Influence of Dietary Compounds on Arsenic Metabolism and Toxicity. Part II—Human Studies
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Folic Acid and Zinc as Modulators of iAs Metabolism and Toxicity—In Vitro Studies
3.1.1. Folic Acid—iAs Metabolism
3.1.2. Folic Acid and Zinc—Toxicity of iAs
3.1.3. Folic Acid and Zinc—Summary
3.2. Relationship between Dietary Intake of Selected Compounds and iAs Metabolism and Toxicity
3.2.1. Nutrient Intake—iAs Metabolism
3.2.2. Nutrient Intake—Toxicity of As
3.2.3. Nutrient Intake—Summary
Reference | Population | Dietary Assessment Methods | Component | Main Results |
---|---|---|---|---|
Desai et al., 2020 [23] | n = 290 Montevideo (Uruguay), children ~7 years | 2 nonconsecutive 24 h recalls | vitamin B6—dietary intake | urine: %DMA (NS), %MMA (−), %iAs (NS) |
vitamin B2 and B12—dietary intake | urine: %DMA (NS), %MMA (NS), %iAs (NS) | |||
Desai et al., 2020 [25] | n = 307 Montevideo (Uruguay), children ~7 years | 2 nonconsecutive 24 h recalls | vitamin B12—dietary intake | urine: %DMA (NS), %MMA (NS), %iAs (NS) |
folate—dietary intake | urine: %DMA (NS), %MMA (−), %iAs (NS) | |||
Kordas et al., 2016 [26] | n = 357 Montevideo (Uruguay), children ~5–8 years | 2 nonconsecutive 24 h recalls | folate—dietary intake | urine: %DMA (+), %MMA (−), %iAs (NS), tAs (NS) |
Kurzius-Spencer et al., 2017 [24] | n = 2420 U.S., adults and children > 6 years | 24 h recall | vitamin B6—dietary intake | urine: %DMA (NS), %MMA (NS), %iAs (NS), DMA/MMA (NS) (in the group of children) urine: %DMA (NS), %MMA (NS), %iAs (−), DMA/MMA (NS) (in the group of adults) |
vitamin B12—dietary intake | urine: %DMA (NS), %MMA (NS), %iAs (NS), DMA/MMA (NS) (in the groups of adults and children) | |||
folate—dietary intake | urine: %DMA (NS), %MMA (NS), %iAs (NS), DMA/MMA (NS) (in the group of children) urine: %DMA (+), %MMA (NS), %iAs (−), DMA/MMA (NS) (in the group of adults) | |||
Spratlen et al., 2018 [31] | n = 935 Arizona, Oklahoma, North Dakota, South Dakota, men and women >14 aged | FFQ | vitamin B2, vitamin B6, folic acid—dietary intake | urine: %DMAs (NS), %MMAs (NS), %iAs (NS) |
vitamin B6—dietary intake | risk for metabolic syndrome (+), risk for diabetes (+), HOMA2-IR (+) | |||
vitamin B2, folic acid—dietary intake | risk for metabolic syndrome (NS), risk for diabetes (NS), HOMA2-IR (NS) | |||
Lopez-Carillo et al., 2016 [28] | n = 1027 Mexico, women | FFQ | methionine—dietary intake | urine: %DMA (+), %MMA (NS), %iAs (−), DMA/MMA (+), DMA/iAs (+) |
betaine—dietary intake | urine: %DMA (NS), %MMA (NS), %iAs (NS), MMA/iAs (NS), DMA/MMA (NS) | |||
choline—dietary intake | urine: %DMA (+), %MMA (NS), %iAs (−), DMA/MMA (+), DMA/iAs (+) | |||
vitamin B2, vitamin B6—dietary intake | urine: %DMA (NS), %MMA (NS), %iAs (NS), DMA/MMA (NS), DMA/iAs (NS) | |||
vitamin B12—dietary intake | urine: %DMA (+), %MMA (NS), %iAs (−), DMA/MMA (+), DMA/iAs (+) | |||
folate—dietary intake | urine: %DMA (NS), %MMA (NS), %iAs (−), DMA/MMA (NS), DMA/iAs (+) | |||
zinc—dietary intake | urine: %DMA (+), %MMA (−), %iAs (−), DMA/MMA (+), DMA/iAs (+) | |||
Heck et al., 2009 [29] | n = 10,402 Bangladesh, men and women | FFQ | methionine—dietary intake | urine: tAs↑ and (+) |
Heck et al., 2007 [27] | n = 1016 Bangladesh, men and women | FFQ | methionine—dietary intake | urine: %DMA (NS), %MMA (+), %iAs (−), MMA/iAs (+), DMA/MMA (NS) |
betaine—dietary intake | urine: %DMA (NS), %MMA (NS), %iAs (NS), MMA/iAs (NS), DMA/MMA (NS) | |||
choline—dietary intake | urine: %DMA (NS), %MMA (NS), %iAs (NS), MMA/iAs (NS), DMA/MMA (+) | |||
vitamin B2—dietary intake | urine: %DMA (NS), %MMA (+), %iAs (NS), MMA/iAs (+), DMA/MMA (−) | |||
vitamin B6—dietary intake | urine: %DMA (NS), %MMA (NS), %iAs (NS), MMA/iAs (NS), DMA/MMA (NS) | |||
vitamin B12—dietary intake | urine: %DMA (NS), %MMA (+), %iAs (−), MMA/iAs (+), DMA/MMA (NS) | |||
folate—dietary intake | urine: %DMA (NS), %MMA (NS), %iAs (NS), MMA/iAs (NS), DMA/MMA (NS) | |||
Bommarito et al., 2019 [32] | n = 1166 Chihuahua (Mexico), men and women | FFQ | vitamin B2, vitamin B12, folate—sufficient and insufficient | urine: %DMAs↔, %MMAs↔, %iAs↔ |
Spratlen et al., 2017 [30] | n = 405 Arizona, Oklahoma, North Dakota, South Dakota, men and women | FFQ | vitamin B2, B6—dietary intake | urine: %DMA (+), %MMA (−), %iAs (−) |
vitamin B12, folate– dietary intake | urine: %DMA (NS), %MMA (NS), %iAs (NS) | |||
Steinmaus et al., 2005 [33] | n = 87 U.S., men and women | HHHQ | zinc—dietary intake | urine: %DMA (+), %MMA (−), %iAs (NS) |
vitamin B2, vitamin B6, folate—dietary intake | urine: %DMA (NS), %MMA (NS), %iAs (NS) | |||
Argos et al., 2010 [34] | n = 9833 Araihazar (Bangladesh), men and women | FFQ | vitamin B6—dietary intake | urine: tAs (+) |
vitamin B2, vitamin B12, folate—dietary intake | urine: tAs (NS) | |||
Chen et al., 2007 [36] | n = 10,910 Bangladesh, men and women | FFQ | vitamin B2, B6, B12, folate—low intake level | ORs of high pulse pressure↑, ORs of systolic hypertension↑ (weak association) |
Howe et al., 2017 [35] | n = 418 New Hampshire, men and women | FFQ | vitamin B2, vitamin B6, vitamin B12, folate—sum of B vitamin—dietary intake | urine: proportion of MMAs (−), 15-F2t-IsoP (−) |
Koutros et al., 2018 [37] | n = 2366 Maine, New Hampshire, Vermont, case with bladder cancer and control group | DHQ | folate—high and low intake level | ORs of risk of bladder cancer↔ (weak association) |
Melkonian et al., 2012 [38] | n = 16,391 Araihazar (Bangladesh), cases with skin lesions and control group | FFQ | vitamin B2, folate—low intake level | keratotic skin lesion risk (+) |
