Green Version]
- Rousis, N.I.; Zuccato, E.; Castiglioni, S. Wastewater-based epidemiology to assess human exposure to pyrethroid pesticides. Environ. Int. 2017, 99, 213–220. [Google Scholar] [CrossRef]
- Rousis, N.I.; Gracia-Lor, E.; Hernández, F.; Poretti, F.; Santos, M.M.; Zuccato, E.; Castiglioni, S. Wastewater-based epidemiology as a novel tool to evaluate human exposure to pesticides: Triazines and organophosphates as case studies. Sci. Total Environ. 2021, 793, 148618. [Google Scholar] [CrossRef] [PubMed]
- Rousis, N.I.; Gracia-Lor, E.; Zuccato, E.; Bade, R.; Baz-Lomba, J.A.; Castrignanò, E.; Causanilles, A.; Covaci, A.; de Voogt, P.; Hernàndez, F.; et al. Wastewater-based epidemiology to assess pan-European pesticide exposure. Water Res. 2017, 121, 270–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devault, D.A.; Karolak, S.; Lévi, Y.; Rousis, N.I.; Zuccato, E.; Castiglioni, S. Exposure of an urban population to pesticides assessed by wastewater-based epidemiology in a Caribbean island. Sci. Total Environ. 2018, 644, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Rousis, N.I.; Gracia-Lor, E.; Reid, M.J.; Baz-Lomba, J.A.; Ryu, Y.; Zuccato, E.; Thomas, K.V.; Castiglioni, S. Assessment of human exposure to selected pesticides in Norway by wastewater analysis. Sci. Total Environ. 2020, 723, 138132. [Google Scholar] [CrossRef] [PubMed]
- Kasprzyk-Hordern, B.; Proctor, K.; Jagadeesan, K.; Lopardo, L.; O’Daly, K.J.; Standerwick, R.; Barden, R. Estimation of community-wide multi-chemical exposure via water-based chemical mining: Key research gaps drawn from a comprehensive multi-biomarker multi-city dataset. Environ. Int. 2021, 147, 106331. [Google Scholar] [CrossRef]
- Alygizakis, N.; Galani, A.; Rousis, N.I.; Aalizadeh, R.; Dimopoulos, M.-A.; Thomaidis, N.S. Change in the chemical content of untreated wastewater of Athens, Greece under COVID-19 pandemic. Sci. Total Environ. 2021, 799, 149230. [Google Scholar] [CrossRef] [PubMed]
- Aalizadeh, R.; Nika, M.-C.; Thomaidis, N.S. Development and application of retention time prediction models in the suspect and non-target screening of emerging contaminants. J. Hazard. Mater. 2019, 363, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Schymanski, E.L.; Jeon, J.; Gulde, R.; Fenner, K.; Ruff, M.; Singer, H.P.; Hollender, J. Identifying Small Molecules via High Resolution Mass Spectrometry: Communicating Confidence. Environ. Sci. Technol. 2014, 48, 2097–2098. [Google Scholar] [CrossRef]
- Richardson, S.D.; Ternes, T.A. Water Analysis: Emerging Contaminants and Current Issues. Anal. Chem. 2018, 90, 398–428. [Google Scholar] [CrossRef]
- Hernández, F.; Bakker, J.; Bijlsma, L.; de Boer, J.; Botero-Coy, A.M.; Bruinen de Bruin, Y.; Fischer, S.; Hollender, J.; Kasprzyk-Hordern, B.; Lamoree, M.; et al. The role of analytical chemistry in exposure science: Focus on the aquatic environment. Chemosphere 2019, 222, 564–583. [Google Scholar] [CrossRef] [PubMed]
- Moschet, C.; Lew, B.M.; Hasenbein, S.; Anumol, T.; Young, T.M. LC- and GC-QTOF-MS as Complementary Tools for a Comprehensive Micropollutant Analysis in Aquatic Systems. Environ. Sci. Technol. 2017, 51, 1553–1561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamad Ibrahim, I.H.; Gilfoyle, L.; Reynolds, R.; Voulvoulis, N. Integrated catchment management for reducing pesticide levels in water: Engaging with stakeholders in East Anglia to tackle metaldehyde. Sci. Total Environ. 2019, 656, 1436–1447. [Google Scholar] [CrossRef]
