A Hybrid Neural Network–Particle Swarm Optimization Informed Spatial Interpolation Technique for Groundwater Quality Mapping in a Small Island Province of the Philippines
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Area of Study
2.2. Sampling, Storage, and Collection of GW Samples
2.3. Elemental Analysis of Groundwater Samples
2.4. Descriptive and Multivariate Statistical Analysis
2.5. Machine Learning: Hybrid Neuro-Particle Swarm Optimization Modelling
2.5.1. Backpropagation Neural Network (BP-NN)
2.5.2. Particle Swarm Optimization (PSO)
2.5.3. Hybrid NN-PSO Model
2.5.4. Performance Evaluation
2.6. Spatial Interpolation Methods for Heavy Metals
2.7. Cross Validation
3. Results
3.1. Heavy Metals in Groundwater
3.2. NN-PSO Simulation Results
3.3. NN-PSO Informed Spatial Interpolation Techniques for GW Quality Mapping
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Parameter | Cross Validation | Deterministic Methods | Geostatistical Methods | Interpolation with Barriers | ||||||
---|---|---|---|---|---|---|---|---|---|---|
IDW | GPI | RBF | LPI | OK | UK | EBK | KS | DK | ||
Temp * | MAE R | 0.239 0.142 | 0.003 0.0003 | 0.006 0.082 | 0.059 0.092 | 0.038 0.055 | 0.086 0.071 | 0.066 0.004 | 0.089 0.183 | 0.081 0.004 |
Temp ** | MAE R | 0.030 0.889 | 0.009 0.112 | 0.006 0.916 | 0.057 0.933 | 0.002 0.941 | 0.026 0.939 | 0.029 0.940 | 0.060 0.934 | 0.099 0.757 |
pH * | MAE R | 0.019 0.150 | 0.002 0.003 | 0.004 0.008 | 0.007 0.022 | 0.011 0.101 | 0.009 0.098 | 0.015 0.155 | 0.020 0.365 | 0.010 0.095 |
pH ** | MAE R | 0.003 0.905 | 0.010 0.108 | 0.002 0.920 | 0.004 0.930 | 0.004 0.943 | 0.009 0.942 | 0.001 0.945 | 0.001 0.938 | 0.002 0.796 |
EC * | MAE R | 0.013 0.313 | 0.005 0.306 | 0.024 0.177 | 0.048 0.110 | 0.031 0.128 | 0.022 0.388 | 0.023 0.157 | 0.086 0.323 | 0.027 0.076 |
EC ** | MAE R | 0.003 0.940 | 0.010 0.278 | 0.002 0.952 | 0.004 0.964 | 0.002 0.974 | 0.018 0.970 | 0.004 0.973 | 0.007 0.970 | 0.015 0.849 |
TDS * | MAE R | 0.002 0.111 | 0.002 0.545 | 0.005 0.001 | 0.023 0.039 | 0.019 0.158 | 0.022 0.154 | 0.013 0.182 | 0.028 0.195 | 0.008 0.080 |
TDS ** | MAE R | 0.004 0.863 | 0.003 0.155 | 0.003 0.869 | 0.006 0.887 | 0.002 0.887 | 0.003 0.890 | 0.001 0.901 | 0.004 0.888 | 0.006 0.861 |
Cr * | MAE R | 0.0007 0.700 | 0.00008 0.605 | 0.0001 0.704 | 0.0007 0.679 | 0.0006 0.716 | 0.008 0.510 | 0.00007 0.683 | 0.0003 0.615 | 0.002 0.681 |
Cr ** | MAE R | 0.0002 0.966 | 0.0002 0.679 | 0.00008 0.968 | 0.0001 0.970 | 0.0001 0.967 | 0.002 0.957 | 0.00007 0.971 | 0.00007 0.970 | 0.0002 0.946 |
Cd * | MAE R | 0.0006 0.822 | 0.00002 0.705 | 0.0002 0.819 | 0.0002 0.738 | 0.0005 0.832 | 0.002 0.552 | 0.0001 0.786 | 0.0003 0.738 | 0.003 0.713 |
Cd ** | MAE R | 0.0001 0.965 | 9.1 × 10−5 0.699 | 0.0002 0.980 | 8.4 × 10−5 0.977 | 0.00004 0.979 | 0.008 0.937 | 6.5 × 10−5 0.981 | 1.5 × 10−5 0.979 | 0.0001 0.898 |
Fe * | MAE R | 0.269 0.077 | 0.020 0.169 | 0.090 0.134 | 0.283 0.089 | 0.375 0.095 | 0.167 0.039 | 0.038 0.160 | 0.120 0.010 | 0.078 0.160 |
Fe ** | MAE R | 0.187 0.906 | 0.500 0.258 | 0.068 0.906 | 0.135 0.920 | 0.046 0.932 | 0.540 0.739 | 0.045 0.940 | 0.101 0.920 | 0.100 0.742 |
Mn * | MAE R | 0.105 0.127 | 0.006 0.199 | 0.050 0.041 | 0.011 0.195 | 0.029 0.185 | 0.086 0.125 | 0.022 0.228 | 0.040 0.155 | 0.031 0.294 |
Mn ** | MAE R | 0.027 0.841 | 0.006 0.089 | 0.006 0.857 | 0.007 0.879 | 0.005 0.922 | 0.841 0.815 | 0.007 0.908 | 0.008 0.889 | 0.019 0.645 |
Ni * | MAE R | 0.0007 0.817 | 0.0003 0.707 | 0.0004 0.820 | 0.0003 0.737 | 0.0006 0.829 | 0.002 0.570 | 0.0006 0.780 | 0.0004 0.730 | 0.004 0.714 |
Ni ** | MAE R | 0.0003 0.963 | 0.004 0.666 | 0.0002 0.991 | 0.0003 0.979 | 0.0004 0.987 | 0.007 0.982 | 0.0003 0.986 | 0.0002 0.978 | 0.0005 0.883 |
Pb * | MAE R | 0.0008 0.778 | 0.0005 0.673 | 0.0002 0.774 | 0.0009 0.710 | 0.0003 0.813 | 0.0010 0.632 | 0.0004 0.744 | 0.0003 0.702 | 0.003 0.691 |
Pb ** | MAE R | 0.0005 0.971 | 0.0001 0.740 | 0.0006 0.982 | 0.0003 0.985 | 0.0001 0.985 | 0.006 0.976 | 0.0001 0.989 | 0.0003 0.986 | 0.0008 0.906 |
Zn * | MAE R | 0.130 0.177 | 0.054 0.325 | 0.310 0.247 | 0.149 0.067 | 0.993 0.082 | 0.121 0.187 | 0.183 0.395 | 0.669 0.125 | 0.111 0.428 |
Zn ** | MAE R | 0.449 0.908 | 0.018 0.363 | 0.157 0.927 | 0.350 0.938 | 0.073 0.946 | 0.074 0.879 | 0.017 0.951 | 0.255 0.926 | 0.381 0.739 |
