Environmental Risk Assessment of Vehicle Exhaust Particles on Aquatic Organisms of Different Trophic Levels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection and Characterization of Vehicle Exhaust Particles
2.2. Microalgae Bioassay
2.2.1. Microalgae Cultures
2.2.2. Flow Cytometry Analysis
2.3. Brine Shrimp Bioassay
2.4. Sea Urchin Bioassay
2.5. Statistical Analysis
3. Results
3.1. Characteristics of the Obtained Vehicle Emitted Particles
3.2. Results of the Microalgae Bioassay
3.3. Results of the Brine Shrimp Bioassay
3.4. Results of the Sea Urchin Egg Fertilization and Embryotoxicity Tests
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Giechaskiel, B.; Joshi, A.; Ntziachristos, L.; Dilara, P. European regulatory framework and particulate matter emissions of gasoline light-duty vehicles: A review. Catalysts 2019, 9, 586. [Google Scholar] [CrossRef] [Green Version]
- Qian, Y.; Li, Z.; Yu, L.; Wang, X.; Lu, X. Review of the state-of-the-art of particulate matter emissions from modern gasoline fueled engines. Appl. Energy 2019, 238, 1269–1298. [Google Scholar] [CrossRef]
- Hama, S.; Cordell, R.; Monks, P. Quantifying primary and secondary source contributions to ultrafine particles in the UK urban background. Atmos. Environ. 2017, 166, 62–78. [Google Scholar] [CrossRef] [Green Version]
- Harrison, R.M.; Deacon, A.R.; Jones, M.R.; Appleby, R.S. Sources and processes affecting concentrations of PM10 and PM2.5 particulate matter in Birmingham (UK). Atmos. Environ. 1997, 31, 4103–4117. [Google Scholar] [CrossRef]
- Almeida, S.; Pio, C.; Freitas, M.; Reis, M.; Trancoso, M. Source apportionment of fine and coarse particulate matter in a sub-urban area at the Western European Coast. Atmos. Environ. 2005, 39, 3127–3138. [Google Scholar] [CrossRef]
- Stafoggia, M.; Cesaroni, G.; Peters, A.; Andersen, Z.J.; Badaloni, C.; Beelen, R.; Caracciolo, B.; Cyrys, J.; de Faire, U.; de Hoogh, K. Long-term exposure to ambient air pollution and incidence of cerebrovascular events: Results from 11 European cohorts within the ESCAPE project. Environ. Health Perspect. 2014, 122, 919–925. [Google Scholar] [CrossRef] [Green Version]
- Cesaroni, G.; Forastiere, F.; Stafoggia, M.; Andersen, Z.J.; Badaloni, C.; Beelen, R.; Caracciolo, B.; de Faire, U.; Erbel, R.; Eriksen, K.T. Long term exposure to ambient air pollution and incidence of acute coronary events: Prospective cohort study and meta-analysis in 11 European cohorts from the ESCAPE Project. BMJ 2014, 348, f7412. [Google Scholar] [CrossRef] [Green Version]
- Hime, N.J.; Marks, G.B.; Cowie, C.T. A comparison of the health effects of ambient particulate matter air pollution from five emission sources. Int. J. Environ. Res. Public Health 2018, 15, 1206. [Google Scholar] [CrossRef] [Green Version]
- WHO. Air Pollution and Cancer; International Agency for Research on Cancer: Geneva, Switzerland, 2013; Volume 161, p. 177.