- Bade, R.; White, J.M.; Tscharke, B.J.; Ghetia, M.; Abdelaziz, A.; Gerber, C. Anabasine-based measurement of cigarette consumption using wastewater analysis. Drug Test. Anal. 2020, 12, 1393–1398. [Google Scholar] [CrossRef]
- Zheng, Q.; Gartner, C.; Tscharke, B.J.; O’Brien, J.W.; Gao, J.; Ahmed, F.; Thomas, K.V.; Mueller, J.F.; Thai, P.K. Long-term trends in tobacco use assessed by wastewater-based epidemiology and its relationship with consumption of nicotine containing products. Environ. Int. 2020, 145, 106088. [Google Scholar] [CrossRef]
- Tasca, A.L.; Puccini, M.; Fletcher, A. Terbuthylazine and desethylterbuthylazine: Recent occurrence, mobility and removal techniques. Chemosphere 2018, 202, 94–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kock-Schulmeyer, M.; Villagrasa, M.; Lopez de Alda, M.; Cespedes-Sanchez, R.; Ventura, F.; Barcelo, D. Occurrence and behavior of pesticides in wastewater treatment plants and their environmental impact. Sci. Total Environ. 2013, 458–460, 466–476. [Google Scholar] [CrossRef] [PubMed]
- Alygizakis, N.A.; Gago-Ferrero, P.; Borova, V.L.; Pavlidou, A.; Hatzianestis, I.; Thomaidis, N.S. Occurrence and spatial distribution of 158 pharmaceuticals, drugs of abuse and related metabolites in offshore seawater. Sci. Total Environ. 2016, 541, 1097–1105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López, A.; Yusà, V.; Millet, M.; Coscollà, C. Retrospective screening of pesticide metabolites in ambient air using liquid chromatography coupled to high-resolution mass spectrometry. Talanta 2016, 150, 27–36. [Google Scholar] [CrossRef]
- Bollmann, U.E.; Tang, C.; Eriksson, E.; Jönsson, K.; Vollertsen, J.; Bester, K. Biocides in urban wastewater treatment plant influent at dry and wet weather: Concentrations, mass flows and possible sources. Water Res. 2014, 60, 64–74. [Google Scholar] [CrossRef]
- Casado, J.; Santillo, D.; Johnston, P. Multi-residue analysis of pesticides in surface water by liquid chromatography quadrupole-Orbitrap high resolution tandem mass spectrometry. Anal. Chim. Acta 2018, 1024, 1–17. [Google Scholar] [CrossRef]
- Mutzner, L.; Bohren, C.; Mangold, S.; Bloem, S.; Ort, C. Spatial Differences among Micropollutants in Sewer Overflows: A Multisite Analysis Using Passive Samplers. Environ. Sci. Technol. 2020, 54, 6584–6593. [Google Scholar] [CrossRef]
- Picó, Y.; Alvarez-Ruiz, R.; Alfarhan, A.H.; El-Sheikh, M.A.; Alobaid, S.M.; Barceló, D. Uptake and accumulation of emerging contaminants in soil and plant treated with wastewater under real-world environmental conditions in the Al Hayer area (Saudi Arabia). Sci. Total Environ. 2019, 652, 562–572. [Google Scholar] [CrossRef] [PubMed]
- Corcoran, S.; Metcalfe, C.D.; Sultana, T.; Amé, M.V.; Menone, M.L. Pesticides in Surface Waters in Argentina Monitored Using Polar Organic Chemical Integrative Samplers. Bull. Environ. Contam. Toxicol. 2020, 104, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Čelić, M.; Jaén-Gil, A.; Briceño-Guevara, S.; Rodríguez-Mozaz, S.; Gros, M.; Petrović, M. Extended suspect screening to identify contaminants of emerging concern in riverine and coastal ecosystems and assessment of environmental risks. J. Hazard. Mater. 2021, 404, 124102. [Google Scholar] [CrossRef]
