Potential for Interspecies Toxicity Estimation in Soil Invertebrates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Compilation
2.2. Model Development
2.3. Model Prediction Accuracy
3. Results
3.1. Within-Taxa Models
3.2. Across-Taxa Models
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Suter, G.W. Organism-level extrapolation models. In Ecological Risk Assessment; Suter, G.W., Ed.; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Bejarano, A.C.; Wheeler, J.R. Scientific Basis for Expanding the Use of Interspecies Correlation Estimation Models. Integr. Environ. Assess. Manag. 2020, 16, 528–530. [Google Scholar] [CrossRef] [PubMed]
- Raimondo, S.; Jackson, C.R.; Barron, M.G. Influence of taxonomic relatedness and chemical mode of action in acute interspecies estimation models for aquatic species. Environ. Sci. Technol. 2010, 44, 7711–7716. [Google Scholar] [CrossRef] [PubMed]
- Dyer, S.D.; Versteeg, D.J.; Belanger, S.E.; Chaney, J.G.; Raimondo, S.; Barron, M.G. Comparison of species sensitivity distributions derived from interspecies correlation models to distributions used to derive water quality criteria. Environ. Sci. Technol. 2008, 42, 3076–3083. [Google Scholar] [CrossRef] [PubMed]
- Awkerman, J.A.; Raimondo, S.; Jackson, C.R.; Barron, M.G. Augmenting aquatic species sensitivity distributions with interspecies toxicity estimation models. Environ. Toxicol. Chem. 2014, 33, 688–695. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.; Wu, F.; Mu, Y.; Meng, W.; Dyer, S.D.; Fan, M.; Raimondo, S.; Barron, M.G. Interspecies correlation estimation-applications in water quality criteria and ecological risk assessment. Environ. Sci. Technol. 2013, 47, 11382–11383. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Fan, B.; Fan, M.; Belanger, S.; Li, J.; Chen, J.; Gao, X.; Liu, Z. Development and use of interspecies correlation estimation models in China for potential application in water quality criteria. Chemosphere 2020, 240, 124848. [Google Scholar] [CrossRef] [PubMed]
- Fairbrother, A.; Barron, M.; Johnson, M. Chapter 42: Methods in Environmental Toxicology. In Hayes’ Principles and Methods of Toxicology, 6th ed.; Taylor & Frances: Boca Raton, FL, USA, 2014; pp. 2024–2065. [Google Scholar]
- OECD. Earthworm, Acute Toxicity Tests. In OECD Guideline for Testing of Chemicals 207; OECD Publishing: Paris, France, 1984. [Google Scholar]
- Scharmüller, A.; Schreiner, V.C.; Schäfer, R.B. Standartox: Standardizing toxicity data. Data 2020, 5, 46. [Google Scholar] [CrossRef]
- Efroymson, R.A.; Will, M.E.; Suter, G.W. Toxicological Benchmarks for Contaminants of Potential Concern for Effects on Soil and Litter Invertebrates and Heterotrophic Process: 1997 Revision; Prepared for the Oak Ridge Laboratory: Oak Ridge, TN, USA, 1997. [Google Scholar]
