Mercury Accumulation in Commercial Varieties of Oryza sativa L. Cultivated in Soils of La Mojana Region, Colombia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiments in Pots
2.2. Seed Treatment
2.3. Agronomic Management
2.4. Estimation of Aboveground Biomass and Weight per 1000 Grains
2.5. Chemical Analysis and Sampling
2.6. Experimental Design
2.7. Translocation Factor (TF)
2.8. Health Risk Due to Rice Intake
2.9. Data Treatment
3. Results and Discussion
3.1. Soil Characterization
3.2. Effect of Hg on the Biomass and Weight per 1000 Grains of O. sativa L.
3.3. Accumulation of Hg in Roots of O. sativa L. Varieties
3.4. Accumulation of Hg in Husk of O. sativa L. Varieties
3.5. Accumulation of Hg in Grain of O. sativa L. Varieties
3.6. Health Risk Due to Hg Rice Grain
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schaefer, A.M.; Zoffer, M.; Yrastorza, L.; Pearlman, D.M.; Bossart, G.D.; Stoessel, R.; Reif, J.S. Reif Mercury Exposure, Fish Consumption, and Perceived Risk among Pregnant Women in Coastal Floridsa. Int. J. Environ. Res. Public Health 2019, 16, 4903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolipinski, M.; Subramanian, M.; Kristen, K.; Borish, S.; Ditta, S. Sources and Toxicity of Mercury in the San Francisco Bay Area, Spanning California and Beyond. J. Environ. Public Health 2020, 2020, 8184614. [Google Scholar] [CrossRef]
- UPME. Ministerio de Minas y Energia. In Estudio de la Cadena del Mercurio en Colombia Con Énfasis en la Actividad Minera de Oro; 2014. Available online: https://bdigital.upme.gov.co/bitstream/001/1315/5/v.2anexo%201.pdf (accessed on 1 November 2021).
- Cordy, P.; Veiga, M.; Crawforsd, B.; Garcia, O.; Gonzalez, V.; Moraga, D.; Roeser, M.; Wip, D. Characterization, Mapping, and Mitigation of Mercury Vapour Emissions from Artisanal Mining Gold Shops. Environ. Res. 2013, 125, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Pugliese, C.E.; Machuca-Martínez, F.; Pérez-Rincón, M. Water Footprint in Gold Extraction: A Case-Study in Suárez, Cauca, Colombia. Heliyon 2021, 7, e07949. [Google Scholar] [CrossRef] [PubMed]
- Marrugo-Negrete, J.; Verbel, J.O.; Ceballos, E.L.; Benitez, L.N. Total Mercury and Methylmercury Concentrations in Fish from the Mojana Region of Colombia. Environ. Geochem. Health 2008, 30, 21–30. [Google Scholar] [CrossRef]
- Olivero-Verbel, J.; Johnson-Restrepo, B.; Mendoza-Marín, C.; Paz-Martinez, R.; Olivero-Verbel, R. Mercury in the Aquatic Environment of the Village of Caimito at the Mojana Region, North of Colombia. Water Air Soil Pollut. 2004, 159, 409–420. [Google Scholar] [CrossRef]
- Vargas Licona, S.P.; Marrugo Negrete, J.L. Mercurio, Metilmercurio y Otros Metales Pesados En Peces de Colombia: Riesgo Por Ingesta. Acta Biol. Colomb. 2019, 24, 232–242. [Google Scholar] [CrossRef]
- Marrugo-Negrete, J.; Durango-Hernández, J.; Calao-Ramos, C.; Urango-Cárdenas, I.; Díez, S. Mercury Levels and Genotoxic Effect in Caimans from Tropical Ecosystems Impacted by Gold Mining. Sci. Total Environ. 2019, 664, 899–907. [Google Scholar] [CrossRef]
- Feng, X.; Li, P.; Qiu, G.; Wang, S.; Li, G.; Shang, L.; Meng, B.; Jiang, H.; Bai, W.; Li, Z.; et al. Human Exposure To Methylmercury through Rice Intake in Mercury Mining Areas, Guizhou Province, China. Environ. Sci. Technol. 2008, 42, 326–332. [Google Scholar] [CrossRef] [PubMed]
- De la Ossa-Quiñones, A.E.D. La O. la mojana y el arroz, más que un cultivo. Rev. Arroz 2021, 69, 46–50. [Google Scholar]