Cu * | MAE R | 0.0003 0.223 | 0.0004 0.246 | 0.003 0.212 | 0.0006 0.193 | 0.0005 0.251 | 0.073 0.335 | 0.002 0.189 | 0.0005 0.336 | 0.003 0.039 |
Cu ** | MAE R | 0.002 0.941 | 0.001 0.347 | 0.0008 0.953 | 0.0008 0.966 | 0.0005 0.972 | 0.007 0.961 | 0.0002 0.974 | 0.0004 0.965 | 0.003 0.850 |
Parameter | Cross Validation | Deterministic Methods | Geostatistical Methods | Interpolation with Barriers | ||||||
---|---|---|---|---|---|---|---|---|---|---|
IDW | GPI | RBF | LPI | OK | UK | EBK | KS | DK | ||
Temp * | MAE R | 0.166 0.050 | 0.011 0.039 | 0.037 0.053 | 0.067 0.083 | 0.060 0.111 | 0.035 0.118 | 0.146 0.107 | 0.333 0.118 | 0.084 0.236 |
Temp ** | MAE R | 0.060 0.890 | 0.010 0.311 | 0.026 0.923 | 0.046 0.902 | 0.004 0.925 | 0.010 0.916 | 0.005 0.922 | 0.019 0.911 | 0.088 0.780 |
pH * | MAE R | 0.019 0.359 | 0.002 0.239 | 0.003 0.321 | 0.032 0.107 | 0.030 0.242 | 0.023 0.264 | 0.004 0.033 | 0.065 0.298 | 0.007 0.150 |
pH ** | MAE R | 0.011 0.916 | 0.0003 0.046 | 0.005 0.959 | 0.004 0.960 | 0.0003 0.976 | 0.0004 0.975 | 0.004 0.974 | 0.008 0.957 | 0.010 0.762 |
EC * | MAE R | 0.007 0.030 | 0.001 0.224 | 0.003 0.026 | 0.032 0.008 | 0.002 0.127 | 0.026 0.104 | 0.003 0.048 | 0.077 0.030 | 0.007 0.073 |
EC ** | MAE R | 0.009 0.905 | 0.0005 0.309 | 0.002 0.934 | 0.002 0.945 | 0.0004 0.955 | 0.012 0.945 | 0.0002 0.962 | 0.005 0.953 | 0.0006 0.766 |
TDS * | MAE R | 0.013 0.003 | 0.003 0.284 | 0.011 0.083 | 0.019 0.212 | 0.015 0.189 | 0.011 0.057 | 0.001 0.167 | 0.017 0.106 | 0.015 0.020 |
TDS ** | MAE R | 0.005 0.928 | 0.020 0.254 | 0.002 0.944 | 0.002 0.954 | 0.002 0.964 | 0.014 0.939 | 0.001 0.964 | 0.001 0.951 | 0.007 0.830 |
Cr * | MAE R | 0.0008 0.206 | 0.0003 0.097 | 0.001 0.007 | 0.001 0.057 | 0.0006 0.149 | 0.051 0.168 | 0.003 0.128 | 0.007 0.015 | 0.0006 0.041 |
Cr ** | MAE R | 0.0001 0.912 | 0.001 0.138 | 0.0005 0.938 | 0.0005 0.932 | 0.0001 0.963 | 0.174 0.856 | 0.0004 0.960 | 0.0002 0.944 | 0.0003 0.637 |
Cd * | MAE R | 0.004 0.304 | 0.0002 0.291 | 0.0007 0.570 | 0.005 0.599 | 0.0005 0.573 | 0.022 0.784 | 0.003 0.128 | 0.007 0.015 | 0.0006 0.041 |
Cd** | MAE R | 0.0002 0.920 | 0.0003 0.218 | 0.0002 0.949 | 0.0002 0.936 | 0.0001 0.961 | 0.011 0.836 | 0.0001 0.957 | 0.0005 0.939 | 0.0002 0.747 |
Fe * | MAE R | 0.373 0.386 | 0.038 0.114 | 0.823 0.181 | 0.612 0.129 | 0.198 0.272 | 0.197 0.271 | 0.328 0.302 | 0.969 0.064 | 0.661 0.136 |
Fe ** | MAE R | 0.064 0.924 | 0.002 0.376 | 0.030 0.949 | 0.101 0.950 | 0.025 0.942 | 0.055 0.705 | 0.055 0.952 | 0.107 0.931 | 0.068 0.745 |
Mn * | MAE R | 0.545 0.169 | 0.007 0.477 | 0.132 0.326 | 0.236 0.434 | 0.239 0.326 | 0.712 0.641 | 0.029 0.374 | 0.375 0.342 | 0.090 0.322 |
Mn ** | MAE R | 0.014 0.878 | 0.003 0.244 | 0.002 0.926 | 0.051 0.920 | 0.005 0.930 | 0.264 0.786 | 0.005 0.935 | 0.042 0.927 | 0.071 0.715 |
Ni * | MAE R | 0.002 0.519 | 0.0002 0.662 | 0.0001 0.622 | 0.003 0.488 | 0.00002 0.580 | 0.069 0.497 | 0.0009 0.531 | 0.0005 0.468 | 0.0009 0.125 |
Ni ** | MAE R | 0.0005 0.912 | 0.00004 0.252 | 0.0001 0.945 | 0.0005 0.938 | 0.00009 0.944 | 0.0105 0.754 | 0.00005 0.954 | 0.0003 0.941 | 0.0006 0.750 |
Pb * | MAE R | 0.006 0.068 | 0.0003 0.285 | 0.0006 0.157 | 0.003 0.314 | 0.006 0.210 | 0.029 0.363 | 0.0007 0.337 | 0.003 0.284 | 0.0003 0.378 |
Pb ** | MAE R | 0.0004 0.862 | 0.002 0.193 | 0.0003 0.888 | 0.0003 0.863 | 0.0003 0.892 | 0.156 0.733 | 0.0002 0.900 | 0.0003 0.869 | 0.0006 0.681 |
Zn * | MAE R | 0.263 0.172 | 0.060 0.727 | 0.810 0.162 | 0.941 0.154 | 0.204 0.358 | 0.389 0.728 | 0.158 0.778 | 0.167 0.213 | 0.018 0.594 |
Zn ** | MAE R | 0.037 0.905 | 0.015 0.038 | 0.019 0.956 | 0.033 0.898 | 0.023 0.949 | 0.399 0.847 | 0.063 0.937 | 0.098 0.904 | 0.023 0.721 |
Cu * | MAE R | 0.009 0.687 | 0.0009 0.072 | 0.004 0.624 | 0.003 0.169 | 0.004 0.259 | 0.150 0.465 | 0.007 0.388 | 0.007 0.233 | 0.006 0.340 |
Cu ** | MAE R | 0.0009 0.917 | 0.0005 0.049 | 0.0006 0.915 | 0.0004 0.886 | 0.0002 0.926 | 0.226 0.813 | 0.0006 0.924 | 0.002 0.863 | 0.0004 0.722 |
Appendix C
References
- Flores, H.; Lorenz, S.; Jackisch, R.; Tusa, L.; Contreras, I.C.; Zimmermann, R.; Gloaguen, R. UAS-Based Hyperspectral Environmental Monitoring of Acid Mine Drainage Affected Waters. Minerals 2021, 11, 182. [Google Scholar] [CrossRef]