- Willming, M.M.; Lilavois, C.R.; Barron, M.G.; Raimondo, S. Acute Toxicity Prediction to Threatened and Endangered Species Using Interspecies Correlation Estimation (ICE) Models. Environ. Sci. Technol. 2016, 50, 10700–10707. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, M. Building Predictive Models in R Using the caret Package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Raimondo, S.; Barron, M.G. Application of Interspecies Correlation Estimation (ICE) models and QSAR in estimating species sensitivity to pesticides. SAR QSAR Environ. Res. 2020, 31, 1–18. [Google Scholar] [CrossRef]
- Raimondo, S.; Vivian, D.N.; Delos, C.; Barron, M.G. Protectiveness of species sensitivity distribution hazard concentrations for acute toxicity used in endangered species risk assessment. Environ. Toxicol. Chem. 2008, 27, 2599–2607. [Google Scholar] [CrossRef]
- Connors, K.A.; Beasley, A.; Barron, M.G.; Belanger, S.E.; Bonnell, M.; Brill, J.L.; de Zwart, D.; Kienzler, A.; Krailler, J.; Otter, R.; et al. Creation of a Curated Aquatic Toxicology Database: EnviroTox. Environ. Toxicol. Chem. 2019, 38, 1062–1073. [Google Scholar] [CrossRef] [Green Version]
- Hrovat, M.; Segner, H.; Jeram, S. Variability of in vivo fish acute toxicity data. Regul. Toxicol. Pharmacol. 2009, 54, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Van Gestel, C.A.; Borgman, E.; Verweij, R.A.; Ortiz, M.D. The influence of soil properties on the toxicity of molybdenum to three species of soil invertebrates. Ecotoxicol. Environ. Saf. 2011, 74, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Reinecke, A.J.; Reinecke, S.A. Earthworms as test organisms in ecotoxicological assessment of toxicant impacts on ecosystems. In Earthworm Ecology; Edwards, C.A., Ed.; CRC Press: Boca Raton, FL, USA, 2004; pp. 299–320. [Google Scholar]
- Fründ, H.-C.; Graefe, U.; Tischer, S. Earthworms as Bioindicators of Soil Quality. In Biology of Earthworms; Karaca, A., Ed.; Spinger: Berlin/Heidelberg, Germany, 2011; pp. 261–278. [Google Scholar]
Endpoint | Common Name | Taxa | Species | Number of Chemicals |
---|---|---|---|---|
LC50 | Earthworm | Annelid | Eisenia andrei | 35 |
Earthworm | Annelid | Eisenia fetida | 162 | |
Earthworm | Annelid | Lumbricus rubellus | 15 | |
Earthworm | Annelid | Lumbricus terrestris | 26 | |
Nematode | Nematode | Caenorhabditis elegans | 10 | |
Pot worm | Annelid | Enchytraeus albidus | 3 | |
Springtail | Arthropod | Heteromurus nitidus | 5 | |
Woodlouse | Arthropod | Porcellionides pruinosus | 3 | |
LOEC | Earthworm | Annelid | Allolobophora tuberculata | 9 |
Earthworm | Annelid | Eisenia andrei | 24 | |
Earthworm | Annelid | Eisenia fetida | 26 | |
African Earthworm | Annelid | Eudrilus eugeniae | 9 | |
Earthworm | Annelid | Lumbricus rubellus | 14 | |
India Blue Earthworm | Annelid | Perionyx excavatus | 9 | |
Springtail | Arthropod | Folsomia candida | 9 | |
Springtail | Arthropod | Heteromurus nitidus | 4 |
Model Pair | Predicted Species (y-axis) | Surrogate Species (x-axis) | Intercept | Slope | R2 | p-Value | MSE | n | Cross- Validation within 5-Fold |
---|---|---|---|---|---|---|---|---|---|
1 | Eisenia andrei | Eisenia fetida | 0.37 | 0.72 | 0.63 | 4.50 × 10−5 | 0.20 | 19 | 100% |