- Rothenberg, S.E.; Feng, X.; Zhou, W.; Tu, M.; Jin, B.; You, J. Environment and Genotype Controls on Mercury Accumulation in Rice (Oryza sativa L.) Cultivated along a Contamination Gradient in Guizhou, China. Sci. Total Environ. 2012, 426, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Mello, I.S.; Targanski, S.; Pietro-Souza, W.; Frutuoso Stachack, F.F.; Terezo, A.J.; Soares, M.A. Endophytic Bacteria Stimulate Mercury Phytoremediation by Modulating Its Bioaccumulation and Volatilization. Ecotoxicol. Environ. Saf. 2020, 202, 110818. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Shi, Y.; Si, G.; Yang, Q.; Dong, J.; Chen, J. The Bioremediation Potentials and Mercury(II)-Resistant Mechanisms of a Novel Fungus Penicillium spp. DC-F11 Isolated from Contaminated Soil. J. Hazard. Mater. 2020, 396, 122638. [Google Scholar] [CrossRef] [PubMed]
- Ding, C.; Zhang, T.; Li, X.; Wang, X. Major Controlling Factors and Prediction Models for Mercury Transfer from Soil to Carrot. J. Soils Sediments 2014, 14, 1136–1146. [Google Scholar] [CrossRef]
- Hu, H.; Li, Z.; Feng, Y.; Liu, Y.; Xue, J.; Davis, M.; Liang, Y. Prediction Model for Mercury Transfer from Soil to Corn Grain and Its Cross-Species Extrapolation. J. Integr. Agric. 2016, 15, 2393–2402. [Google Scholar] [CrossRef] [Green Version]
- Hang, X.; Gan, F.; Wang, J.; Chen, X.; Chen, Y.; Wang, H.; Zhou, J.; Du, C. Soil Mercury Accumulation and Transference to Different Crop Grains. Hum. Ecol. Risk Assess. Int. J. 2016, 22, 1242–1252. [Google Scholar] [CrossRef]
- Wang, Y.; Dang, F.; Zhao, J.; Zhong, H. Selenium Inhibits Sulfate-Mediated Methylmercury Production in Rice Paddy Soil. Environ. Pollut. 2016, 213, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ye, Z.; Li, B.; Huang, L.; Meng, M.; Shi, J.; Jiang, G. Growing Rice Aerobically Markedly Decreases Mercury Accumulation by Reducing Both Hg Bioavailability and the Production of MeHg. Environ. Sci. Technol. 2014, 48, 1878–1885. [Google Scholar] [CrossRef]
- Han, J.; Chen, Z.; Pang, J.; Liang, L.; Fan, X.; Li, Q. Health Risk Assessment of Inorganic Mercury and Methylmercury via Rice Consumption in the Urban City of Guiyang, Southwest China. Int. J. Environ. Res. Public Health 2019, 16, 216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Argumedo-García, M.P.; Consuegra-Solórzano, A.; Vidal-Durango, J.V.; Marrugo-Negrete, J.L. Exposición a Mercurio En Habitantes Del Municipio de San Marcos (Departamento de Sucre) Debida a La Ingesta de Arroz (Oryza sativa) Contaminado. Rev. Salud Pública 2013, 15, 886–898. [Google Scholar]
- Argumedo, G.M.P.; Vergara, R.C.; Vidal, D.J.V.; Marrugo, N.J.L. Evaluación de La Concentración de Mercurio En Arroz (Oryza Sativa) Crudo y Cocido Procedente Del Municipio de San Marcos- Sucre y Zona Aurífera Del Municipio de Ayapel—Córdoba. Rev. Univ. Ind. Santander Salud 2015, 47, 169–177. [Google Scholar]
- Cadena Torres, J.; Cuello Pérez, D.M.; Romero Ferrer, J.L.; Pérez Cantero, S.P. Caracterización Del Sistema de Producción de Arroz Criollo En La Mojana, En Colombia. Cien. Agri. 2021, 18, 67–82. [Google Scholar] [CrossRef]
- Cardona Ayala, C.; Jarma Orozco, A.; Áramendiz Tatis, H.; Peña Agresott, M.; Vergara Córdoba, C. Respuestas Fisiológicas y Bioquímicas Del Fríjol Caupí (Vigna unguiculata L. Walp.) Bajo Déficit Hídrico. Rev. Colomb. Cienc. Hortic. 2015, 8, 250. [Google Scholar] [CrossRef] [Green Version]
- Coquery, M.; Welbourn, P.M. The Relationship between Metal Concentration and Organic Matter in Sediments and Metal Concentration in the Aquatic Macrophyte Eriocaulon Septangulare. Water Res. 1995, 29, 2094–2102. [Google Scholar] [CrossRef]
- IGAC. Métodos Analíticos del Laboratorio de Suelos; Departamento Administrativo Nacional de Estadística: Bogotá, Colombia, 2006; Volume XXIII, ISBN 958-9067-98-0. [Google Scholar]
- USEPA. EPA Method 7473 (SW-846): Mercury in Solids and Solutions by Thermal Decomposition, Amalgamation, and Atomic Absorption Spectrophotometry. In Selected Analytical Methods for Environmental Remediation and Recovery (SAM) 2017; U.S. Environmental Protection Agency (EPA): Washington, DC, USA, 2007. [Google Scholar]