Deb et al., 2012 [39] | n = 208 West Bengal, cases with skin lesions and control group | 24 h recall | choline, vitamin B2, zinc—low intake level | ORs of skin lesions↑ (in the group of women) |
choline, zinc—low intake level | ORs of skin lesions↑ (in the group of men) | |||
vitamin B6, vitamin B12, folate | ORs of skin lesions↔ (in the group of women and men) | |||
Mitra et al., 2004 [40] | n = 384 West Bengal (India), cases with skin lesions and control group | 24 h recall | folate—low intake level | ORs of skin lesions↑ |
vitamin B2, vitamin B6, zinc | ORs of skin lesions↔ | |||
Zablotska et al., 2008 [41] | n = 10,628 Araihazar (Bangladesh), men and women | FFQ | vitamin B2, B6, folic acid—high intake level | PORs risk for skin lesions↓ |
vitamin B12 | PORs risk for skin lesions↔ | |||
Desai et al., 2018 [42] | n = 328 Montevideo (Uruguay), children ~5–8 years | 2 nonconsecutive 24 h recalls | folate—low intake level | cognitive performance (NS) tAs—concept formation (−), tAs—scores of numbers reversed subtest (+), tAs—cognitive efficiency (+) |
folate—mean intake level | scores on: verbal comprehension (+), visual auditory learning (+), verbal ability (+), general intellectual abilities (+) tAs—sound integration scores (+) | |||
folate—high intake level | scores on: visual auditory learning (−), concept formation (+), numbers reversed (+), cognitive efficiency (+) tAs—concept formation (+) | |||
Desai et al., 2020 [43] | n = 239 Montevideo (Uruguay), children ~5–8 years | 2 nonconsecutive 24 h recalls | vitamin B2, vitamin B6, vitamin B12, folate—dietary intake | broad math and reading scores (calculation, math facts fluency, applied problems, sentence reading fluency, letter word identification, passage comprehension) and urinary tAs (NS) |
Gruber et al., 2012 [44] | n = 920 New Hampshire, men and women | FFQ | vitamin B12—dietary intake | toenail: tAs (−) |
3.3. Folic Acid and Zinc Supplementation
3.3.1. Folic Acid and Zinc Supplementation—iAs Metabolism
Reference | Research Model | Study Description | Main Results |
---|---|---|---|
Gamble et al., 2007 [45] | Bangladesh, adults | CG (n = 62)—placebo (orally, for 12 weeks) G1 (N = 68)—folic acid 400 µg/day (orally, for 12 weeks) | G1 vs. CG blood: MMA↓, tAs↓, DMA↔ urine: DMA↑ (after 1 week) DMA↔(after 12 week) |
Bozack et al., 2019 [46] | Bangladesh, adults | CG (n = 90)—placebo (orally, for 12 weeks) G1 (n = 133)—folic acid 400 µg/day (orally, for 12 weeks) G2 (n = 129)—folic acid 800 µg/day (orally, for 12 weeks) | G1, G2 vs. CG plasma: folate↑, homocysteine↓ RBC folate↑ urine: %iAs↓, %MMAs↓, %DMAs↑ |
G2 vs. G1 urine: %MMAs↓ | |||
G1 (n = 68)—folic acid 400 µg/day (orally, for 12 weeks) and after that placebo (orally, for 12 weeks) G2 (n = 60)—folic acid 800 µg/day (orally, for 12 weeks) and after that placebo (orally, for 12 weeks) G1a (n = 65)—folic acid 400 µg/day (orally, for 24 weeks) G2a (n = 69)—folic acid 800 µg/day (orally, for 24 weeks) | G1a, G2a vs. G1, G2 urine: %iAs↓, %MMAs↓, %DMAs↑ | ||
Peters et al., 2015 [47] | Bangladesh, adults | CG (n = 102)—placebo (orally, for 12 weeks) G1 (n = 153)—folic acid 400 µg/day (orally, for 12 weeks) G2 (n = 151)—folic acid 800 µg/day (orally, for 12 weeks) | G1 vs. CG plasma folate↑, RBC folate↑, geometric mean of blood tAs↑, percentage decline in geometric mean blood tAs from baseline↓ |
G2 vs. CG plasma folate↑, RBC folate↑, geometric mean of blood tAs↓, percentage decline in geometric mean blood tAs from baseline↑ | |||
CG (n = 102)—placebo (orally, for 24 weeks) G1 (n = 76)—folic acid 400 µg/day (orally, for 12 weeks) and after that placebo (orally, for 12 weeks) G2 (n = 74)—folic acid 800 µg/day (orally, for 12 weeks) and after that placebo (orally, for 12 weeks) G1a (n = 77)—folic acid 400 µg/day (orally, for 24 weeks) G2a (n = 77)—folic acid 800 µg/day (orally, for 24 weeks) | G2, G2a vs. CG geometric mean of blood tAs↓ | ||
G1a vs. G1 geometric mean of blood tAs↔, percentage decline in geometric mean of urinary and blood tAs↔ | |||
G2a vs. G2 geometric mean of blood tAs↔, percentage decline in geometric mean of urinary and blood tAs↔ | |||
Bozack et al., 2020 [48] | Bangladesh, adults | CG (n = 104)—placebo (orally, for 12 weeks) G1 (n = 156)—folic acid 400 µg/day (orally, for 12 weeks) G2 (n = 154)—folic acid 800 µg/day (orally, for 12 weeks) | G1 vs. CG participants with betaine concentrations below the median: urine: decreases in ln(%iAs)↑, decrease in %MMAs↑, increases in %DMAs↑ |
G2 vs. CG participants with betaine concentrations below the median: urine: decreases in ln(%iAs)↑, increases in %DMAs↑ | |||
Kordas et al., 2017 [49] | Mexico, children (6–7 years) | CG (n = 151)—placebo (orally, for 6 months) G1 (n = 144)—zinc oxide 30 mg/day (orally, for 6 months) | G1 vs. CG urine: %DMA↓, %MMA↔, %iAs↔, tAs↔ |
Hall et al., 2016 [50] | Bagladesh, adults | CG (n = 101)—placebo (participants received arsenic-removal water filters and had been drinking water from wells with water As concentration >50 µg/L at least 3 years) G1 (n = 152)—folic acid 400 µg/day (orally, for 12 weeks) and after that placebo (participants received arsenic-removal water filters and had been drinking water from wells with water As concentration >50 µg/L at least 3 years) G2 (n = 149)—folic acid 800 µg/day (orally, for 12 weeks) and after that placebo (participants received arsenic-removal water filters and had been drinking water from wells with water As concentration >50 µg/L at least 3 years) | G1, G2 vs. CG plasma: choline↑, betaine↑, percentage decrease in DMG↑ |
G1 vs. G2 plasma: choline↔, betaine↔, percentage decrease in DMG↔ | |||