- Chau, N.D.G.; Sebesvari, Z.; Amelung, W.; Renaud, F.G. Pesticide pollution of multiple drinking water sources in the Mekong Delta, Vietnam: Evidence from two provinces. Environ. Sci. Pollut. Res. 2015, 22, 9042–9058. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.-F.; Ying, G.-G.; Liu, Y.-S.; Zhang, Q.-Q.; Zhao, J.-L.; Liu, S.-S.; Chen, J.; Peng, F.-J.; Lai, H.-J.; Pan, C.-G. Triclosan as a surrogate for household biocides: An investigation into biocides in aquatic environments of a highly urbanized region. Water Res. 2014, 58, 269–279. [Google Scholar] [CrossRef]
- Casado, J.; Rodríguez, I.; Ramil, M.; Cela, R. Selective determination of antimycotic drugs in environmental water samples by mixed-mode solid-phase extraction and liquid chromatography quadrupole time-of-flight mass spectrometry. J. Chromatogr. A 2014, 1339, 42–49. [Google Scholar] [CrossRef]
- Kahle, M.; Buerge, I.J.; Hauser, A.; Müller, M.D.; Poiger, T. Azole Fungicides: Occurrence and Fate in Wastewater and Surface Waters. Environ. Sci. Technol. 2008, 42, 7193–7200. [Google Scholar] [CrossRef]
- Chen, Z.-F.; Ying, G.-G.; Jiang, Y.-X.; Yang, B.; Lai, H.-J.; Liu, Y.-S.; Pan, C.-G.; Peng, F.-Q. Photodegradation of the azole fungicide fluconazole in aqueous solution under UV-254: Kinetics, mechanistic investigations and toxicity evaluation. Water Res. 2014, 52, 83–91. [Google Scholar] [CrossRef]
- Assress, H.A.; Nyoni, H.; Mamba, B.B.; Msagati, T.A.M. Target quantification of azole antifungals and retrospective screening of other emerging pollutants in wastewater effluent using UHPLC –QTOF-MS. Environ. Pollut. 2019, 253, 655–666. [Google Scholar] [CrossRef] [PubMed]
- Fairbairn, D.J.; Karpuzcu, M.E.; Arnold, W.A.; Barber, B.L.; Kaufenberg, E.F.; Koskinen, W.C.; Novak, P.J.; Rice, P.J.; Swackhamer, D.L. Sources and transport of contaminants of emerging concern: A two-year study of occurrence and spatiotemporal variation in a mixed land use watershed. Sci. Total Environ. 2016, 551–552, 605–613. [Google Scholar] [CrossRef] [PubMed]
- Kalogridi, E.-C.; Christophoridis, C.; Bizani, E.; Drimaropoulou, G.; Fytianos, K. Part I: Temporal and spatial distribution of multiclass pesticide residues in lake waters of Northern Greece: Application of an optimized SPE-UPLC-MS/MS pretreatment and analytical method. Environ. Sci. Pollut. Res. 2014, 21, 7239–7251. [Google Scholar] [CrossRef]
- Tang, X.-Y.; Yang, Y.; Tam, N.F.-Y.; Tao, R.; Dai, Y.-N. Pesticides in three rural rivers in Guangzhou, China: Spatiotemporal distribution and ecological risk. Environ. Sci. Pollut. Res. 2019, 26, 3569–3577. [Google Scholar] [CrossRef]
- Quednow, K.; Püttmann, W. Monitoring terbutryn pollution in small rivers of Hesse, Germany. J. Environ. Monit. 2007, 9, 1337–1343. [Google Scholar] [CrossRef] [PubMed]
- Paijens, C.; Bressy, A.; Frère, B.; Tedoldi, D.; Mailler, R.; Rocher, V.; Neveu, P.; Moilleron, R. Urban pathways of biocides towards surface waters during dry and wet weathers: Assessment at the Paris conurbation scale. J. Hazard. Mater. 2021, 402, 123765. [Google Scholar] [CrossRef]
- Pitarch, E.; Portolés, T.; Marín, J.M.; Ibáñez, M.; Albarrán, F.; Hernández, F. Analytical strategy based on the use of liquid chromatography and gas chromatography with triple-quadrupole and time-of-flight MS analyzers for investigating organic contaminants in wastewater. Anal. Bioanal. Chem. 2010, 397, 2763–2776. [Google Scholar] [CrossRef] [Green Version]
- Zablotowicz, R.M.; Locke, M.A.; Krutz, L.J.; Lerch, R.N.; Lizotte, R.E.; Knight, S.S.; Gordon, R.E.; Steinriede, R.W. Influence of watershed system management on herbicide concentrations in Mississippi Delta oxbow lakes. Sci. Total Environ. 2006, 370, 552–560. [Google Scholar] [CrossRef]