- NTC. NTC-Norma Técnica Colombiana—5264: Calidad de Suelo, Determinación del pH; Bogotá, D.C., Ed.; Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC): Bogota, Colombia, 2008. [Google Scholar]
- Kabata-Pendias, A. Trace Elements in Soils and Plants/Alina Kabata-Pendias, 4th ed.; CRC Press: Boca Raton, FL, USA, 2011; ISBN 0-429-19203-7. [Google Scholar]
- Marrugo-Negrete, J.; Durango-Hernández, J.; Pinedo-Hernández, J.; Enamorado-Montes, G.; Díez, S. Mercury Uptake and Effects on Growth in Jatropha Curcas. J. Environ. Sci. 2016, 48, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Mateos, P.; Alés-Álvarez, F.-J.; García-Martín, J.F. Phytoremediation of Highly Contaminated Mining Soils by Jatropha curcas L. and Production of Catalytic Carbons from the Generated Biomass. J. Environ. Manag. 2019, 231, 886–895. [Google Scholar] [CrossRef] [PubMed]
- USEPA. Summary Report on Issues in Ecological Risk Assessment; EPA/625/3-91/018, Risk Assessment Forum; Eastern Research Group, Inc.: Lexington, MA, USA, 1991. [Google Scholar]
- JECFA. Joint Food and Agriculture Organization/World Health Organization Expert Committee on Food Additives. In Proceedings of the Summary and Conclusions of the Meetings of the Joint FAO/WHO Expert Committee on Food Additives, Geneva, Switzerland, 26 October–5 November 2020. [Google Scholar]
- Muñiz Torres, O. Uso de Fertilizantes En Puerto Rico. Enfoques Prácticos. Technical Guide; University of Puerto Rico: Río Piedras, PR, USA; College of Agricultural Sciences: State College, PA, USA; Agricultural Extension Service: Knoxville, TN, USA, 1992. [Google Scholar]
- Pulver, E.L. Manejo Estratégico y Producción Competitiva del Arroz Con Riego en América Latina; International Center for Tropical Agriculture: Cali, Colombia, 2010. [Google Scholar]
- Singer, D.; Herndon, E.; Zemanek, L.; Cole, K.; Sanda, T.; Senko, J.; Perdrial, N. Biogeochemical Controls on the Potential for Long-Term Contaminant Leaching from Soils Developing on Historic Coal Mine Spoil. Soil Syst. 2020, 5, 3. [Google Scholar] [CrossRef]
- Adamczyk-Szabela, D.; Markiewicz, J.; Wolf, W.M. Heavy Metal Uptake by Herbs. IV. Influence of Soil PH on the Content of Heavy Metals in Valeriana officinalis L. Water Air Soil Pollut. 2015, 226, 106. [Google Scholar] [CrossRef] [Green Version]
- Sitarska, M.; Traczewska, T.M.; Stanicka-Łotocka, A.; Filyarovskaya, V.; Zamorska-Wojdyła, D. Accumulation of Mercury in the Biomass of Selected Pleustophytes. Environ. Prot. Eng. 2014, 40, 165–174. [Google Scholar] [CrossRef]
- Patra, M.; Bhowmik, N.; Bandopadhyay, B.; Sharma, A. Comparison of Mercury, Lead and Arsenic with Respect to Genotoxic Effects on Plant Systems and the Development of Genetic Tolerance. Environ. Exp. Bot. 2004, 52, 199–223. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Sajad, M.A. Phytoremediation of Heavy Metals—Concepts and Applications. Chemosphere 2013, 91, 869–881. [Google Scholar] [CrossRef] [PubMed]
- Cabrita, M.T.; Duarte, B.; Cesário, R.; Mendes, R.; Hintelmann, H.; Eckey, K.; Dimock, B.; Caçador, I.; Canário, J. Mercury Mobility and Effects in the Salt-Marsh Plant Halimione Portulacoides: Uptake, Transport, and Toxicity and Tolerance Mechanisms. Sci. Total Environ. 2019, 650, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Shen, G.; Yan, Y.; He, J. Genotypic Variation in Grain Mercury Accumulation of Lowland Rice. J. Plant Nutr. Soil Sci. 2008, 171, 281–285. [Google Scholar] [CrossRef]
- MinMinas Concentraciones de Mercurio en Aire y en Suelo, en Las Zonas de Influencia Minera de los Diez (10) Principales Departamentos Productores de Oro en COLOMBIA; Convenio Interadministrativo GGC 524–2017; Ministerio de Minas y Energia—Universidad de Córdoba-Colombia: Córdoba, Colombia, 2017.