- Park, I.; Tabelin, C.B.; Jeon, S.; Li, X.; Seno, K.; Ito, M.; Hiroyoshi, N. A review of recent strategies for acid mine drainage prevention and mine tailings recycling. Chemosphere 2019, 219, 588–606. [Google Scholar] [CrossRef]
- Naidu, G.; Ryu, S.; Thiruvenkatachari, R.; Choi, Y.; Jeong, S.; Vigneswaran, S. A critical review on remediation, reuse, and resource recovery from acid mine drainage. Environ. Pollut. 2019, 247, 1110–1124. [Google Scholar] [CrossRef] [PubMed]
- Kefeni, K.K.; Msagati, T.A.; Mamba, B.B. Acid mine drainage: Prevention, treatment options, and resource recovery: A review. J. Clean. Prod. 2017, 151, 475–493. [Google Scholar] [CrossRef]
- Simate, G.S.; Ndlovu, S. Acid mine drainage: Challenges and opportunities. J. Environ. Chem. Eng. 2014, 2, 1785–1803. [Google Scholar] [CrossRef]
- Wei, T.T.; Yu, Y.; Hu, Z.Q.; Cao, Y.B.; Gao, Y.; Yang, Y.Q.; Wang, X.J.; Wang, P.J. Research progress of acid mine drainage treatment technology in China. In Applied Mechanics and Materials; Trans Tech Publications Ltd.: Bäch SZ, Switzerland, 2013; Volume 409, pp. 214–220. [Google Scholar]
- Senoro, D.B.; Bonifacio, P.B.; Mascareñas, D.R.; Tabelin, C.B.; Ney, F.P.; Lamac, M.R.L.; Tan, F.J. Spatial distribution of agricultural yields with elevated metal concentration of the island exposed to acid mine drainage. J. Degrad. Min. Lands Manag. 2020, 8, 2551–2558. [Google Scholar] [CrossRef]
- Balci, N.; Demirel, C. Prediction of acid mine drainage (AMD) and metal release sources at the Küre Copper Mine Site, Kastamonu, NW Turkey. Mine Water Environ. 2018, 37, 56–74. [Google Scholar] [CrossRef]
- Chamorro, S.; Barata, C.; Piña, B.; Casado, M.; Schwarz, A.; Sáez, K.; Vidal, G. Toxicological analysis of acid mine drainage by water quality and land use bioassays. Mine Water Environ. 2018, 37, 88–97. [Google Scholar] [CrossRef]
- Balistrieri, L.S.; Seal, R.R., II; Piatak, N.M.; Paul, B. Assessing the concentration, speciation, and toxicity of dissolved metals during mixing of acid-mine drainage and ambient river water downstream of the Elizabeth Copper Mine, Vermont, USA. Appl. Geochem. 2007, 22, 930–952. [Google Scholar] [CrossRef]
- Henri, A.J.; Wepener, V.; Ferreira, M.; Malherbe, W.; Van Vuren, J.H. The effect of acid mine drainage on the hatching success of branchiopod egg banks from endorheic wetlands in South Africa. Hydrobiologia 2014, 738, 35–48. [Google Scholar] [CrossRef]
- Vicente-Beckett, V.A.; Taylor McCauley, G.J.; Duivenvoorden, L.J. Metal speciation in sediments and soils associated with acid-mine drainage in Mount Morgan (Queensland, Australia). J. Environ. Sci. Health A 2016, 51, 121–134. [Google Scholar] [CrossRef]
- Leung, A.M.R. Urgent Environmental Health Issues in the Philippines: Overview and Case Studies. In Proceedings of the Korean Environmental Health Society Conference; Korean Society of Environmental Health: Seoul, Korea, 2006; pp. 147–158. [Google Scholar]
- Khan, A.M.; Ganai, S.A. Removal and recovery of heavy metal ions using natural adsorbents. In Modern Age Waste Water Problems; Springer: Cham, Switzerland, 2020; pp. 251–260. [Google Scholar]
- Unsal, V.; Dalkıran, T.; Çiçek, M.; Kölükçü, E. The role of natural antioxidants against reactive oxygen species produced by cadmium toxicity: A review. Adv. Pharm. Bull. 2020, 10, 184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashem, M.A.; Nur-A-Tomal, M.S.; Mondal, N.R.; Rahman, M.A. Hair burning and liming in tanneries is a source of pollution by arsenic, lead, zinc, manganese and iron. Environ. Chem. Lett. 2017, 15, 501–506. [Google Scholar] [CrossRef]
- Buxton, S.; Garman, E.; Heim, K.E.; Lyons-Darden, T.; Schlekat, C.E.; Taylor, M.D.; Oller, A.R. Concise review of nickel human health toxicology and ecotoxicology. Inorganics 2019, 7, 89. [Google Scholar] [CrossRef] [Green Version]
- Boskabady, M.; Marefati, N.; Farkhondeh, T.; Shakeri, F.; Farshbaf, A.; Boskabady, M.H. The effect of environmental lead exposure on human health and the contribution of inflammatory mechanisms, a review. Environ. Int. 2018, 120, 404–420. [Google Scholar] [CrossRef]
- Zatta, P.; Lucchini, R.; van Rensburg, S.J.; Taylor, A. The role of metals in neurodegenerative processes: Aluminum, manganese, and zinc. Brain Res. Bull. 2003, 62, 15–28. [Google Scholar] [CrossRef]