Eisenia fetida | Eisenia andrei | 0.34 | 0.88 | 0.63 | 4.50 × 10−5 | 0.24 | 19 | 100% | |
2 | Eisenia fetida | Lumbricus terrestris | 0.97 | 0.60 | 0.36 | 3.07 × 10−3 | 0.28 | 22 | 100% |
Lumbricus terrestris | Eisenia fetida | 0.96 | 0.60 | 0.36 | 3.07 × 10−3 | 0.28 | 22 | 100% | |
3 | Eisenia andrei | Lumbricus terrestris | 0.34 | 0.72 | 0.39 | 3.03 × 10−2 | 0.42 | 12 | 100% |
Lumbricus terrestris | Eisenia andrei | 1.09 | 0.54 | 0.39 | 3.03 × 10−2 | 0.32 | 12 | 91.67% |
Model Pair | Predicted Species (y-axis) | Surrogate Species (x-axis) | Intercept | Slope | R2 | p-Value | MSE | n | Cross- Validation within 5-Fold |
---|---|---|---|---|---|---|---|---|---|
1 | Eudrilus euganiae | Eisenia fetida | −0.07 | 1.09 | 0.60 | 8.77 × 10−3 | 0.26 | 10 | 90% |
Eisenia fetida | Eudrilus euganiae | 1.00 | 0.55 | 0.60 | 8.77 × 10−3 | 0.13 | 10 | 100% | |
2 | Eudrilus euganiae | Allolobophora tuberculata | –0.27 | 1.04 | 0.96 | 4.48 × 10−6 | 0.02 | 9 | 100% |
Allolobophora tuberculata | Eudrilus euganiae | 0.35 | 0.92 | 0.96 | 4.48 × 10−6 | 0.02 | 9 | 100% | |
3 | Perionyx excavatus | Eisenia fetida | 0.27 | 0.94 | 0.58 | 1.03 × 10−2 | 0.21 | 10 | 90% |
Eisenia fetida | Perionyx excavatus | 0.83 | 0.62 | 0.58 | 1.03 × 10−2 | 0.14 | 10 | 100% | |
4 | Eisenia fetida | Allolobophora tuberculata | 0.59 | 0.67 | 0.74 | 1.50 × 10−3 | 0.09 | 10 | 90% |
Allolobophora tuberculata | Eisenia fetida | 0.06 | 1.09 | 0.74 | 1.50 × 10−3 | 0.14 | 10 | 90% | |
5 | Perionyx excavatus | Allolobophora tuberculata | 0.09 | 0.90 | 0.95 | 7.88 × 10−6 | 0.02 | 9 | 100% |
Allolobophora tuberculata | Perionyx excavatus | 0.03 | 1.05 | 0.95 | 7.88 × 10−6 | 0.02 | 9 | 100% | |
6 | Eudrilus euganiae | Perionyx excavatus | –0.31 | 1.13 | 0.96 | 2.84 × 10−6 | 0.02 | 9 | 100% |
Perionyx excavatus | Eudrilus euganiae | 0.36 | 0.86 | 0.96 | 2.84 × 10−6 | 0.01 | 9 | 100% |
Model Pair | Predicted Species (y-axis) | Surrogate Species (x-axis) | Intercept | Slope | R2 | p-Value | MSE | n | Cross-Validation within 5-Fold |
---|---|---|---|---|---|---|---|---|---|
1 | Folsomia candida | Eisenia fetida | 0.85 | 0.47 | 0.93 | 3.37 × 10−2 | 0.04 | 4 | 50% |
Eisenia fetida | Folsomia candida | –1.55 | 2.00 | 0.93 | 3.37 × 10−2 | 0.15 | 4 | 75% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barron, M.G.; Lambert, F.N. Potential for Interspecies Toxicity Estimation in Soil Invertebrates. Toxics 2021, 9, 265. https://doi.org/10.3390/toxics9100265
Barron MG, Lambert FN. Potential for Interspecies Toxicity Estimation in Soil Invertebrates. Toxics. 2021; 9(10):265. https://doi.org/10.3390/toxics9100265
Chicago/Turabian StyleBarron, Mace G., and Faith N. Lambert. 2021. "Potential for Interspecies Toxicity Estimation in Soil Invertebrates" Toxics 9, no. 10: 265. https://doi.org/10.3390/toxics9100265
APA StyleBarron, M. G., & Lambert, F. N. (2021). Potential for Interspecies Toxicity Estimation in Soil Invertebrates. Toxics, 9(10), 265. https://doi.org/10.3390/toxics9100265