- Vidal Durango, J.V.; Marrugo Negrete, J.L.; Jaramillo Colorado, B.; Perez Castro, L.M. Remediación de Suelos Contaminados Con Mercurio Utilizando Guarumo (Cecropia peltata). Ing. Desarro. 2010, 27, 113–129. [Google Scholar]
- Pérez Vargas, H.M.; Vidal Durango, J.V.; Marrugo, J.L. Evaluación de La Capacidad Acumuladora de Mercurio Del Ají (Capsicum annuum). Rev. Salud Pública 2015, 16, 897–909. [Google Scholar] [CrossRef] [Green Version]
- Marrugo-Negrete, J.; Durango-Hernández, J.; Pinedo-Hernández, J.; Olivero-Verbel, J.; Díez, S. Phytoremediation of Mercury-Contaminated Soils by Jatropha Curcas. Chemosphere 2015, 127, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Greger, M. Clonal Differences in Mercury Tolerance, Accumulation, and Distribution in Willow. J. Environ. Qual. 2004, 33, 1779–1785. [Google Scholar] [CrossRef]
- China National Standard GB 2762-2017 China Food Safety National Standard for Maximum Levels of Contaminants in Foods; National Health and Family Planning Commission of the People’s Republic of China; China Food and Drug Administration: Beijing, China, 2017.
- Meng, M.; Li, B.; Shao, J.; Wang, T.; He, B.; Shi, J.; Ye, Z.; Jiang, G. Accumulation of Total Mercury and Methylmercury in Rice Plants Collected from Different Mining Areas in China. Environ. Pollut. 2014, 184, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Fay, L.; Gustin, M. Assessing the Influence of Different Atmospheric and Soil Mercury Concentrations on Foliar Mercury Concentrations in a Controlled Environment. Water Air Soil Pollut. 2007, 181, 373–384. [Google Scholar] [CrossRef]
- Meng, B.; Feng, X.; Qiu, G.; Cai, Y.; Wang, D.; Li, P.; Shang, L.; Sommar, J. Distribution Patterns of Inorganic Mercury and Methylmercury in Tissues of Rice (Oryza sativa L.) Plants and Possible Bioaccumulation Pathways. J. Agric. Food Chem. 2010, 58, 4951–4958. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Meng, B.; Feng, X. Mercury Methylation in Rice Paddy and Accumulation in Rice Plant: A Review. Ecotoxicol. Environ. Saf. 2020, 195, 110462. [Google Scholar] [CrossRef] [PubMed]
- Marrugo-Negrete, J.; Durango-Hernández, J.; Díaz-Fernández, L.; Urango-Cárdenas, I.; Araméndiz-Tatis, H.; Vergara-Flórez, V.; Bravo, A.G.; Díez, S. Transfer and Bioaccumulation of Mercury from Soil in Cowpea in Gold Mining Sites. Chemosphere 2020, 250, 126142. [Google Scholar] [CrossRef]
- European Union. EU Commission Regulation (EU) 2018/73 Amending Annexes II and III to Regulation (EC) No 396/2005 of the European Parliament and of the Council as Regards Maximum Residue Levels for Mercury Compounds in or on Certain Products 2018. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32018R0073 (accessed on 1 November 2021).