- Gaetke, L.M.; Chow, C.K. Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 2003, 189, 147–163. [Google Scholar] [CrossRef]
- Li, J.; Heap, A.D. Spatial interpolation methods applied in the environmental sciences: A review. Environ. Model. Softw. 2014, 53, 173–189. [Google Scholar] [CrossRef]
- Li, J.; Heap, A.D.; Potter, A.; Huang, Z.; Daniell, J.J. Can we improve the spatial predictions of seabed sediments? A case study of spatial interpolation of mud content across the southwest Australian margin. Cont. Shelf Res. 2011, 31, 1365–1376. [Google Scholar] [CrossRef]
- Chen, H.; Fan, L.; Wu, W.; Liu, H.B. Comparison of spatial interpolation methods for soil moisture and its application for monitoring drought. Environ. Monit. Assess. 2017, 189, 1–13. [Google Scholar] [CrossRef]
- Requia, W.J.; Coull, B.A.; Koutrakis, P. Evaluation of predictive capabilities of ordinary geostatistical interpolation, hybrid interpolation, and machine learning methods for estimating PM2. 5 constituents over space. Environ. Res. 2019, 175, 421–433. [Google Scholar] [CrossRef]
- Reinhardt, K.; Samimi, C. Comparison of different wind data interpolation methods for a region with complex terrain in Central Asia. Clim. Dyn. 2018, 51, 3635–3652. [Google Scholar] [CrossRef]
- Gumus, K.; Sen, A. Comparison of Spatial Interpolation Methods and Multi-Layer Neural Networks Different Point Distributions on a Digital Elevation Model. Geod. Vestn. 2013, 57, 523–543. [Google Scholar] [CrossRef]
- Bhunia, G.S.; Shit, P.K.; Maiti, R. Comparison of GIS-based interpolation methods for spatial distribution of soil organic carbon (SOC). J. Saudi Soc. Agric. Sci. 2018, 17, 114–126. [Google Scholar] [CrossRef] [Green Version]
- Wong, K.L.; Brady, O.J.; Campbell, O.M.; Benova, L. Comparison of spatial interpolation methods to create high-resolution poverty maps for low-and middle-income countries. J. R. Soc. Interface 2018, 15, 20180252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carleo, G.; Cirac, I.; Cranmer, K.; Daudet, L.; Schuld, M.; Tishby, N.; Vogt-Maranto, L.; Zdeborová, L. Machine learning and the physical sciences. Rev. Mod. Phys. 2019, 91, 045002. [Google Scholar] [CrossRef] [Green Version]
- Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine learning in agriculture: A review. Sensors 2018, 18, 2674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, L.; Wang, L.; Lin, A.; Zhu, H.; Peng, Y.; Zhao, Z. Estimation of global solar radiation using an artificial neural network based on an interpolation technique in southeast China. J. Atmos. Sol.-Terr. Phys. 2016, 146, 110–122. [Google Scholar] [CrossRef]
- Otake, R.; Kurima, J.; Goto, H.; Sawada, S. Deep Learning Model for Spatial Interpolation of Real-Time Seismic Intensity. Seismol. Soc. Am. 2020, 91, 3433–3443. [Google Scholar]
- Tadić, J.M.; Ilić, V.; Biraud, S. Examination of geostatistical and machine-learning techniques as interpolators in anisotropic atmospheric environments. Atmos. Environ. 2015, 111, 28–38. [Google Scholar] [CrossRef] [Green Version]
- Holloway, J.; Helmstedt, K.J.; Mengersen, K.; Schmidt, M. A decision tree approach for spatially interpolating missing land cover data and classifying satellite images. Remote Sens. 2019, 11, 1796. [Google Scholar] [CrossRef] [Green Version]
- Neissi, L.; Golabi, M.; Gorman, J.M. Spatial interpolation of sodium absorption ratio: A study combining a decision tree model and GIS. Ecol. Indic. 2020, 117, 106611. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, G.; Wang, H.; Li, X. Application of a hybrid interpolation method based on support vector machine in the precipitation spatial interpolation of basins. Water 2017, 9, 760. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Ding, Y.; Cheng, J.C.; Jiang, F.; Wan, Z. A temporal-spatial interpolation and extrapolation method based on geographic Long Short-Term Memory neural network for PM2.5. J. Clean. Prod. 2019, 237, 117729. [Google Scholar] [CrossRef]
- Rhee, J.; Im, J. Meteorological drought forecasting for ungauged areas based on machine learning: Using long-range climate forecast and remote sensing data. Agri. For. Meteorol. 2017, 237, 105–122. [Google Scholar] [CrossRef]
- Azeez, O.S.; Pradhan, B.; Shafri, H.Z. Vehicular CO emission prediction using support vector regression model and GIS. Sustainability 2018, 10, 3434. [Google Scholar] [CrossRef] [Green Version]