Dani, 2019 [51] | Women (16 year-old)—chronic arsenic intoxication | ex juvantibus therapy: torasemide 10–20 mg/day, thiamine 300 mg/day, magnesium 5 mg/day, folic acid 5 mg/day and metamizole and simeticon (on-demand) | nuchal scalp hair shafts: As—undetectable morning urine: As—undetectable afternoon urine: As 50 nmol/L symptoms (leg cramps, abdominal pains)↓ |
Howe et al., 2017 [52] | Bangladesh, adults | CG (n = 104)—placebo (orally, for 12 weeks) G1 (n = 156)—folic acid 400 µg/day (orally, for 12 weeks) | G1 vs. CG blood: PTHMs↔ |
Ghose et al., 2014 [53] | India, patients with symptoms of arsenic toxicity | CG (n = 45)—drinking arsenic free water (orally, for 6 months) G1 (n = 32)—folic acid 5 mg/day (orally, for 6 months) | G1 vs. CG skin score↓, systemic disease score↑ (overall: clinical symptoms of arsenicosis↓) |
3.3.2. Folic Acid Supplementation—Toxicity of As
3.3.3. Folic Acid and Zinc Supplementation—Summary
3.4. Blood and Tissues Nutrients Concentration
3.4.1. Blood Nutrient Concentration—iAs Metabolism
3.4.2. Blood and Tissue Nutrient Concentration—Toxicity of As
Reference | Population | Measure of Component Status | Main Results |
---|---|---|---|
Hall et al., 2009 [54] | n = 165 Bangladesh, children (6 years old) | plasma: vitamin B12 | urine: %DMA (NS), %MMA (NS), %iAs (NS) |
plasma: folate | urine: %DMA (NS), %MMA (NS), %iAs (−) | ||
Skroder Loveborn et al., 2016 [57] | n = 488 Bangladesh, children (9 years old) | plasma: folate | urine: %DMA (+), %MMA (NS), %iAs (−) |
Lin et al., 2019 [55] | n = 266 Taiwan, children (preschool aged) | plasma: vitamin B12 and folate | urine: %DMA↑, %MMA↓, %iAs↓ (in the group with high concentrations vitamin B12 and folate) |
ORs of development delay↑ (in the group with low concentrations vitamin B12 and folate) | |||
Desai et al., 2020 [25] | n = 307 Montevideo (Uruguay), children ~7 years | serum: vitamin B12, folate | urine: %DMA (NS), %MMA (NS), %iAs (NS) |
Zhang et al., 2019 [58] | n = 11,016 US, adults and children (≤18 years) | serum: folate | urine: %DMA (+), MMA (NS) (in the group of children) urine: %DMA (NS), %MMA (+) (in the group of adults) |
Zhu et al., 2018 [56] | n = 3099 U.S., adults and children (6–19 years) | serum: vitamin B12, folate | urine: DMA (+) (in the group of children and in the group of adults) |
Kurzius-Spencer et al., 2017 [24] | n = 2420 U.S., adults and children >6 years | plasma: vitamin B6 serum: vitamin B12, folate | urine: %DMA (NS), %MMA (NS), %iAs (NS), DMA/MMA (NS) (in the groups of adults and children) |
Chung et al., 2002 [59] | n = 44 Chile, adults and children (6–14 years) | blood: methionine, vitamin B6, vitamin B12, folate | urine: iAs/methylated As (+), MMA/DMA (+) |
Hall et al., 2009 [60] | n = 778 Bangladesh, adults | plasma: vitamin B12 | urine: %DMA↑, %MMA↓, %iAs↔ (in the vitamin B12 deficient group compared to vitamin B12 sufficient group) urine: %DMA (NS), %MMA (+), %iAs (−) |
Gamble et al., 2005 [61] | n = 300 Bangladesh, adults | plasma: vitamin B12 | urine: %DMA (NS), %MMA (NS), %iAs (NS) |
plasma: folate | urine: %DMA (+), %MMA (−), %iAs (−) | ||
Niedzwiecki et al., 2014 [66] | n = 376 Bangladesh, adults | plasma: folate | plasma: GSH/GSSG ratio association with urine: %DMA (−), %MMA (+), SMI (+), blood: tAs (−) (in the folate deficient group) |
Chung et al., 2010 [67] | n = 450 cases with urothelial carcinoma and control group | plasma: folate | urine: %DMA↓, %MMA↑, %iAs↑, tAs↑ (cases with urothelial carcinoma) urine: %DMA↓ (controls with 5,10-methylenetetrahydrofolate reductase CT or TT genotype) urine: %DMA (+) (in the control group) |
Hall et al., 2007 [65] | n = 30 pairs Bangladesh, women and children (newborn) | plasma: vitamin B12 | cord blood: percentage arsenate (−) (in the group of women) |
plasma: folate | blood: percentage arsenate (−) (in the group of women) | ||
Laine et al., 2018 [62] | n = 197 Mexico, women (pregnant) | serum: vitamin B12 | urine: %DMA (NS), %MMA (NS), %iAs (NS), tAs (−) cord serum: %iAs (+) |
serum: folate | urine: %DMA (NS), %MMA (NS), %iAs (NS), tAs (NS) cord serum: %MMAs (−) | ||
Li et al., 2008 [63] | n = 753 Bangladesh, women (pregnant) | plasma: vitamin B12, folate, Zn—high and low values | urine: %DMA↔, %MMA↔, %iAs↔ (in the group at the low As exposure level) |
plasma: folate—high values | urine: %iAs↓ (in the group at the highest As exposure level) | ||
plasma: Zn—high values | urine: %DMA↓, %MMA↑, %iAs↑, SMI↓ (in the group at the highest As exposure level) | ||
Gardner et al., 2011 [64] | n = 324 Bangladesh, women (pregnant) | plasma: vitamin B12, folate, Zn | urine: %DMA (NS), %MMA (NS), %iAs (NS) |
Lambrou et al., 2012 [68] | n = 581 Boston, men (elderly) | plasma: vitamin B6, vitamin B12 | blood: Alu (NS), Long Interspersed Nucleotide Element-1 (NS) |
plasma: folate | blood: Alu (+), Long Interspersed Nucleotide Element-1 (NS) (in the low folate group) | ||
blood: Alu (−), Long Interspersed Nucleotide Element-1 (NS) (in the high folate group) | |||
Pilsner et al., 2007 [69] | n = 294 Bangladesh, adults | plasma: folate | [3H]-methyl incorporation association with tAs in the urine, plasma (−) (in the high folate group) |
Tauheed et al., 2017 [70] | n = 85 Bangladesh, women | plasma: folate | tAs concentration in toenail association with plasma total H3 (−) (in the folate deficient group) |
Howe et al., 2017 [52] | n = 324 Bangladesh, adults | plasma: choline | peripheral blood mononuclear cells: H3K36me2 (+) (in the men group) |
plasma: vitamin B12 | peripheral blood mononuclear cells: H3K79me2 (+) (in the women group) | ||
plasma: folate | peripheral blood mononuclear cells: H3K36me2 (NS), H3K36me3 (NS), H3K79me2 (NS) (in the men and women group) | ||