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and health impacts of air pollution: A review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef] [Green Version]
- Duarte, A.L.; Schneider, I.L.; Artaxo, P.; Oliveira, M.L. Spatiotemporal assessment of particulate matter (PM10 and PM2.5) and ozone in a Caribbean urban coastal city. Geosci. Front. 2021, 101168. [Google Scholar] [CrossRef]
- Li, H.; Lin, L.; Ye, S.; Li, H.; Fan, J. Assessment of nutrient and heavy metal contamination in the seawater and sediment of Yalujiang Estuary. Mar. Pollut. Bull. 2017, 117, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Retnam, A.; Zakaria, M.P.; Juahir, H.; Aris, A.Z.; Zali, M.A.; Kasim, M.F. Chemometric techniques in distribution, characterisation and source apportionment of polycyclic aromatic hydrocarbons (PAHS) in aquaculture sediments in Malaysia. Mar. Pollut. Bull. 2013, 69, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Mesquita, S.R.; Dachs, J.; van Drooge, B.L.; Castro-Jimenez, J.; Navarro-Martin, L.; Barata, C.; Vieira, N.; Guimarães, L.; Piña, B. Toxicity assessment of atmospheric particulate matter in the Mediterranean and Black Seas open waters. Sci. Total Environ. 2016, 545, 163–170. [Google Scholar] [CrossRef]
- Sielicki, P.; Janik, H.; Guzman, A.; Namiesnik, J. Grain type and size of particulate matter from diesel vehicle exhausts analysed by transmission electron microscopy. Environ. Technol. 2012, 33, 1781–1788. [Google Scholar] [CrossRef]
- Yang, J.C.; Roth, P.; Ruehl, C.R.; Shafer, M.M.; Antkiewicz, D.S.; Durbin, T.D.; Cocker, D.; Asa-Awukua, A.; Karavalakis, G. Physical, chemical, and toxicological characteristics of particulate emissions from current technology gasoline direct injection vehicles. Sci. Total Environ. 2019, 650, 1182–1194. [Google Scholar] [CrossRef] [Green Version]
- Rasch, F.; Birmili, W.; Weinhold, K.; Nordmann, S.; Sonntag, A.; Spindler, G.; Herrmann, H.; Wiedensohler, A.; Loschau, G. Significant reduction of ambient black carbon and particle number in Leipzig as a result of the low emission zone. Gefahrst. Reinhalt. Der Luft 2013, 73, 483–489. [Google Scholar]
- Johnson, T.V. Diesel Emission Control in Review. SAE Int. J. Fuels Lubr. 2009, 2, 68–81. [Google Scholar] [CrossRef]
- Attar, M.A.; Xu, H. Correlations between particulate matter emissions and gasoline direct injection spray characteristics. J. Aerosol Sci. 2016, 102, 128–141. [Google Scholar] [CrossRef] [Green Version]
- Sobotowski, R.A.; Butler, A.D.; Guerra, Z. A Pilot Study of Fuel Impacts on PM Emissions from Light-Duty Gasoline Vehicles. SAE Int. J. Fuels Lubr. 2015, 8, 214–233. [Google Scholar] [CrossRef]
- Rocha, T.L.; Mestre, N.C.; Sabóia-Morais, S.M.T.; Bebianno, M.J. Environmental behaviour and ecotoxicity of quantum dots at various trophic levels: A review. Environ. Int. 2017, 98, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Evariste, L.; Mottier, A.; Lagier, L.; Cadarsi, S.; Barret, M.; Sarrieu, C.; Soula, B.; Mouchet, F.; Flahaut, E.; Pinelli, E. Assessment of graphene oxide ecotoxicity at several trophic levels using aquatic microcosms. Carbon 2020, 156, 261–271. [Google Scholar] [CrossRef]