- Appelhans, T.; Mwangomo, E.; Hardy, D.R.; Hemp, A.; Nauss, T. Evaluating machine learning approaches for the interpolation of monthly air temperature at Mt. Kilimanjaro, Tanzania. Spat. Stat. 2015, 14, 91–113. [Google Scholar] [CrossRef] [Green Version]
- Leirvik, T.; Yuan, M. A Machine learning technique for spatial interpolation of solar radiation observations. Earth Space Sci. 2021, 8, e2020EA001527. [Google Scholar] [CrossRef]
- Davies, M.M.; van der Laan, M.J. Optimal Spatial Prediction Using Ensemble Machine Learning. Int. J. Biostat. 2016, 12, 179–201. [Google Scholar] [CrossRef] [Green Version]
- Silatsa, F.B.; Yemefack, M.; Tabi, F.O.; Heuvelink, G.B.; Leenaars, J.G. Assessing countrywide soil organic carbon stock using hybrid machine learning modelling and legacy soil data in Cameroon. Geoderma 2020, 367, 114260. [Google Scholar] [CrossRef]
- Di Nunno, F.; Granata, F. Groundwater level prediction in Apulia region (Southern Italy) using NARX neural network. Environ. Res. 2020, 190, 110062. [Google Scholar] [CrossRef] [PubMed]
- Alsumaiei, A.A. A nonlinear autoregressive modeling approach for forecasting groundwater level fluctuation in urban aqui-fers. Water 2020, 12, 820. [Google Scholar] [CrossRef] [Green Version]
- Wunsch, A.; Liesch, T.; Broda, S. Forecasting groundwater levels using nonlinear autoregressive networks with exogenous input (NARX). J. Hydrol. 2018, 567, 743–758. [Google Scholar] [CrossRef]
- Chang, F.J.; Chen, P.A.; Liu, C.W.; Liao, V.H.C.; Liao, C.M. Regional estimation of groundwater arsenic concentrations through systematical dynamic-neural modeling. J. Hydrol. 2013, 499, 265–274. [Google Scholar] [CrossRef]
- Li, P.; Hua, P.; Gui, D.; Niu, J.; Pei, P.; Zhang, J.; Krebs, P. A comparative analysis of artificial neural networks and wavelet hybrid approaches to long-term toxic heavy metal prediction. Sci. Rep. 2020, 10, 1–15. [Google Scholar]
- Wang, J.; Geng, Y.; Zhao, Q.; Zhang, Y.; Miao, Y.; Yuan, X.; Jin, Y.; Zhang, W. Water Quality Prediction of Water Sources Based on Meteorological Factors using the CA-NARX Approach. Environ. Model. Assess. 2021, 1–13. [Google Scholar]
- Tzanis, C.G.; Alimissis, A.; Koutsogiannis, I. Addressing Missing Environmental Data via a Machine Learning Scheme. Atmosphere 2021, 12, 499. [Google Scholar] [CrossRef]
- Du, P.; Bai, X.; Tan, K.; Xue, Z.; Samat, A.; Xia, J.; Li, E.; Su, H.; Liu, W. Advances of four machine learning methods for spatial data handling: A review. J. Geovis. Spat. Anal. 2020, 4, 1–25. [Google Scholar] [CrossRef]
- Naprstek, T.; Smith, R. Applications of machine learning to the spatial interpolation of aeromagnetic data. In SEG International Exposition and Annual Meeting; OnePetro: Richardson, TX, USA, 2019. [Google Scholar]
- Stahl, K.; Moore, R.D.; Floyer, J.A.; Asplin, M.G.; McKendry, I.G. Comparison of approaches for spatial interpolation of daily air temperature in a large region with complex topography and highly variable station density. Agric. For. Meteorol. 2006, 139, 224–236. [Google Scholar] [CrossRef]
- Salvacion, A.R.; Magcale-Macandog, D.B. Spatial analysis of human population distribution and growth in Marinduque Island, Philippines. J. Mar. Isl. Cult. 2015, 4, 27–33. [Google Scholar] [CrossRef] [Green Version]
- Fesalbon, R.M.A.; Blanco, A.C. Hydropower DAM Site Selection and Visualization Using GIS and RS Techniques: A Case of Marinduque, Philippines. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 207–214. [Google Scholar] [CrossRef] [Green Version]
- Tolentino, P.L.M.; Poortinga, A.; Kanamaru, H.; Keesstra, S.; Maroulis, J.; David, C.P.C.; Ritsema, C.J. Projected impact of climate change on hydrological regimes in the Philippines. PLoS ONE 2016, 11, e0163941. [Google Scholar] [CrossRef] [Green Version]
- Salvacion, A.R. Mapping land limitations for agricultural land use planning using fuzzy logic approach: A case study for Marinduque Island, Philippines. GeoJournal 2021, 86, 915–925. [Google Scholar] [CrossRef]
- Senoro, D.B.; De Jesus, K.L.; Chyan, J.M.; Lamac, M.R.L.; Bonifacio, P.B.; Natal, P.; Ney, F.P.; Yanuaria, C.A.S. Spatial Distribution of Hydrogeological Attributes in the Small Island Province of the Philippines: A Tool for Risk Analysis and Reduction Strategy. In Proceedings of the Climate Smart and Disaster Resilient International Conference 2020, Virtual Platform, 26 October 2020. in press. [Google Scholar]