Grau-Perez et al., 2017 [71] | n = 688 U.S., adults and children | plasma: vitamin B12 | ORs of type 1 and type 2 diabetes by %monomethylated As↔ |
plasma: folate—high values | ORs of type 1 diabetes by %monomethylated As↑ ORs of type 2 diabetes by %monomethylated As↔ | ||
Chung et al., 2019 [72] | n = 534 Taiwan, cases with urothelial carcinoma and control group | plasma: folate | ORs of urothelial carcinoma↑ (low folate level and global 5-MedC, high tAs in the urine) |
Chung et al., 2006 [73] | n = 372 West Bengal, cases with skin lesions and control group | blood: methionine, vitamin B6, vitamin B12, folate | ORs of skin lesions↔ |
Pilsner et al., 2009 [74] | n = 548 Bangladesh, cases with skin lesions and control group | plasma: vitamin B12—low values | ORs for development skin lesions↔ |
plasma: folate—low values | ORs for development skin lesions↑ | ||
Desai et al., 2020 [43] | n = 239 Montevideo (Uruguay), children ~5–8 years | serum: vitamin B12 | urine: tAs and broad math score (+) |
Gong et al., 2020 [75] | n = 406 Wuhan, women (pregnant) and control group (non-pregnant) | blood: Zn | blood: tAs (+) (in the group of pregnant women) |
Wang et al., 1994 [76] | n = 218 Taiwan, cases with blackfoot disease and control group | hair: Zn | hair: Zn↓, tAs↑ (in the group of patients with blackfoot disease) |
Tsai et al., 2004 [77] | n = 136 Taiwan, cases with blackfoot disease and control group | urine: Zn | urine: Zn↓, tAs↑ (in the group of patients with blackfoot disease) |
Lin and Yang, 1988 [78] | n = 56 cases with blackfoot disease and control group | blood, serum, urine: Zn | blood, serum, urine: Zn↓ (in the group of patients with blackfoot disease) urine: tAs↔(in the group of patients with blackfoot disease) hair: tAs↑ (in the group of patients with blackfoot disease) |
Gerhardsson and Nordberg, 1993 [79] | n = 110 smelter workers and control group (from urban and rural area) | lung tissue: Zn | lung tissue: Zn↔, tAs↑ |
Tutkun et al., 2019 [80] | n = 135 Ankara, men—workers (exposed to As) and control group | serum: Zn | blood: tAs↑, Zn↔, IL-6↑, IL-10↑, TNF-α↑ (in the workers group) correlation tAs—Zn (−) (in the workers group) |
3.4.3. Concentration of Nutrients in Blood and Other Tissues—Summary
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Medunić, G.; Fiket, Ž.; Ivanić, M. Arsenic contamination status in Europe, Australia, and other parts of the world. In Arsenic in Drinking Water and Food; Srivastava, S., Ed.; Springer: Singapore, 2020; pp. 183–233. [Google Scholar]
- WHO. Exposure to arsenic: A major public health concern. In Preventing Disease through Healthy Environments; Department of Public Health, Environmental and Social Determinants of Health, World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Agency for Toxic Substances and Disease Registry. Addendum to Toxicological Profile for Arsenic; Agency for Toxic Substances and Disease Registry, Division of Toxicology and Human Health Sciences: Atlanta, GA, USA, 2016; pp. 1–189.
- European Food Safety Authority (EFSA). Scientific report on the chronic dietary esposure to inorganic arsenic. EFSA J. 2021, 19, 6380. [Google Scholar]
- Drobna, Z.; Styblo, M.; Thomas, D.J. An overiew of arsenic metabolism and toxicity. Curr. Protoc. Toxicol. 2009, 42, 4.31.1–4.31.6. [Google Scholar] [PubMed] [Green Version]
- Vahter, M. Mechanisms of arsenic biotransformation. Toxicology 2002, 181–182, 211–217. [Google Scholar] [CrossRef]
- Styblo, M.; Del Razo, L.M.; Vega, L.; Germolec, D.R.; LeCluyse, E.L.; Hamilton, G.A.; Reed, W.; Wang, C.; Cullen, W.R.; Thomas, D.J. Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Arch. Toxicol. 2000, 74, 289–299. [Google Scholar] [CrossRef]
- IARC. Summaries and evaluations: Arsenic in drinking-water (Group 1). In IARC Monographs on the Evaluation of Carcinogenic Risk to Humans, Volume 84; IARC: Lyon, France, 2004; pp. 41–267. ISBN 92-832-1284-3. [Google Scholar]
- Smith, A.H.; Biggs, M.L.; Moore, L.; Haque, R.; Steinmaus, C.; Chung, J.; Hernandez, A.; Lopipero, P. Cancer Risks from Arsenic in Drinking Water. In Arsenic Exposure and Health Effects III; Chappel, W.R., Abernathy, C.O., Calderon, R.L., Eds.; Elsevier Science: New York, NY, USA, 1999; pp. 191–199. [Google Scholar]
- IARC. Arsenic, Metals, Fibres, and Dusts. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Volume 100 C; IARC: Lyon, France, 2012; pp. 41–93. ISBN 978-92-832-1320-8. [Google Scholar]
- Wang, W.; Xie, Z.; Lin, Y.; Zhang, D. Association of inorganic arsenic exposure with Type 2 Diabetes Mellitus: A meta-analysis. J. Epidemiol. Community Health 2014, 68, 176–184. [Google Scholar] [CrossRef]
- Pan, W.C.; Seow, W.J.; Kile, M.L.; Hoffman, E.B.; Quamruzzaman, Q.; Rahman, M.; Mahiuddin, G.; Mostofa, G.; Lu, Q.; Christiani, D.C. Association of low to moderate levels of arsenic exposure with risk of type 2 diabetes in Bangladesh. Am. J. Epidemiol. 2013, 178, 1563–1570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tseng, C.H.; Huang, Y.K.; Huang, Y.L.; Chung, C.J.; Yang, M.H.; Chen, C.J.; Hsueh, Y.M. Arsenic exposure, urinary arsenic speciation, and peripheral vascular disease in Blackfoot disease-hyperendemic villages in Taiwan. Toxicol. Appl. Pharmacol. 2005, 206, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Argos, M.; Kalra, T.; Pierce, B.L.; Chen, Y.; Parvez, F.; Islam, T.; Ahmed, A.; Hasan, R.; Hasan, K.; Sarwar, G.; et al. A prospective study of arsenic exposure from drinking water and incidence of skin lesions in Bangladesh. Am. J. Epidemiol. 2011, 174, 185–194. [Google Scholar] [CrossRef] [Green Version]