- Kováts, N.; Ács, A.; Ferincz, Á.; Kovács, A.; Horváth, E.; Kakasi, B.; Jancsek-Turóczi, B.; Gelencsér, A. Ecotoxicity and genotoxicity assessment of exhaust particulates from diesel-powered buses. Environ. Monit. Assess. 2013, 185, 8707–8713. [Google Scholar] [CrossRef]
- Ács, A.; Ferincz, Á.; Kovács, A.; Jancsek-Turóczi, B.; Gelencsér, A.; Kiss, G.; Kováts, N. Ecotoxicological characterisation of exhaust particulates from diesel-powered light-duty vehicles. Cent. Eur. J. Chem. 2013, 11, 1954–1958. [Google Scholar] [CrossRef] [Green Version]
- Vouitsis, E.; Ntziachristos, L.; Pistikopoulos, P.; Samaras, Z.; Chrysikou, L.; Samara, C.; Papadimitriou, C.; Samaras, P.; Sakellaropoulos, G. An investigation on the physical, chemical and ecotoxicological characteristics of particulate matter emitted from light-duty vehicles. Environ. Pollut. 2009, 157, 2320–2327. [Google Scholar] [CrossRef]
- Correa, A.X.R.; Testolin, R.C.; Torres, M.M.; Cotelle, S.; Schwartz, J.J.; Millet, M.; Radetski, C.M. Ecotoxicity assessment of particulate matter emitted from heavy-duty diesel-powered vehicles: Influence of leaching conditions. Environ. Sci. Pollut. Res. 2017, 24, 9399–9406. [Google Scholar] [CrossRef]
- Pikula, K.S.; Chernyshev, V.V.; Zakharenko, A.M.; Chaika, V.V.; Waissi, G.; Hai, L.H.; Hien, T.T.; Tsatsakis, A.M.; Golokhvast, K.S. Toxicity assessment of particulate matter emitted from different types of vehicles on marine microalgae. Environ. Res. 2019, 179, 108785. [Google Scholar] [CrossRef]
- Singh, K.P.; Gupta, S.; Kumar, A.; Mohan, D. Multispecies QSAR modeling for predicting the aquatic toxicity of diverse organic chemicals for regulatory toxicology. Chem. Res. Toxicol. 2014, 27, 741–753. [Google Scholar] [CrossRef]
- Araújo, C.V.M.; Moreno-Garrido, I. Chapter 36—Toxicity Bioassays on Benthic Diatoms—Kim, Se-Kwon. In Handbook of Marine Microalgae; Academic Press: Boston, MA, USA, 2015; pp. 539–546. [Google Scholar]
- Richmond, A. Handbook of Microalgal Culture: Biotechnology and Applied Phycology; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Blinova, I.; Niskanen, J.; Kajankari, P.; Kanarbik, L.; Käkinen, A.; Tenhu, H.; Penttinen, O.-P.; Kahru, A. Toxicity of two types of silver nanoparticles to aquatic crustaceans Daphnia magna and Thamnocephalus platyurus. Environ. Sci. Pollut. Res. 2013, 20, 3456–3463. [Google Scholar] [CrossRef]
- Ávila, D.S.; Roncato, J.F.; Jacques, M.T. Nanotoxicology assessment in complementary/alternative models. Energy Ecol. Environ. 2018, 3, 72–80. [Google Scholar] [CrossRef]
- Bustos-Obregon, E.; Vargas, Á. Chronic toxicity bioassay with populations of the crustacean Artemia salina exposed to the organophosphate diazinon. Biol. Res. 2010, 43, 357–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pikula, K.; Zakharenko, A.; Chaika, V.; Em, I.; Nikitina, A.; Avtomonov, E.; Tregubenko, A.; Agoshkov, A.; Mishakov, I.; Kuznetsov, V. Toxicity of Carbon, Silicon, and Metal-Based Nanoparticles to Sea Urchin Strongylocentrotus Intermedius. Nanomaterials 2020, 10, 1825. [Google Scholar] [CrossRef]