- Papadakis, E.-N.; Tsaboula, A.; Vryzas, Z.; Kotopoulou, A.; Kintzikoglou, K.; Papadopoulou-Mourkidou, E. Pesticides in the rivers and streams of two river basins in northern Greece. Sci. Total Environ. 2018, 624, 732–743. [Google Scholar] [CrossRef] [PubMed]
- Herrero-Hernández, E.; Rodríguez-Cruz, M.S.; Pose-Juan, E.; Sánchez-González, S.; Andrades, M.S.; Sánchez-Martín, M.J. Seasonal distribution of herbicide and insecticide residues in the water resources of the vineyard region of La Rioja (Spain). Sci. Total Environ. 2017, 609, 161–171. [Google Scholar] [CrossRef]
- Papadakis, E.-N.; Tsaboula, A.; Kotopoulou, A.; Kintzikoglou, K.; Vryzas, Z.; Papadopoulou-Mourkidou, E. Pesticides in the surface waters of Lake Vistonis Basin, Greece: Occurrence and environmental risk assessment. Sci. Total Environ. 2015, 536, 793–802. [Google Scholar] [CrossRef]
- Guardiola, F.A.; Cuesta, A.; Meseguer, J.; Esteban, M.A. Risks of Using Antifouling Biocides in Aquaculture. Int. J. Mol. Sci. 2012, 13, 1541–1560. [Google Scholar] [CrossRef]
- Thomas, K.V.; Brooks, S. The environmental fate and effects of antifouling paint biocides. Biofouling 2010, 26, 73–88. [Google Scholar] [CrossRef]
- Merel, S.; Snyder, S.A. Critical assessment of the ubiquitous occurrence and fate of the insect repellent N,N-diethyl-m-toluamide in water. Environ. Int. 2016, 96, 98–117. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.-R.; Yang, Y.-Y.; Liu, Y.-S.; Zhang, L.-J.; Zhao, J.-L.; Zhang, Q.-Q.; Zhang, M.; Zhang, J.-N.; Jiang, Y.-X.; Ying, G.-G. Biocides in wastewater treatment plants: Mass balance analysis and pollution load estimation. J. Hazard. Mater. 2017, 329, 310–320. [Google Scholar] [CrossRef] [Green Version]
- Wieck, S.; Olsson, O.; Kümmerer, K. Not only biocidal products: Washing and cleaning agents and personal care products can act as further sources of biocidal active substances in wastewater. Environ. Int. 2018, 115, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Marques dos Santos, M.; Hoppe-Jones, C.; Snyder, S.A. DEET occurrence in wastewaters: Seasonal, spatial and diurnal variability-mismatches between consumption data and environmental detection. Environ. Int. 2019, 132, 105038. [Google Scholar] [CrossRef] [PubMed]
- Shreve, M.J.; Brennan, R.A. Trace organic contaminant removal in six full-scale integrated fixed-film activated sludge (IFAS) systems treating municipal wastewater. Water Res. 2019, 151, 318–331. [Google Scholar] [CrossRef]
- Swale, D.R.; Bloomquist, J.R. Is DEET a dangerous neurotoxicant? Pest. Manag. Sci. 2019, 75, 2068–2070. [Google Scholar] [CrossRef]
- Tavares, M.; da Silva, M.R.M.; de Oliveira de Siqueira, L.B.; Rodrigues, R.A.S.; Bodjolle-d’Almeida, L.; dos Santos, E.P.; Ricci-Júnior, E. Trends in insect repellent formulations: A review. Int. J. Pharm. 2018, 539, 190–209. [Google Scholar] [CrossRef]
- Knepper, T.P. Analysis and mass spectrometric characterization of the insect repellent Bayrepel and its main metabolite Bayrepel-acid. J. Chromatogr. A 2004, 1046, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.-F.; Ying, G.-G.; Lai, H.-J.; Chen, F.; Su, H.-C.; Liu, Y.-S.; Peng, F.-Q.; Zhao, J.-L. Determination of biocides in different environmental matrices by use of ultra-high-performance liquid chromatography–tandem mass spectrometry. Anal. Bioanal. Chem. 2012, 404, 3175–3188. [Google Scholar] [CrossRef]