- Parvez, F.; Chen, Y.; Yunus, M.; Olopade, C.; Segers, S.; Slavkovich, V.; Argos, M.; Hasan, R.; Ahmed, A.; Islam, T.; et al. Arsenic exposure and impaired lung function. Findings from a large population-based prospective cohort study. Am. J. Respir. Crit. Care Med. 2013, 188, 813–819. [Google Scholar] [CrossRef] [Green Version]
- Tyler, C.R.; Allan, A.M. The effects of arsenic exposure on neurological and cognitive dysfunction in human and rodent studies: A review. Curr. Environ. Health Rep. 2014, 1, 132–147. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, E.G.; Bellinger, D.C.; Valeri, L.; Hasan, M.O.; Quamruzzaman, Q.; Golam, M.; Kile, M.L.; Christiani, D.C.; Wright, R.O.; Mazumdar, M. Neurodevelopmental outcomes among 2- to 3-year-old children in Bangladesh with elevated blood lead and exposure to arsenic and manganese in drinking water. Environ. Health 2016, 15, 44. [Google Scholar] [CrossRef] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Wang, H.; Wang, Y.; Zheng, Y.; Sun, G. Effects of folate on arsenic toxicity in Chang human hepatocytes: Involvement of folate antioxidant properties. Toxicol. Lett. 2010, 195, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zhang, C.; Gao, X.B.; Luo, H.Y.; Chen, Y.; Li, H.; Ma, X.; Lu, C.L. Folic acid protects against arsenic-mediated embryo toxicity by up-regulating the expression of Dvr1. Sci. Rep. 2015, 5, 16093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, C.P.; Dashner-Titus, E.J.; Alvarez, S.C.; Chase, T.T.; Hudson, L.G.; Ho, E. Zinc deficiency and arsenic exposure can act both independently or cooperatively to affect zinc status, oxidative stress, and inflammatory response. Biol. Trace Elem. Res. 2019, 191, 370–381. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Zhou, X.; Du, L.; Liu, W.; Liu, Y.; Hudson, L.G.; Liu, K.J. Arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair. Toxicol. Appl. Pharmacol. 2014, 274, 313–318. [Google Scholar] [CrossRef] [Green Version]
- Desai, G.; Vahter, M.; Queirolo, E.I.; Peregalli, F.; Mañay, N.; Millen, A.E.; Yu, J.; Browne, R.W.; Kordas, K. Vitamin B-6 intake is modestly associated with arsenic methylation in Uruguayan children with low-level arsenic exposure. J. Nutr. 2020, 150, 1223–1229. [Google Scholar] [CrossRef]
- Kurzius-Spencer, M.; da Silva, V.; Thomson, C.A.; Hartz, V.; Hsu, C.H.; Burgess, J.L.; O’Rourke, M.K.; Harris, R.B. Nutrients in one-carbon metabolism and urinary arsenic methylation in the National Health and Nutrition Examination Survey (NHANES) 2003–2004. Sci. Total Environ. 2017, 607–608, 381–390. [Google Scholar] [CrossRef] [Green Version]
- Desai, G.; Millen, A.E.; Vahter, M.; Queirolo, E.I.; Peregalli, F.; Mañay, N.; Yu, J.; Browne, R.W.; Kordas, K. Associations of dietary intakes and serum levels of folate and vitamin B-12 with methylation of inorganic arsenic in Uruguayan children: Comparison of findings and implications for future research. Environ. Res. 2020, 189, 109935. [Google Scholar] [CrossRef]
- Kordas, K.; Queirolo, E.I.; Mañay, N.; Peregalli, F.; Hsiao, P.Y.; Lu, Y.; Vahter, M. Low-level arsenic exposure: Nutritional and dietary predictors in first-grade Uruguayan children. Environ. Res. 2016, 147, 16–23. [Google Scholar] [CrossRef] [Green Version]
- Heck, J.E.; Gamble, M.V.; Chen, Y.; Graziano, J.H.; Slavkovich, V.; Parvez, F.; Baron, J.A.; Howe, G.R.; Ahsan, H. Consumption of folate-related nutrients and metabolism of arsenic in Bangladesh. Am. J. Clin. Nutr. 2007, 85, 1367–1374. [Google Scholar] [CrossRef]
- López-Carrillo, L.; Gamboa-Loira, B.; Becerra, W.; Hernández-Alcaraz, C.; Hernández-Ramírez, R.U.; Gandolfi, A.J.; Franco-Marina, F.; Cebrián, M.E. Dietary micronutrient intake and its relationship with arsenic metabolism in Mexican women. Environ. Res. 2016, 151, 445–450. [Google Scholar] [CrossRef]
- Heck, J.E.; Nieves, J.W.; Chen, Y.; Parvez, F.; Brandt-Rauf, P.W.; Graziano, J.H.; Slavkovich, V.; Howe, G.R.; Ahsan, H. Dietary intake of methionine, cysteine, and protein and urinary arsenic excretion in Bangladesh. Environ. Health Perspect. 2009, 117, 99–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spratlen, M.J.; Gamble, M.V.; Grau-Perez, M.; Kuo, C.C.; Best, L.G.; Yracheta, J.; Francesconi, K.; Goessler, W.; Mossavar-Rahmani, Y.; Hall, M.; et al. Arsenic metabolism and one-carbon metabolism at low-moderate arsenic exposure: Evidence from the Strong Heart Study. Food Chem. Toxicol. 2017, 105, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Spratlen, M.J.; Grau-Perez, M.; Umans, J.G.; Yracheta, J.; Best, L.G.; Francesconi, K.; Goessler, W.; Balakrishnan, P.; Cole, S.A.; Gamble, M.V.; et al. Arsenic, one carbon metabolism and diabetes-related outcomes in the Strong Heart Family Study. Environ. Int. 2018, 121, 728–740. [Google Scholar] [CrossRef] [PubMed]
- Bommarito, P.A.; Xu, X.; González-Horta, C.; Sánchez-Ramirez, B.; Ballinas-Casarrubias, L.; Luna, R.S.; Pérez, S.R.; Ávila, J.E.H.; García-Vargas, G.G.; Del Razo, L.M.; et al. One-carbon metabolism nutrient intake and the association between body mass index and urinary arsenic metabolites in adults in the Chihuahua cohort. Environ. Int. 2019, 123, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Steinmaus, C.; Carrigan, K.; Kalman, D.; Atallah, R.; Yuan, Y.; Smith, A.H. Dietary intake and arsenic methylation in a U.S. population. Environ. Health Perspect. 2005, 113, 1153–1159. [Google Scholar] [CrossRef] [Green Version]
- Argos, M.; Rathouz, P.J.; Pierce, B.L.; Kalra, T.; Parvez, F.; Slavkovich, V.; Ahmed, A.; Chen, Y.; Ahsan, H. Dietary B vitamin intakes and urinary total arsenic concentration in the Health Effects of Arsenic Longitudinal Study (HEALS) cohort, Bangladesh. Eur. J. Nutr. 2010, 49, 473–481. [Google Scholar] [CrossRef] [Green Version]