- Coumans, C. Whose development? Mining, local resistance, and development agendas. In Governance Ecosystems; Palgrave Macmillan: London, UK, 2011; pp. 114–132. [Google Scholar]
- Dacre, C.K.; Mercer, K.G.; Smith, F.G.F.; McParland, M.A.; Morin, R. The use of satellite-based remote sensing methods to assess the changes in the environmental impacts from the Marcopper disaster on Marinduque Island, Philippines. In Proceedings of the 11th International Conference on Mine Closure, Perth, Australia, 15–17 March 2016; Australian Center for Geomechanics: Crawley, Western Australia, Australia, 2016; pp. 339–352. [Google Scholar]
- Holden, W.N.; Daniel Jacobson, R. Ecclesial opposition to nonferrous metals mining in the Philippines: Neoliberalism encounters liberation theology. Asian Stud. Rev. 2007, 31, 133–154. [Google Scholar] [CrossRef]
- Abdel-Satar, A.M.; Al-Khabbas, M.H.; Alahmad, W.R.; Yousef, W.M.; Alsomadi, R.H.; Iqbal, T. Quality assessment of groundwater and agricultural soil in Hail region, Saudi Arabia. Egypt. J. Aquat. Res. 2017, 43, 55–64. [Google Scholar] [CrossRef]
- Asare-Donkor, N.K.; Boadu, T.A.; Adimado, A.A. Evaluation of groundwater and surface water quality and human risk assessment for trace metals in human settlements around the Bosomtwe Crater Lake in Ghana. SpringerPlus 2016, 5, 1812. [Google Scholar] [CrossRef] [Green Version]
- Jang, M.; Lee, H.J.; Shim, Y. Rapid removal of fine particles from mine water using sequential processes of coagulation and flocculation. Environ. Technol. 2010, 31, 423–432. [Google Scholar] [CrossRef] [Green Version]
- Corales-Ultra, O.G.; Peja, R.P., Jr.; Casas, E.V., Jr. Baseline study on the levels of heavy metals in seawater and macroalgae near an abandoned mine in Manicani, Guiuan, Eastern Samar, Philippines. Mar. Pollut. Bull. 2019, 149, 110549. [Google Scholar] [CrossRef]
- Liu, J.; Wang, P.; Wang, C.; Qian, J.; Hou, J. Heavy metal pollution status and ecological risks of sediments under the influence of water transfers in Taihu Lake, China. Environ. Sci. Pollut. Res. 2017, 24, 2653–2666. [Google Scholar] [CrossRef]
- Ma, L.; Wang, L.; Tang, J.; Yang, Z. Arsenic speciation and heavy metal distribution in polished rice grown in Guangdong Province, Southern China. Food Chem. 2017, 233, 110–116. [Google Scholar] [CrossRef]
- Arslan, H.; Turan, N.A. Estimation of spatial distribution of heavy metals in groundwater using interpolation methods and multivariate statistical techniques; its suitability for drinking and irrigation purposes in the Middle Black Sea Region of Turkey. Environ. Monit. Assess. 2015, 187, 1–13. [Google Scholar] [CrossRef]
- Yalcin, F. Data analysis of beach sands’ chemical analysis using multivariate statistical methods and heavy metal distribution maps: The case of Moonlight Beach sands, Kemer, Antalya, Turkey. Symmetry 2020, 12, 1538. [Google Scholar] [CrossRef]
- Narany, T.S.; Ramli, M.F.; Aris, A.Z.; Sulaiman, W.N.A.; Fakharian, K. Spatiotemporal variation of groundwater quality using integrated multivariate statistical and geostatistical approaches in Amol-Babol Plain, Iran. Environ. Monit. Assess. 2014, 186, 5797–5815. [Google Scholar] [CrossRef]
- Dai, L.; Wang, L.; Li, L.; Liang, T.; Zhang, Y.; Ma, C.; Xing, B. Multivariate geostatistical analysis and source identification of heavy metals in the sediment of Poyang Lake in China. Sci. Total Environ. 2018, 621, 1433–1444. [Google Scholar] [CrossRef]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation coefficients: Appropriate use and interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef]
- Sarkar, A.; Pandey, P. River water quality modelling using artificial neural network technique. Aquat. Procedia 2015, 4, 1070–1077. [Google Scholar] [CrossRef]
- Kucukoglu, I.; Atici-Ulusu, H.; Gunduz, T.; Tokcalar, O. Application of the artificial neural network method to detect defective assembling processes by using a wearable technology. J. Manuf. Syst. 2018, 49, 163–171. [Google Scholar] [CrossRef]
- Babu, D.; Thangarasu, V.; Ramanathan, A. Artificial neural network approach on forecasting diesel engine characteristics fuelled with waste frying oil biodiesel. Appl. Energy 2020, 263, 114612. [Google Scholar] [CrossRef]