- Peng, X.; Liu, F.; Wang, W.-X.; Ye, Z. Reducing Total Mercury and Methylmercury Accumulation in Rice Grains through Water Management and Deliberate Selection of Rice Cultivars. Environ. Pollut. 2012, 162, 202–208. [Google Scholar] [CrossRef]
- Feng, C.; Pedrero, Z.; Li, P.; Du, B.; Feng, X.; Monperrus, M.; Tessier, E.; Berail, S.; Amouroux, D. Investigation of Hg Uptake and Transport between Paddy Soil and Rice Seeds Combining Hg Isotopic Composition and Speciation. Elem. Sci. Anthr. 2016, 4, 000087. [Google Scholar] [CrossRef] [Green Version]
- Meng, B.; Feng, X.; Qiu, G.; Anderson, C.W.N.; Wang, J.; Zhao, L. Localization and Speciation of Mercury in Brown Rice with Implications for Pan-Asian Public Health. Environ. Sci. Technol. 2014, 48, 7974–7981. [Google Scholar] [CrossRef]
- Strickman, R.J.; Mitchell, C.P.J. Accumulation and Translocation of Methylmercury and Inorganic Mercury in Oryza sativa: An Enriched Isotope Tracer Study. Sci. Total Environ. 2017, 574, 1415–1423. [Google Scholar] [CrossRef]
- Meng, B.; Feng, X.; Qiu, G.; Liang, P.; Li, P.; Chen, C.; Shang, L. The Process of Methylmercury Accumulation in Rice (Oryza sativa L.). Environ. Sci. Technol. 2011, 45, 2711–2717. [Google Scholar] [CrossRef]
Source of Variation | Df | SS | F | p-Value |
---|---|---|---|---|
Biomass | ||||
Variety | 2 | 11,944.7 | 3.893 | 0.056 |
Concentration | 2 | 14,434.4 | 4.704 | 0.036 |
Variety * Concentration | 4 | 38,179.2 | 6.221 | 0.009 |
Error | 10 | 15,341.7 | ||
Total | 18 | 79,900 | ||
Weight per 1000 grains | ||||
Variety | 2 | 12.999 | 410.7 | <0.001 |
Concentration | 2 | 16.713 | 528.1 | <0.001 |
Variety * Concentration | 4 | 3.096 | 48.9 | <0.001 |
Error | 10 | 0.285 | ||
Total | 18 | 32.808 |
Source of Variation | Df | SS | F | p-Value |
---|---|---|---|---|
Root | ||||
Variety | 2 | 328,298 | 10.099 | 0.003 |
Concentration | 2 | 4,316,391 | 132.787 | <0.001 |
Variety * Concentration | 4 | 848,646 | 13.054 | <0.001 |
Error | 11 | 178,784 | ||
Total | 19 | 5,698,977 | ||
Grain | ||||
Variety | 2 | 301.318 | 12.824 | 0.001 |
Concentration | 2 | 11.490 | 0.489 | 0.625 |
Variety * Concentration | 4 | 155.978 | 3.319 | 0.047 |
Error | 12 | 140.980 | ||
Total | 20 | 701.723 | ||
Husk | ||||
Variety | 2 | 732.780 | 3.491 | 0.067 |
Concentration | 2 | 1621.710 | 7.726 | 0.008 |
Variety * Concentration | 4 | 1602.191 | 3.817 | 0.035 |
Error | 11 | 1154.435 | ||
Total | 19 | 5294.442 |
Variety | Hg Concentration in Soil (mg kg−1) | Mean HQ |
---|---|---|
FA2000 | 0.13 | 0.227 a |
0.8 | 0.218 a | |
1.5 | 0.228 a | |
Total FA2000 | 0.224 | |
FA473 | 0.13 | 0.116 b |
0.8 | 0.232 a | |
1.5 | 0.350 c | |
Total FA473 | 0.232 | |
FAM | 0.13 | 0.099 b |
0.8 | 0.222 a | |
1.5 | 0.241 a | |
Total FAM | 0.183 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Enamorado-Montes, G.; Reino-Causil, B.; Urango-Cardenas, I.; Marrugo-Madrid, S.; Marrugo-Negrete, J. Mercury Accumulation in Commercial Varieties of Oryza sativa L. Cultivated in Soils of La Mojana Region, Colombia. Toxics 2021, 9, 304. https://doi.org/10.3390/toxics9110304
Enamorado-Montes G, Reino-Causil B, Urango-Cardenas I, Marrugo-Madrid S, Marrugo-Negrete J. Mercury Accumulation in Commercial Varieties of Oryza sativa L. Cultivated in Soils of La Mojana Region, Colombia. Toxics. 2021; 9(11):304. https://doi.org/10.3390/toxics9110304
Chicago/Turabian StyleEnamorado-Montes, Germán, Brayan Reino-Causil, Iván Urango-Cardenas, Siday Marrugo-Madrid, and José Marrugo-Negrete. 2021. "Mercury Accumulation in Commercial Varieties of Oryza sativa L. Cultivated in Soils of La Mojana Region, Colombia" Toxics 9, no. 11: 304. https://doi.org/10.3390/toxics9110304
APA StyleEnamorado-Montes, G., Reino-Causil, B., Urango-Cardenas, I., Marrugo-Madrid, S., & Marrugo-Negrete, J. (2021). Mercury Accumulation in Commercial Varieties of Oryza sativa L. Cultivated in Soils of La Mojana Region, Colombia. Toxics, 9(11), 304. https://doi.org/10.3390/toxics9110304