- Howe, C.G.; Li, Z.; Zens, M.S.; Palys, T.; Chen, Y.; Channon, J.Y.; Karagas, M.R.; Farzan, S.F. Dietary B vitamin intake is associated with lower urinary monomethyl arsenic and oxidative stress marker 15-F2t-isoprostane among New Hampshire adults. J. Nutr. 2017, 147, 2289–2296. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Factor-Litvak, P.; Howe, G.R.; Graziano, J.H.; Brandt-Rauf, P.; Parvez, F.; van Geen, A.; Ahsan, H. Arsenic exposure from drinking water, dietary intakes of B vitamins and folate, and risk of high blood pressure in Bangladesh: A population-based, cross-sectional study. Am. J. Epidemiol. 2007, 165, 541–552. [Google Scholar] [CrossRef] [Green Version]
- Koutros, S.; Baris, D.; Waddell, R.; Beane Freeman, L.E.; Colt, J.S.; Schwenn, M.; Johnson, A.; Ward, M.H.; Hosain, G.M.; Moore, L.E.; et al. Potential effect modifiers of the arsenic-bladder cancer risk relationship. Int. J. Cancer 2018, 143, 2640–2646. [Google Scholar] [CrossRef] [Green Version]
- Melkonian, S.; Argos, M.; Chen, Y.; Parvez, F.; Pierce, B.; Ahmed, A.; Islam, T.; Ahsan, H. Intakes of several nutrients are associated with incidence of arsenic-related keratotic skin lesions in Bangladesh. J. Nutr. 2012, 142, 2128–2134. [Google Scholar] [CrossRef] [Green Version]
- Deb, D.; Biswas, A.; Ghose, A.; Das, A.; Majumdar, K.K.; Guha Mazumder, D.N. Nutritional deficiency and arsenical manifestations: A perspective study in an arsenic-endemic region of West Bengal, India. Public Health Nutr. 2012, 16, 1644–1655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitra, S.R.; Mazumder, D.N.G.; Basu, A.; Block, G.; Haque, R.; Samanta, S.; Ghosh, N.; Smith, M.M.H.; von Ehrenstein, O.S.; Smith, A.H. Nutritional factors and susceptibility to arsenic-caused skin lesions in West Bengal, India. Environ. Health Perspect. 2004, 112, 1104–1109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zablotska, L.B.; Chen, Y.; Graziano, J.H.; Parvez, F.; van Geen, A.; Howe, G.R.; Ahsan, H. Protective effects of B vitamins and antioxidants on the risk of arsenic-related skin lesions in Bangladesh. Environ. Health Perspect. 2008, 116, 1056–1062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desai, G.; Barg, G.; Queirolo, E.I.; Vahter, M.; Peregalli, F.; Mañay, N.; Kordas, K. A cross-sectional study of general cognitive abilities among Uruguayan school children with low-level arsenic exposure, potential effect modification by methylation capacity and dietary folate. Environ. Res. 2018, 164, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Desai, G.; Barg, G.; Vahter, M.; Queirolo, E.I.; Peregalli, F.; Mañay, N.; Millen, A.E.; Yu, J.; Browne, R.W.; Kordas, K. Low level arsenic exposure, B-vitamins, and achievement among Uruguayan school children. Int. J. Hyg. Environ. Health 2020, 223, 124–131. [Google Scholar] [CrossRef]
- Gruber, J.F.; Karagas, M.R.; Gilbert-Diamond, D.; Bagley, P.J.; Zens, M.S.; Sayarath, V.; Punshon, T.; Morris, J.S.; Cottingham, K.L. Associations between toenail arsenic concentration and dietary factors in a New Hampshire population. Nutr. J. 2012, 11, 45. [Google Scholar] [CrossRef] [Green Version]
- Gamble, M.V.; Liu, X.; Slavkovich, V.; Pilsner, J.R.; Ilievski, V.; Factor-Litvak, P.; Levy, D.; Alam, S.; Islam, M.; Parvez, F.; et al. Folic acid supplementation lowers blood arsenic. Am. J. Clin. Nutr. 2007, 86, 1202–1209. [Google Scholar] [CrossRef] [Green Version]
- Bozack, A.K.; Hall, M.N.; Liu, X.; Ilievski, V.; Lomax-Luu, A.M.; Parvez, F.; Siddique, A.B.; Shahriar, H.; Uddin, M.N.; Islam, T.; et al. Folic acid supplementation enhances arsenic methylation: Results from a folic acid and creatine supplementation randomized controlled trial in Bangladesh. Am. J. Clin. Nutr. 2019, 109, 380–391. [Google Scholar] [CrossRef]
- Peters, B.A.; Hall, M.N.; Liu, X.; Parvez, F.; Sanchez, T.R.; van Geen, A.; Mey, J.L.; Siddique, A.B.; Shahriar, H.; Uddin, M.N.; et al. Folic acid and creatine as therapeutic approaches to lower blood arsenic: A randomized controlled trial. Environ. Health Perspect. 2015, 123, 1294–1301. [Google Scholar] [CrossRef] [Green Version]
- Bozack, A.K.; Howe, C.G.; Hall, M.N.; Liu, X.; Slavkovich, V.; Ilievski, V.; Lomax-Luu, A.M.; Parvez, F.; Siddique, A.B.; Shahriar, H.; et al. Betaine and choline status modify the effects of folic acid and creatine supplementation on arsenic methylation in a randomized controlled trial of Bangladeshi adults. Eur. J. Nutr. 2020. [Google Scholar] [CrossRef] [PubMed]
- Kordas, K.; Roy, A.; López, P.; García-Vargas, G.; Cebrián, M.E.; Vera-Aguilar, E.; Rosado, J.L. Iron and zinc supplementation does not impact urinary arsenic excretion in Mexican school children. J. Pediatr. 2017, 185, 205–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, M.N.; Howe, C.G.; Liu, X.; Caudill, M.A.; Malysheva, O.; Ilievski, V.; Lomax-Luu, A.M.; Parvez, F.; Siddique, A.B.; Shahriar, H.; et al. Supplementation with folic acid, but not creatine, increases plasma betaine, decreases plasma dimethylglycine, and prevents a decrease in plasma choline in arsenic-exposed Bangladeshi adults. J. Nutr. 2016, 146, 1062–1067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dani, S.U. A curious association of chronic homeopathic arsenic ingestion with nonspecific symptoms in a Swiss teenager. Swiss Med. Wkly. 2019, 149, w20071. [Google Scholar] [CrossRef]