- Rodil, R.; Moeder, M. Stir bar sorptive extraction coupled to thermodesorption–gas chromatography–mass spectrometry for the determination of insect repelling substances in water samples. J. Chromatogr. A 2008, 1178, 9–16. [Google Scholar] [CrossRef]
- Juksu, K.; Zhao, J.-L.; Liu, Y.-S.; Yao, L.; Sarin, C.; Sreesai, S.; Klomjek, P.; Jiang, Y.-X.; Ying, G.-G. Occurrence, fate and risk assessment of biocides in wastewater treatment plants and aquatic environments in Thailand. Sci. Total Environ. 2019, 690, 1110–1119. [Google Scholar] [CrossRef] [PubMed]
- Kotowska, U.; Kapelewska, J.; Sawczuk, R. Occurrence, removal, and environmental risk of phthalates in wastewaters, land fill leachates, and groundwater in Poland. Environ. Pollut. 2020, 267, 115643. [Google Scholar] [CrossRef] [PubMed]
- Salaudeen, T.; Okoh, O.; Agunbiade, F.; Okoh, A. Phthalates removal efficiency in different wastewater treatment technology in the Eastern Cape, South Africa. Environ. Monit. Assess. 2018, 190, 299. [Google Scholar] [CrossRef] [PubMed]
- Gusmaroli, L.; Buttiglieri, G.; Petrovic, M. The EU watch list compounds in the Ebro delta region: Assessment of sources, river transport, and seasonal variations. Environ. Pollut. 2019, 253, 606–615. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, L.; Malato, S.; Antakyali, D.; Beretsou, V.G.; Đolić, M.B.; Gernjak, W.; Heath, E.; Ivancev-Tumbas, I.; Karaolia, P.; Lado Ribeiro, A.R.; et al. Consolidated vs new advanced treatment methods for the removal of contaminants of emerging concern from urban wastewater. Sci. Total Environ. 2019, 655, 986–1008. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, W.; Wang, Y.; Jiang, G. Suspect screening analysis of the occurrence and removal of micropollutants by GC-QTOF MS during wastewater treatment processes. J. Hazard. Mater. 2019, 376, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Sadaria, A.M.; Labban, C.W.; Steele, J.C.; Maurer, M.M.; Halden, R.U. Retrospective nationwide occurrence of fipronil and its degradates in U.S. wastewater and sewage sludge from 2001–2016. Water Res. 2019, 155, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Sadaria, A.M.; Sutton, R.; Moran, K.D.; Teerlink, J.; Brown, J.V.; Halden, R.U. Passage of fiproles and imidacloprid from urban pest control uses through wastewater treatment plants in northern California, USA. Environ. Toxicol. Chem. 2017, 36, 1473–1482. [Google Scholar] [CrossRef] [PubMed]
- Heidler, J.; Halden, R.U. Fate of organohalogens in US wastewater treatment plants and estimated chemical releases to soils nationwide from biosolids recycling. J. Environ. Monit. 2009, 11, 2207. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Budd, R.; Teerlink, J.; Luo, Y.; Singhasemanon, N. Assessing pesticide uses with potentials for down-the-drain transport to wastewater in California. Sci. Total Environ. 2021, 773, 145636. [Google Scholar] [CrossRef] [PubMed]
- Ngugi, H.K.; Lehman, B.L.; Madden, L.V. Multiple Treatment Meta-Analysis of Products Evaluated for Control of Fire Blight in the Eastern United States. Phytopathology 2011, 101, 512–522. [Google Scholar] [CrossRef]
- Schmitzer, V.; Veberic, R.; Stampar, F. Prohexadione-Ca application modifies flavonoid composition and color characteristics of rose (Rosa hybrida L.) flowers. Sci. Hortic. 2012, 146, 14–20. [Google Scholar] [CrossRef]
- Choi, J.-H.; Yoon, H.-J.; Do, J.-A.; Park, Y.-C.; Kim, J.H.; Choi, D. An analytical method for prohexadione in Chinese cabbage and apple. Biomed. Chromatogr. 2011, 25, 493–497. [Google Scholar] [CrossRef]