- Mammadli, S. Financial time series prediction using artificial neural network based on Levenberg-Marquardt algorithm. Procedia Comput. Sci. 2017, 120, 602–607. [Google Scholar] [CrossRef]
- Rinchon, J.P.M.; Concha, N.C.; Calilung, M.G.V. Reinforced concrete ultimate bond strength model using hybrid neural network-genetic algorithm. In Proceedings of the 2017 IEEE 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), Manila, Philippines, 1–3 December 2017; IEEE: New York, NY, USA, 2017; pp. 1–6. [Google Scholar]
- You, L.; Tan, Q.; Kang, Y.; Xu, C.; Lin, C. Reconstruction and prediction of capillary pressure curve based on Particle Swarm Optimization-Back Propagation Neural Network method. Petroleum 2018, 4, 268–280. [Google Scholar] [CrossRef]
- Ozerdem, O.C.; Olaniyi, E.O.; Oyedotun, O.K. Short term load forecasting using particle swarm optimization neural network. Procedia Comput. Sci. 2017, 120, 382–393. [Google Scholar] [CrossRef]
- Chatterjee, S.; Sarkar, S.; Hore, S.; Dey, N.; Ashour, A.S.; Balas, V.E. Particle swarm optimization trained neural network for structural failure prediction of multistoried RC buildings. Neural Comput. Appl. 2017, 28, 2005–2016. [Google Scholar] [CrossRef]
- Alnaqi, A.A.; Moayedi, H.; Shahsavar, A.; Nguyen, T.K. Prediction of energetic performance of a building integrated photovoltaic/thermal system thorough artificial neural network and hybrid particle swarm optimization models. Energy Convers. Manag. 2019, 183, 137–148. [Google Scholar] [CrossRef]
- Malik, S.; Kim, D. Prediction-learning algorithm for efficient energy consumption in smart buildings based on particle regeneration and velocity boost in particle swarm optimization neural networks. Energies 2018, 11, 1289. [Google Scholar] [CrossRef] [Green Version]
- Qi, C.; Fourie, A.; Chen, Q. Neural network and particle swarm optimization for predicting the unconfined compressive strength of cemented paste backfill. Constr. Build. Mater. 2018, 159, 473–478. [Google Scholar] [CrossRef]
- Golafshani, E.M.; Rahai, A.; Sebt, M.H.; Akbarpour, H. Prediction of bond strength of spliced steel bars in concrete using artificial neural network and fuzzy logic. Constr. Build. Mater. 2012, 36, 411–418. [Google Scholar] [CrossRef]
- Zheng, Z.; Ma, X.; Ma, Y.; Dong, G. Wave estimation within a port using a fully nonlinear Boussinesq wave model and artificial neural networks. Ocean Eng. 2020, 216, 108073. [Google Scholar] [CrossRef]
- Wu, S.; McLean, K.A.; Harris, T.J.; McAuley, K.B. Selection of optimal parameter set using estimability analysis and MSE-based model-selection criterion. Int. J. Adv. Mechatron. Syst. 2011, 3, 188–197. [Google Scholar] [CrossRef]
- Ranković, V.; Radulović, J.; Radojević, I.; Ostojić, A.; Čomić, L. Neural network modeling of dissolved oxygen in the Gruža reservoir, Serbia. Ecol. Model. 2010, 221, 1239–1244. [Google Scholar] [CrossRef]
- Senoro, D.B.; De Jesus, K.L.M.; Yanuaria, C.A.; Bonifacio, P.B.; Manuel, M.T.; Wang, B.N.; Kao, C.C.; Wu, T.N.; Ney, F.P.; Natal, P. Rapid site assessment in a small island of the Philippines contaminated with mine tailings using ground and areal technique: The environmental quality after twenty years. IOP Conf. Ser. Earth Environ. Sci. 2019, 351, 012022. [Google Scholar] [CrossRef]
- Ohmer, M.; Liesch, T.; Goeppert, N.; Goldscheider, N. On the optimal selection of interpolation methods for groundwater contouring: An example of propagation of uncertainty regarding inter-aquifer exchange. Adv. Water Resour. 2017, 109, 121–132. [Google Scholar] [CrossRef]
- Aguilar, F.J.; Agüera, F.; Aguilar, M.A.; Carvajal, F. Effects of terrain morphology, sampling density and interpolation methods on grid DEM accuracy. Photogramm. Eng. Remote Sens. 2005, 71, 805–816. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, H.M. The effect of interpolation methods in surface definition: An experimental study. Earth Surf. Process. Landf J. Br. Geomorphol. Res. Group. 2007, 32, 1346–1361. [Google Scholar] [CrossRef]
- Eldeiry, A.A.; Garcia, L.A. Comparison of ordinary kriging, regression kriging, and cokriging techniques to estimate soil salinity using LANDSAT images. J. Irrig. Drain. Eng. 2010, 136, 355–364. [Google Scholar] [CrossRef]