- Aluigi, M.G.; Falugi, C.; Mugno, M.G.; Privitera, D.; Chiantore, M. Dose-dependent effects of chlorpyriphos, an organophosphate pesticide, on metamorphosis of the sea urchin, Paracentrotus lividus. Ecotoxicology 2010, 19, 520–529. [Google Scholar] [CrossRef] [PubMed]
- Paredes, E. Biobanking of a Marine Invertebrate Model Organism: The Sea Urchin. J. Mar. Sci. Eng. 2016, 4, 7. [Google Scholar] [CrossRef] [Green Version]
- Syroezhko, A.; Begak, O.Y.; Makurina, G. Effect of various high-octane additives on antiknock quality of gasolines. Russ. J. Appl. Chem. 2004, 77, 1002–1006. [Google Scholar] [CrossRef]
- Golokhvast, K.S.; Chernyshev, V.V.; Chaika, V.V.; Ugay, S.M.; Zelinskaya, E.V.; Tsatsakis, A.M.; Karakitsios, S.P.; Sarigiannis, D.A. Size-segregated emissions and metal content of vehicle-emitted particles as a function of mileage: Implications to population exposure. Environ. Res. 2015, 142, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Chernyshev, V.V.; Zakharenko, A.M.; Ugay, S.M.; Hien, T.T.; Hai, L.H.; Kholodov, A.S.; Burykina, T.I.; Stratidakis, A.K.; Mezhuev, Y.O.; Tsatsakis, A.M.; et al. Morphologic and chemical composition of particulate matter in motorcycle engine exhaust. Toxicol. Rep. 2018, 5, 224–230. [Google Scholar] [CrossRef]
- Chernyshev, V.; Zakharenko, A.; Ugay, S.; Hien, T.; Hai, L.; Olesik, S.; Kholodov, A.; Zubko, E.; Kokkinakis, M.; Burykina, T. Morphological and chemical composition of particulate matter in buses exhaust. Toxicol. Rep. 2019, 6, 120–125. [Google Scholar] [CrossRef]
- Zakharenko, A.M.; Engin, A.B.; Chernyshev, V.V.; Chaika, V.V.; Ugay, S.M.; Rezaee, R.; Karimi, G.; Drozd, V.A.; Nikitina, A.V.; Solomennik, S.F.; et al. Basophil mediated pro-allergic inflammation in vehicle-emitted particles exposure. Environ. Res. 2017, 152, 308–314. [Google Scholar] [CrossRef] [PubMed]
- OECD. Test No. 201: Freshwater Alga and Cyanobacteria, Growth Inhibition Test; OECD: Paris, France, 2011. [Google Scholar]
- Pikula, K.S.; Zakharenko, A.M.; Chaika, V.V.; Stratidakis, A.K.; Kokkinakis, M.; Waissi, G.; Rakitskii, V.N.; Sarigiannis, D.A.; Hayes, A.W.; Coleman, M.D.; et al. Toxicity bioassay of waste cooking oil-based biodiesel on marine microalgae. Toxicol. Rep. 2019, 6, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, N.B.; Jensen, K.A.; Baun, A.; Rasmussen, K.; Rauscher, H.; Tantra, R.; Cupi, D.; Gilliland, D.; Pianella, F.; Riego Sintes, J.M. Techniques and protocols for dispersing nanoparticle powders in aqueous media—Is there a rationale for harmonization? J. Toxicol. Environ. Health Part B 2015, 18, 299–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pikula, K.; Chaika, V.; Zakharenko, A.; Markina, Z.; Vedyagin, A.; Kuznetsov, V.; Gusev, A.; Park, S.; Golokhvast, K. Comparison of the Level and Mechanisms of Toxicity of Carbon Nanotubes, Carbon Nanofibers, and Silicon Nanotubes in Bioassay with Four Marine Microalgae. Nanomaterials 2020, 10, 485. [Google Scholar] [CrossRef] [Green Version]
- Guillard, R.R.; Ryther, J.H. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. Can. J. Microbiol. 1962, 8, 229–239. [Google Scholar] [CrossRef]