- Paulson, G.S.; Hull, L.A.; Biddinger, D.J. Effect of a plant growth regulator Prohexadione-Calcium on insect pests of apple and pear. J. Econ. Entomol. 2005, 98, 423–431. [Google Scholar] [CrossRef]
- Dragišić Maksimović, J.J.; Poledica, M.M.; Radivojević, D.D.; Milivojević, J.M. Enzymatic Profile of ‘Willamette’ Raspberry Leaf and Fruit Affected by Prohexadione-Ca and Young Canes Removal Treatments. J. Agric. Food Chem. 2017, 65, 5034–5040. [Google Scholar] [CrossRef]
- Selim, S.; Hartnagel, R.E.; Osimitz, T.G.; Gabriel, K.L.; Schoenig, G.P. Absorption, Metabolism, and Excretion of N,N-Diethyl-m -toluamide Following Dermal Application to Human Volunteers. Toxicol. Sci. 1995, 25, 95–100. [Google Scholar] [CrossRef]
- Berthet, A.; Bouchard, M.; Danuser, B. Toxicokinetics of captan and folpet biomarkers in orally exposed volunteers. J. Appl. Toxicol. 2012, 32, 194–201. [Google Scholar] [CrossRef] [Green Version]
- Jørgensen, L.F.; Kjær, J.; Olsen, P.; Rosenbom, A.E. Leaching of azoxystrobin and its degradation product R234886 from Danish agricultural field sites. Chemosphere 2012, 88, 554–562. [Google Scholar] [CrossRef]
- Kern, S.; Baumgartner, R.; Helbling, D.E.; Hollender, J.; Singer, H.; Loos, M.J.; Schwarzenbach, R.P.; Fenner, K. A tiered procedure for assessing the formation of biotransformation products of pharmaceuticals and biocides during activated sludge treatment. J. Environ. Monit. 2010, 12, 2100–2111. [Google Scholar] [CrossRef] [PubMed]
- Gautam, M.; Fomsgaard, I.S. Liquid chromatography-tandem mass spectrometry method for simultaneous quantification of azoxystrobin and its metabolites, azoxystrobin free acid and 2-hydroxybenzonitrile, in greenhouse-grown lettuce. Food Addit. Contam. Part A 2017, 34, 2173–2180. [Google Scholar] [CrossRef] [PubMed]
- Dionisio, G.; Gautam, M.; Fomsgaard, I.S. Identification of Azoxystrobin Glutathione Conjugate Metabolites in Maize Roots by LC-MS. Molecules 2019, 24, 2473. [Google Scholar] [CrossRef] [Green Version]
- Soler, C.; Hamilton, B.; Furey, A.; James, K.J.; Mañes, J.; Picó, Y. Optimization of LC–MS/MS using triple quadrupole mass analyzer for the simultaneous analysis of carbosulfan and its main metabolites in oranges. Anal. Chim. Acta 2006, 571, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Soler, C.; Hamilton, B.; Furey, A.; James, K.J.; Mañes, J.; Picó, Y. Liquid chromatography quadrupole time-of-flight mass spectrometry analysis of carbosulfan, carbofuran, 3-hydroxycarbofuran, and other metabolites in food. Anal. Chem. 2007, 79, 1492–1501. [Google Scholar] [CrossRef]
- Lan, J.; Wang, M.; Ding, S.; Fan, Y.; Diao, X.; Li, Q.X.; Zhao, H. Simultaneous detection of carbofuran and 3-hydroxy-carbofuran in vegetables and fruits by broad-specific monoclonal antibody-based ELISA. Food Agric. Immunol. 2019, 30, 1085–1096. [Google Scholar] [CrossRef]
- Driskell, W.J.; Hill, R.H., Jr. Identification of a Major Human Urinary Metabolite of Metolachlor by LC-MS/MS. Bull. Environ. Contam. Toxicol. 1997, 58, 929–933. [Google Scholar] [CrossRef]
- Amalric, L.; Baran, N.; Coureau, C.; Maingot, L.; Buron, F.; Routier, S. Analytical developments for 47 pesticides: First identification of neutral chloroacetanilide derivatives in French groundwater. Int. J. Environ. Anal. Chem. 2013, 93, 1660–1675. [Google Scholar] [CrossRef]