- Howe, C.G.; Liu, X.; Hall, M.N.; Ilievski, V.; Caudill, M.A.; Malysheva, O.; Lomax-Luu, A.M.; Parvez, F.; Siddique, A.B.; Shahriar, H.; et al. Sex-specific associations between one-carbon metabolism indices and posttranslational histone modifications in arsenic-exposed Bangladeshi adults. Cancer Epidemiol. Biomarkers Prev. 2017, 26, 261–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghose, N.; Majumdar, K.K.; Ghose, A.K.; Saha, C.K.; Nandy, A.K.; Mazumder, D.N.G. Role of folic acid on symptoms of chronic arsenic toxicity. Int. J. Prev. Med. 2014, 5, 89–98. [Google Scholar]
- Hall, M.N.; Liu, X.; Slavkovich, V.; Ilievski, V.; Pilsner, J.R.; Alam, S.; Factor-Litvak, P.; Graziano, J.H.; Gamble, M.V. Folate, cobalamin, cysteine, homocysteine, and arsenic metabolism among children in Bangladesh. Environ. Health Perspect. 2009, 117, 825–831. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.C.; Chung, C.J.; Huang, Y.L.; Hsieh, R.L.; Huang, P.T.; Wu, M.Y.; Ao, P.L.; Shiue, H.S.; Huang, S.R.; Su, C.T.; et al. Association of plasma folate, vitamin B12 levels, and arsenic methylation capacity with developmental delay in preschool children in Taiwan. Arch. Toxicol. 2019, 93, 2535–2544. [Google Scholar] [CrossRef]
- Zhu, J.; Gao, Y.; Sun, D.; Wei, Y. Serum folate and cobalamin levels and urinary dimethylarsinic acid in US children and adults. Environ. Sci. Pollut. Res. Int. 2018, 25, 17168–17175. [Google Scholar] [CrossRef]
- Skröder Löveborn, H.; Kippler, M.; Lu, Y.; Ahmed, S.; Kuehnelt, D.; Raqib, R.; Vahter, M. Arsenic metabolism in children differs from that in adults. Toxicol. Sci. 2016, 152, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Xu, X.; Zhong, Y.; Power, M.C.; Taylor, B.D.; Carrillo, G. Serum folate levels and urinary arsenic methylation profiles in the US population: NHANES, 2003–2012. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.S.; Kalman, D.A.; Moore, L.E.; Kosnett, M.J.; Arroyo, A.P.; Beeris, M.; Mazumder, D.N.G.; Hernandez, A.L.; Smith, A.H. Family correlations of arsenic methylation patterns in children and parents exposed to high concentrations of arsenic in drinking water. Environ. Health Perspect. 2002, 110, 729–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, M.N.; Liu, X.; Slavkovich, V.; Ilievski, V.; Mi, Z.; Alam, S.; Factor-Litvak, P.; Ahsan, H.; Graziano, J.H.; Gamble, M.V. Influence of cobalamin on arsenic metabolism in Bangladesh. Environ. Health Perspect. 2009, 117, 1724–1729. [Google Scholar] [CrossRef] [PubMed]
- Gamble, M.V.; Liu, X.; Ahsan, H.; Pilsner, R.; Ilievski, V.; Slavkovich, V.; Parvez, F.; Levy, D.; Factor-Litvak, P.; Graziano, J.H. Folate, homocysteine, and arsenic metabolism in arsenic-exposed individuals in Bangladesh. Environ. Health Perspect. 2005, 113, 1683–1688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laine, J.E.; Ilievski, V.; Richardson, D.B.; Herring, A.H.; Stýblo, M.; Rubio-Andrade, M.; Garcia-Vargas, G.; Gamble, M.V.; Fry, R.C. Maternal one carbon metabolism and arsenic methylation in a pregnancy cohort in Mexico. J. Expo. Sci. Environ. Epidemiol. 2018, 28, 505–514. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Ekström, E.C.; Goessler, W.; Lönnerdal, B.; Nermell, B.; Yunus, M.; Rahman, A.; El Arifeen, S.; Persson, L.A.; Vahter, M. Nutritional status has marginal influence on the metabolism of inorganic arsenic in pregnant Bangladeshi women. Environ. Health Perspect. 2008, 116, 315–321. [Google Scholar] [CrossRef]
- Gardner, R.M.; Nermell, B.; Kippler, M.; Grandér, M.; Li, L.; Ekström, E.C.; Rahman, A.; Lönnerdal, B.; Hoque, A.M.W.; Vahter, M. Arsenic methylation efficiency increases during the first trimester of pregnancy independent of folate status. Reprod. Toxicol. 2011, 31, 210–218. [Google Scholar] [CrossRef]
- Hall, M.; Gamble, M.; Slavkovich, V.; Liu, X.; Levy, D.; Cheng, Z.; van Geen, A.; Yunus, M.; Rahman, M.; Pilsner, J.R.; et al. Determinants of arsenic metabolism: Blood arsenic metabolites, plasma folate, cobalamin, and homocysteine concentrations in maternal-newborn pairs. Environ. Health Perspect. 2007, 115, 1503–1509. [Google Scholar] [CrossRef] [Green Version]
- Niedzwiecki, M.M.; Hall, M.N.; Liu, X.; Slavkovich, V.; Ilievski, V.; Levy, D.; Alam, S.; Siddique, A.B.; Parvez, F.; Graziano, J.H.; et al. Interaction of plasma glutathione redox and folate deficiency on arsenic methylation capacity in Bangladeshi adults. Free Radic. Biol. Med. 2014, 73, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Chung, C.J.; Pu, Y.S.; Su, C.T.; Chen, H.W.; Huang, Y.K.; Shiue, H.S.; Hsueh, Y.M. Polymorphisms in one-carbon metabolism pathway genes, urinary arsenic profile, and urothelial carcinoma. Cancer Causes Control 2010, 21, 1605–1613. [Google Scholar] [CrossRef]
- Lambrou, A.; Baccarelli, A.; Wright, R.O.; Weisskopf, M.; Bollati, V.; Amarasiriwardena, C.; Vokonas, P.; Schwartz, J. Arsenic exposure and DNA methylation among elderly men. Epidemiology 2012, 23, 668–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pilsner, J.R.; Liu, X.; Ahsan, H.; Ilievski, V.; Slavkovich, V.; Levy, D.; Factor-Litvak, P.; Graziano, J.H.; Gamble, M.V. Genomic methylation of peripheral blood leukocyte DNA: Influences of arsenic and folate in Bangladeshi adults. Am. J. Clin. Nutr. 2007, 86, 1179–1186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tauheed, J.; Sanchez-Guerra, M.; Lee, J.J.; Paul, L.; Ibne Hasan, M.O.S.; Quamruzzaman, Q.; Selhub, J.; Wright, R.O.; Christiani, D.C.; Coull, B.A.; et al. Associations between post translational histone modifications, myelomeningocele risk, environmental arsenic exposure, and folate deficiency among participants in a case control study in Bangladesh. Epigenetics 2017, 12, 484–491. [Google Scholar] [CrossRef] [Green Version]