- Pikula, K.; Mintcheva, N.; Kulinich, S.A.; Zakharenko, A.; Markina, Z.; Chaika, V.; Orlova, T.; Mezhuev, Y.; Kokkinakis, E.; Tsatsakis, A.; et al. Aquatic toxicity and mode of action of CdS and ZnS nanoparticles in four microalgae species. Environ. Res. 2020, 186, 109513. [Google Scholar] [CrossRef]
- Crowley, L.C.; Scott, A.P.; Marfell, B.J.; Boughaba, J.A.; Chojnowski, G.; Waterhouse, N.J. Measuring cell death by propidium iodide uptake and flow cytometry. Cold Spring Harb. Protoc. 2016, 7. [Google Scholar] [CrossRef]
- Wang, R.; Hua, M.; Yu, Y.; Zhang, M.; Xian, Q.M.; Yin, D.Q. Evaluating the effects of allelochemical ferulic acid on Microcystis aeruginosa by pulse-amplitude-modulated (PAM) fluorometry and flow cytometry. Chemosphere 2016, 147, 264–271. [Google Scholar] [CrossRef]
- Sabnis, R.W.; Deligeorgiev, T.G.; Jachak, M.N.; Dalvi, T.S. DiOC(6)(3): A useful dye for staining the endoplasmic reticulum. Biotech. Histochem. 1997, 72, 253–258. [Google Scholar] [CrossRef]
- Johari, S.A.; Rasmussen, K.; Gulumian, M.; Ghazi-Khansari, M.; Tetarazako, N.; Kashiwada, S.; Asghari, S.; Park, J.-W.; Yu, I.J. Introducing a new standardized nanomaterial environmental toxicity screening testing procedure, ISO/TS 20787: Aquatic toxicity assessment of manufactured nanomaterials in saltwater lakes using Artemia sp. nauplii. Toxicol. Mech. Methods 2019, 29, 95–109. [Google Scholar] [CrossRef]
- Buznikov, G.; Podmarev, V. The sea urchins Strongylocentrotus droebachiensis, S. nudus, and S. intermedius. In Animal Species for Developmental Studies; Springer: Berlin/Heidelberg, Germany, 1990; pp. 253–285. [Google Scholar]
- Agathokleous, E.; Calabrese, E.J. Hormesis: The dose response for the 21st century: The future has arrived. Toxicology 2019, 425, 152249. [Google Scholar] [CrossRef] [PubMed]
- Agathokleous, E.; Kitao, M.; Calabrese, E.J. Hormesis: A Compelling Platform for Sophisticated Plant Science. Trends Plant Sci. 2019, 24, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Shen, R.R.; Wang, Y.S.; Gao, W.K.; Cong, X.G.; Cheng, L.L.; Li, X.R. Size-segregated particulate matter bound polycyclic aromatic hydrocarbons (PAHs) over China: Size distribution, characteristics and health risk assessment. Sci. Total Environ. 2019, 685, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.K.; Kottuparambil, S.; Moh, S.H.; Lee, T.K.; Kim, Y.-J.; Rhee, J.-S.; Choi, E.-M.; Kim, B.H.; Yu, Y.J.; Yarish, C. Potential applications of nuisance microalgae blooms. J. Appl. Phycol. 2015, 27, 1223–1234. [Google Scholar] [CrossRef]
- Zingone, A.; Escalera, L.; Aligizaki, K.; Fernández-Tejedor, M.; Ismael, A.; Montresor, M.; Mozetič, P.; Taş, S.; Totti, C. Toxic marine microalgae and noxious blooms in the Mediterranean Sea: A contribution to the Global HAB Status Report. Harmful Algae 2021, 102, 101843. [Google Scholar] [CrossRef] [PubMed]
- Nolte, T.M.; Hartmann, N.B.; Kleijn, J.M.; Garnæs, J.; Van De Meent, D.; Hendriks, A.J.; Baun, A. The toxicity of plastic nanoparticles to green algae as influenced by surface modification, medium hardness and cellular adsorption. Aquat. Toxicol. 2017, 183, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Debenest, T.; Gagné, F.; Petit, A.-N.; Kohli, M.; Eullafroy, P.; Blaise, C. Monitoring of a flame retardant (tetrabromobisphenol A) toxicity on different microalgae assessed by flow cytometry. J. Environ. Monit. 2010, 12, 1918–1923. [Google Scholar] [CrossRef]