- Berthet, A.; Bouchard, M.; Schüpfer, P.; Vernez, D.; Danuser, B.; Huynh, C.K. Liquid chromatography–tandem mass spectrometry (LC/APCI-MS/MS) methods for the quantification of captan and folpet phthalimide metabolites in human plasma and urine. Anal. Bioanal. Chem. 2011, 399, 2243–2255. [Google Scholar] [CrossRef] [PubMed]
- Pirard, C.; Remy, S.; Giusti, A.; Champon, L.; Charlier, C. Assessment of children’s exposure to currently used pesticides in wallonia, Belgium. Toxicol. Lett. 2020, 329, 1–11. [Google Scholar] [CrossRef]
- Hines, C.J.; Deddens, J.A.; Jaycox, L.B.; Andrews, R.N.; Striley, C.A.F.; Alavanja, M.C.R. Captan Exposure and Evaluation of a Pesticide Exposure Algorithm among Orchard Pesticide Applicators in the Agricultural Health Study. Ann. Occup. Hyg. 2008, 52, 153–166. [Google Scholar] [CrossRef]
Human Urinary Metabolite | Parent Pesticide | Frequency of Detection (n = 52) | Retention Time (min.) | |
---|---|---|---|---|
Sample | Predicted | |||
Validated Wastewater-Based Epidemiology Biomarkers (Metabolites) | ||||
atrazine mercapturate | atrazine | 0 | ||
3,5,6-trichloro-2-pyridinol | chlorpyrifos and chlorpyrifos-methyl | 13 | 6.51 | 8.79 |
2-isopropyl-6-methyl-4-pyrimidinol | diazinon | 14 | 1.70 | 4.94 |
malathion dicarboxylic acid | malathion | 0 | ||
malathion monocarboxylic acid | malathion | 0 | ||
3-phenoxybenzoic acid | group of pyrethroids | 18 | 8.68 | 9.64 |
3-(2,2-dichlorovinyl)-2,2-dimethyl-(1-cyclopropane) carboxylic acid | permethrin, cypermethrin and cyfluthrin | 28 | 2.65 | 8.80 |
Potential Wastewater-Based Epidemiology Biomarkers (Metabolites) | ||||
methyl 5-hydroxy-2-benzimidazole carbamate | carbendazim | 0 | ||
3-diethyl-carbamoyl benzoic acid | N, N-diethyl-meta-toluamide | 7 | 17.31 | 6.11 |
3-ethyl-carbamoyl benzoic acid | N, N-diethyl-meta-toluamide | 25 | 4.30 | 4.69 |
N, N diethyl-3-hydroxymethylbenzamide | N, N-diethyl-meta-toluamide | 23 | 2.77 | 5.72 |
fipronil sulfone | fipronil | 0 | ||
fipronil hydroxy | fipronil | 0 | ||
metolachlor mercapturate | metolachlor | 2 | 7.34 | 8.92 |
clothianidin | thiamethoxam | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rousis, N.I.; Denardou, M.; Alygizakis, N.; Galani, A.; Bletsou, A.A.; Damalas, D.E.; Maragou, N.C.; Thomas, K.V.; Thomaidis, N.S. Assessment of Environmental Pollution and Human Exposure to Pesticides by Wastewater Analysis in a Seven-Year Study in Athens, Greece. Toxics 2021, 9, 260. https://doi.org/10.3390/toxics9100260
Rousis NI, Denardou M, Alygizakis N, Galani A, Bletsou AA, Damalas DE, Maragou NC, Thomas KV, Thomaidis NS. Assessment of Environmental Pollution and Human Exposure to Pesticides by Wastewater Analysis in a Seven-Year Study in Athens, Greece. Toxics. 2021; 9(10):260. https://doi.org/10.3390/toxics9100260
Chicago/Turabian StyleRousis, Nikolaos I., Maria Denardou, Nikiforos Alygizakis, Aikaterini Galani, Anna A. Bletsou, Dimitrios E. Damalas, Niki C. Maragou, Kevin V. Thomas, and Nikolaos S. Thomaidis. 2021. "Assessment of Environmental Pollution and Human Exposure to Pesticides by Wastewater Analysis in a Seven-Year Study in Athens, Greece" Toxics 9, no. 10: 260. https://doi.org/10.3390/toxics9100260
APA StyleRousis, N. I., Denardou, M., Alygizakis, N., Galani, A., Bletsou, A. A., Damalas, D. E., Maragou, N. C., Thomas, K. V., & Thomaidis, N. S. (2021). Assessment of Environmental Pollution and Human Exposure to Pesticides by Wastewater Analysis in a Seven-Year Study in Athens, Greece. Toxics, 9(10), 260. https://doi.org/10.3390/toxics9100260