- Grau-Pérez, M.; Kuo, C.C.; Spratlen, M.; Thayer, K.A.; Mendez, M.A.; Hamman, R.F.; Dabelea, D.; Adgate, J.L.; Knowler, W.C.; Bell, R.A.; et al. The association of arsenic exposure and metabolism with Type 1 and Type 2 Diabetes in youth: The SEARCH Case-Control Study. Diabetes Care 2017, 40, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Chung, C.J.; Lee, H.L.; Chang, C.H.; Chang, H.; Liu, C.S.; Jung, W.T.; Liu, H.J.; Liou, S.H.; Chung, M.C.; Hsueh, Y.M. Measurement of urinary arsenic profiles and DNA hypomethylation in a case-control study of urothelial carcinoma. Arch. Toxicol. 2019, 93, 2155–2164. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.S.; Haque, R.; Guha Mazumder, D.N.; Moore, L.E.; Ghosh, N.; Samanta, S.; Mitra, S.; Hira-Smith, M.M.; von Ehrenstein, O.; Basu, A.; et al. Blood concentrations of methionine, selenium, beta-carotene, and other micronutrients in a case-control study of arsenic-induced skin lesions in West Bengal, India. Environ. Res. 2006, 101, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Pilsner, J.R.; Liu, X.; Ahsan, H.; Ilievski, V.; Slavkovich, V.; Levy, D.; Factor-Litvak, P.; Graziano, J.H.; Gamble, M.V. Folate deficiency, hyperhomocysteinemia, low urinary creatinine, and hypomethylation of leukocyte DNA are risk factors for arsenic-induced skin lesions. Environ. Health Perspect. 2009, 117, 254–260. [Google Scholar] [CrossRef]
- Gong, L.; Yang, Q.; Liu, C.W.B.; Wang, X.; Zeng, H.L. Assessment of 12 essential and toxic elements in whole blood of pregnant and non-pregnant women living in Wuhan of China. Biol. Trace Elem. Res. 2020. [Google Scholar] [CrossRef]
- Wang, C.T.; Chang, W.T.; Huang, C.W.; Chou, S.S.; Lin, C.T.; Liau, S.J.; Wang, R.T. Studies on the concentrations of arsenic, selenium, copper, zinc and iron in the hair of Blackfoot disease patients in different clinical stages. Eur. J. Clin. Chem. Clin. Biochem. 1994, 32, 107–111. [Google Scholar] [CrossRef] [Green Version]
- Tsai, J.L.; Horng, P.H.; Hwang, T.J.; Hsu, J.W.; Horng, C.J. Determination of urinary trace elements (arsenic, copper, cadmium, manganese, lead, zinc, selenium) in patients with Blackfoot disease. Arch. Environ. Health 2004, 59, 686–692. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.M.; Yang, M.H. Arsenic, selenium, and zinc in patients with Blackfoot disease. Biol. Trace Elem. Res. 1988, 15, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Gerhardsson, L.; Nordberg, G.F. Lung cancer in smelter workers–interactions of metals as indicated by tissue levels. Scand. J. Work Environ. Health 1993, 19, 90–94. [Google Scholar] [PubMed]
- Tutkun, L.; Gunduzoz, M.; Turksoy, V.A.; Deniz, S.; Oztan, O.; Cetintepe, S.P.; Iritas, S.B.; Yilmaz, F.M. Arsenic-induced inflammation in workers. Mol. Biol. Rep. 2019, 46, 2371–2378. [Google Scholar] [CrossRef] [PubMed]
Reference | Research Model | Study Description | Main Results |
---|---|---|---|
Xu et al., 2010 [19] | Chang human hepatocytes | CG—normal folate medium 2.3 µM (1 h) and sodium arsenite 20 µM (for 24 h) G1—folate-deficient medium (1 h) and sodium arsenite 20 µM (for 24 h) G2—folate-supplemented medium 10 µM (1 h) and sodium arsenite 20 µM (for 24 h) | G1 vs. CG intracellular tAs↔, methylated arsenicals↓ viability↓, early apoptosis↑, late apoptosis↑, caspase-3 cleavage↑, PARP cleavage↑, percentage of cells with collapsed mitochondrial membrane potential↑, ROS↑, TBARS↔, GSH↓, CAT↓, SOD↔ cytochrome c: in mitochondria↓, in cytosol↑ |
G2 vs. CG intracellular tAs↔, methylated arsenicals↔ viability↑, early apoptosis↔, late apoptosis↔, caspase-3 cleavage↓, PARP cleavage↓, percentage of cells with collapsed mitochondrial membrane potential↓, ROS↓, TBARS↓, GSH↑, CAT↔, SOD↔ cytochrome c: in mitochondria↑, in cytosol↓ | |||
Ma et al., 2015 [20] | HEK293ET cells (human embryonic kidney 293 cells) | CG—sodium arsenite 5 mM G1—folic acid 100 µM and sodium arsenite 5 mM | G1 vs. CG cell viability↑, mRNA level of GDF1↑, ROS↓, expression of p66Shc↓ |
Wong et al., 2019 [21] | THP-1 (human monocyte cell line) | CG—zinc sulfate 4 µM (for 4 weeks) and after that sodium arsenite 10 µM (for 24 h) G1—zinc sulfate 0 µM (for 4 weeks) and after that sodium arsenite 10 µM (for 24 h) | G1 vs. CG Zn total and intracellular↓, ROS↑ |
CG—zinc sulfate 4 µM (for 4 weeks) and after that sodium arsenite 10 µM (for 4 h) G1—zinc sulfate 0 µM (for 4 weeks) and after that sodium arsenite 10 µM (for 4 h) | G1 vs. CG HO-1↑, SOD↔, CAT↔ | ||
CG—zinc sulfate 4 µM (for 4 weeks) and after that sodium arsenite 1 µM (for 4 h) G1—zinc sulfate 0 µM (for 4 weeks) and after that sodium arsenite 1 µM (for 4 h) | G1 vs. CG intracellular zinc↓, transcript levels of: ICAM1↑, IL6↑, CXCL8↑ | ||
Sun et al., 2014 [22] | HaCaT cells (human keratinocyte cell line) | CG—sodium arsenite 2 µM (for 24 h) G1—zinc chloride 2 µM (for 24 h) and sodium arsenite 2 µM (for 24 h) | G1 vs. CG zinc content in PARP-1↑, PARP-1 activity↑ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sijko, M.; Kozłowska, L. Influence of Dietary Compounds on Arsenic Metabolism and Toxicity. Part II—Human Studies. Toxics 2021, 9, 259. https://doi.org/10.3390/toxics9100259
Sijko M, Kozłowska L. Influence of Dietary Compounds on Arsenic Metabolism and Toxicity. Part II—Human Studies. Toxics. 2021; 9(10):259. https://doi.org/10.3390/toxics9100259
Chicago/Turabian StyleSijko, Monika, and Lucyna Kozłowska. 2021. "Influence of Dietary Compounds on Arsenic Metabolism and Toxicity. Part II—Human Studies" Toxics 9, no. 10: 259. https://doi.org/10.3390/toxics9100259
APA StyleSijko, M., & Kozłowska, L. (2021). Influence of Dietary Compounds on Arsenic Metabolism and Toxicity. Part II—Human Studies. Toxics, 9(10), 259. https://doi.org/10.3390/toxics9100259