- Rodd, A.L.; Castilho, C.J.; Chaparro, C.E.; Rangel-Mendez, J.R.; Hurt, R.H.; Kane, A.B. Impact of emerging, high-production-volume graphene-based materials on the bioavailability of benzo (a) pyrene to brine shrimp and fish liver cells. Environ. Sci. Nano 2018, 5, 2144–2161. [Google Scholar] [CrossRef]
- Rainbow, P.; Luoma, S. Metal toxicity, uptake and bioaccumulation in aquatic invertebrates—Modelling zinc in crustaceans. Aquat. Toxicol. 2011, 105, 455–465. [Google Scholar] [CrossRef]
- Vimercati, L.; Cavone, D.; Caputi, A.; De Maria, L.; Tria, M.; Prato, E.; Ferri, G.M. Nanoparticles: An Experimental Study of Zinc Nanoparticles Toxicity on Marine Crustaceans. General Overview on the Health Implications in Humans. Front. Public Health 2020, 8, 192. [Google Scholar] [CrossRef]
- Wallace Hayes, A.; Muriana, A.; Alzualde, A.; Fernandez, D.B.; Iskandar, A.; Peitsch, M.C.; Kuczaj, A.; Hoeng, J. Alternatives to animal use in risk assessment of mixtures. Int. J. Toxicol. 2020, 39, 165–172. [Google Scholar] [CrossRef]
- de Zwart, D.; Adams, W.; Galay Burgos, M.; Hollender, J.; Junghans, M.; Merrington, G.; Muir, D.; Parkerton, T.; De Schamphelaere, K.A.; Whale, G. Aquatic exposures of chemical mixtures in urban environments: Approaches to impact assessment. Environ. Toxicol. Chem. 2018, 37, 703–714. [Google Scholar] [CrossRef] [Green Version]
Vehicle Type | Coded Vehicle Model | Displacement (cc) | Fuel (Russian Standard) 1 |
---|---|---|---|
Motorcycle | HusTE | 300 | AI–92 |
HonVT | 1300 | AI–95 | |
Light-duty vehicle | TMar2 | 2500 | AI–92 |
MiPaj | 3000 | AI–95 | |
THi | 3000 | Diesel | |
TLC80 | 2500 | Diesel | |
Specialized vehicle | KomPC | 8300 | Diesel |
Endpoint | Exposure | Fluorescent Dye or Registered Parameter | CytoFLEX Emission Channel Name/ WAVELENGTH, nm | Reference |
---|---|---|---|---|
Growth rate inhibition | 24 h, 96 h, 7 days | PI | ECD, 610 | [48] |
Esterase activity | 24 h | FDA | FITC, 525 | [49] |
Membrane potential | 24 h | DIOC6 | FITC, 525 | [50] |
Size | 96 h, 7 days | Forward scatter intensity (size calibration kit F13838 by Molecular Probes, USA) | FSC | [45] |
Sample | ACEN | FLU | Sum of ANTH and PHEN | PYR | SUM of BaANTH and CHRY | SUM of BkFLU, BaFLU, and BaPYR | Sum of BghiPER and BahANTH | IND123PYR | Total PAHs |
---|---|---|---|---|---|---|---|---|---|
HusTE | 0.00 | 2.56 | 11.64 | 1.56 | 0.05 | 0.02 | 0.00 | 0.00 | 15.83 |
HonVT | 0.55 | 2.33 | 4.58 | 0.45 | 0.03 | 0.04 | 0.00 | 0.02 | 7.99 |
TMar2 | 0.00 | 1.13 | 4.19 | 0.49 | 0.03 | 0.01 | 0.00 | 0.00 | 5.84 |
MiPaj | 0.20 | 1.85 | 5.70 | 0.37 | 0.01 | 0.03 | 0.14 | 0.28 | 8.59 |
THi | 1.87 | 9.18 | 23.50 | 1.75 | 0.06 | 0.07 | 0.19 | 0.42 | 37.04 |
TLC80 | 0.06 | 0.23 | 2.06 | 0.43 | 0.04 | 0.01 | 0.00 | 0.04 | 2.86 |
KomPC | 2.76 | 2.82 | 60.41 | 43.08 | 0.90 | 0.21 | 0.25 | 0.64 | 111.07 |
Chemical Species | Concentration in Suspension, µg/L | ||||||
---|---|---|---|---|---|---|---|
HusTE | HonVT | TMar2 | MiPaj | THi | TLC80 | KomPC | |
27Al | 79.20 | 402.90 | 283.10 | 127.00 | 106.10 | 229.70 | 95.40 |
45Sc | ≤0.19 | ≤0.14 | ≤0.15 | ≤0.20 | ≤0.10 | ≤0.18 | ≤0.24 |
51V | 1.18 | 0.54 | 1.47 | 1.00 | 0.85 | 0.31 | 0.29 |
52Cr | ≤1.70 | ≤1.40 | ≤1.80 | 5.00 | ≤1.90 | 5.20 | ≤2.20 |
55Mn | 163.27 | 722.08 | 122.39 | 289.00 | 38.74 | 22.97 | 35.18 |
56Fe | 20.32 | 30.00 | 17.95 | ≤13.00 | 29.12 | 40.94 | 63.59 |
59Co | 1.04 | 1.59 | 3.32 | 1.00 | 3.92 | 0.77 | 3.77 |
60Ni | 23.45 | 280.50 | 15.40 | 10.00 | 32.15 | 15.74 | 13.33 |
63Cu | 67.64 | 66.91 | 71.09 | 73.00 | 68.94 | 78.30 | 74.06 |
66Zn | 25.68 | 141.50 | 554.00 | 513.00 | 852.10 | 36.50 | 307.50 |
75As | 1.41 | 0.90 | 1.81 | 2.00 | 3.38 | 1.74 | 0.91 |
88Sr | 7234 | 8076 | 8941 | 8236 | 8075 | 8741 | 8136 |
89Y | 0.06 | 0.03 | 0.04 | n/a | 0.03 | 0.06 | 0.06 |
90Zr | 0.41 | 0.18 | 0.18 | n/a | 0.14 | 0.22 | 0.21 |
93Nb | ≤0.02 | 0.03 | 0.02 | n/a | ≤0.01 | 0.02 | ≤0.02 |
98Mo | 18.74 | 166.30 | 608.70 | 242.00 | 161.50 | 16.66 | 19.11 |
107Ag | 0.42 | 0.11 | 0.06 | n/a | 0.17 | 0.06 | 0.04 |
114Cd | 0.14 | 0.15 | 0.45 | n/a | 1.64 | 2.33 | 0.30 |
118Sn | 0.25 | 0.17 | 0.24 | n/a | 0.19 | 0.40 | 0.25 |
121Sb | 1.31 | 3.41 | 0.99 | 1.00 | 1.24 | 0.48 | 0.85 |
184W | 0.16 | 2.37 | 13.99 | n/a | 0.97 | 0.20 | 0.29 |
205Tl | ≤0.03 | 0.03 | 0.04 | n/a | 0.05 | ≤0.03 | ≤0.03 |
208Pb | 0.63 | 0.52 | 0.83 | 1.00 | 1.54 | 2.46 | 0.49 |
209Bi | ≤0.03 | ≤0.02 | ≤0.03 | ≤0.02 | ≤0.02 | ≤0.03 | ≤0.03 |
232Th | 0.03 | ≤0.02 | 0.04 | ≤0.022 | ≤0.02 | ≤0.03 | 0.03 |
238U | 1.55 | 0.76 | 2.62 | 2.00 | 0.81 | 0.14 | 0.11 |
Sample | HusTE | HonVT | TMar2 | MiPaj | THi | TLC80 | KomPC |
---|---|---|---|---|---|---|---|
LC50, mg/L | 52.8 (35.4–79.9) | 68.2 (45.2–105.8) | 65.9 (50.9–86.3) | 60.2 (42.7–85.9) | 45.3 (28.2–73.5) | 60.6 (38.6–97.5) | 82.6 (57.5–122.1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pikula, K.; Tretyakova, M.; Zakharenko, A.; Johari, S.A.; Ugay, S.; Chernyshev, V.; Chaika, V.; Kalenik, T.; Golokhvast, K. Environmental Risk Assessment of Vehicle Exhaust Particles on Aquatic Organisms of Different Trophic Levels. Toxics 2021, 9, 261. https://doi.org/10.3390/toxics9100261
Pikula K, Tretyakova M, Zakharenko A, Johari SA, Ugay S, Chernyshev V, Chaika V, Kalenik T, Golokhvast K. Environmental Risk Assessment of Vehicle Exhaust Particles on Aquatic Organisms of Different Trophic Levels. Toxics. 2021; 9(10):261. https://doi.org/10.3390/toxics9100261
Chicago/Turabian StylePikula, Konstantin, Mariya Tretyakova, Alexander Zakharenko, Seyed Ali Johari, Sergey Ugay, Valery Chernyshev, Vladimir Chaika, Tatiana Kalenik, and Kirill Golokhvast. 2021. "Environmental Risk Assessment of Vehicle Exhaust Particles on Aquatic Organisms of Different Trophic Levels" Toxics 9, no. 10: 261. https://doi.org/10.3390/toxics9100261
APA StylePikula, K., Tretyakova, M., Zakharenko, A., Johari, S. A., Ugay, S., Chernyshev, V., Chaika, V., Kalenik, T., & Golokhvast, K. (2021). Environmental Risk Assessment of Vehicle Exhaust Particles on Aquatic Organisms of Different Trophic Levels. Toxics, 9(10), 261. https://doi.org/10.3390/toxics9100261