- Roznik, M.; Porth, C.B.; Boyd, M.; Roznik, K. Improving agricultural microinsurance by applying universal kriging and generalized additive models for interpolation of mean daily temperature. Geneva Pap. Risk Insur.—Issues Pract. 2019, 44, 446–480. [Google Scholar] [CrossRef] [Green Version]
- Mirzaei, R.; Sakizadeh, M. Comparison of interpolation methods for the estimation of groundwater contamination in Andimeshk-Shush Plain, Southwest of Iran. Environ. Sci. Pollut. Res. 2016, 23, 2758–2769. [Google Scholar] [CrossRef]
- Türker, T.; Bayrak, Y. An interpolation applied with barriers modeling to predictions of earthquake occurrences using Kernel Smoothing and Diffusion Kernel methods in the Marmara Sea, Turkey. In Proceedings of the 2nd International Symposium on Natural Hazards and Disaster Management, Sakarya, Turkey, 4–6 May 2018. [Google Scholar]
- Plouffe, C.C.; Robertson, C.; Chandrapala, L. Comparing interpolation techniques for monthly rainfall mapping using multiple evaluation criteria and auxialiary data sources: A case study of Sri Lanka. Environ. Model. Softw. 2015, 67, 57–71. [Google Scholar] [CrossRef]
- Xie, Y.; Chen, T.B.; Lei, M.; Yang, J.; Guo, Q.J.; Song, B.; Zhou, X.Y. Spatial distribution of soil heavy metal pollution estimated by different interpolation methods: Accuracy and uncertainty analysis. Chemosphere 2011, 82, 468–476. [Google Scholar] [CrossRef]
- Qiao, P.; Lei, M.; Yang, S.; Yang, J.; Guo, G.; Zhou, X. Comparing ordinary kriging and inverse distance weighting for soil as pollution in Beijing. Environ. Sci. Pollut. 2018, 25, 15597–15608. [Google Scholar] [CrossRef]
- Agarin, C.J.M.; Mascareñas, D.R.; Nolos, R.; Chan, E.; Senoro, D.B. Transition Metals in Freshwater Crustaceans, Tilapia, and Inland Water: Hazardous to the Population of the Small Island Province. Toxics 2021, 9, 71. [Google Scholar] [CrossRef]
- Manikandan, E.; Rajmohan, N.; Anbazhagan, S. Monsoon impact on groundwater chemistry and geochemical processes in the shallow hard rock aquifer. Catena 2020, 195, 104766. [Google Scholar] [CrossRef]
- Kumar, P.S.; Delson, P.D.; Babu, P.T. Appraisal of heavy metals in groundwater in Chennai city using a HPI model. Bull. Environ. Contam. Toxicol. 2012, 89, 793. [Google Scholar] [CrossRef]
- Mansouri, B.; Salehi, J.; Etebari, B.; Moghaddam, H.K. Metal concentrations in the groundwater in Birjand flood plain, Iran. Bull. Environ. Contam. Toxicol. 2012, 89, 138–142. [Google Scholar] [CrossRef]
- Kirschke, S.; Avellán, T.; Bärlund, I.; Bogardi, J.J.; Carvalho, L.; Chapman, D.; Dickens, C.W.S.; Irvine, K.; Lee, S.; Mehner, T.; et al. Capacity challenges in water quality monitoring: Understanding the role of human development. Environ. Monit. Assess. 2020, 192, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, T.; Liu, Y.; Tang, L.; Liu, C. Improvement of Kriging interpolation with learning kernel in environmental variables study. Int. J. Prod. Res. 2020, 1–14. [Google Scholar] [CrossRef]
- Li, J. Predicting the spatial distribution of seabed gravel content using random forest, spatial interpolation methods and their hybrid methods. In Proceedings of the International Congress on Modelling and Simulation (MODSIM), Adelaide, Australia, 1–6 December 2013; pp. 1–6. [Google Scholar]
- Bai, T.; Tahmasebi, P. Accelerating geostatistical modeling using geostatistics-informed machine Learning. Comput. Geosci. 2021, 146, 104663. [Google Scholar] [CrossRef]
- Zhou, B.; Zhang, X.G.; Wang, F.; Wang, R.C. Soil organic matter mapping by decision tree modeling. Pedosphere 2005, 15, 103–109. [Google Scholar]
- Sauter, T.; Weitzenkamp, B.; Schneider, C. Spatio-temporal prediction of snow cover in the Black Forest mountain range using remote sensing and a recurrent neural network. Int. J. Climatol. 2010, 30, 2330–2341. [Google Scholar] [CrossRef]
- Li, J.; Heap, A.D.; Potter, A.; Daniell, J.J. Application of machine learning methods to spatial interpolation of environmental variables. Environ. Monit. Softw. 2011, 26, 1647–1659. [Google Scholar] [CrossRef]
Watershed No. | Name of Watershed | Watershed No. | Name of Watershed |
---|---|---|---|
1 | Hinanggayon—Mogpog | 18 | Catangon—Buenavista |
2 | Guisan—Mogpog | 19 | Libas—Buenavista |
3 | Balanacan—Mogpog | 20 | Lipata—Buenavista |
4 | Capayang—Mogpog | 21 | Buenavista |
5 | Laon—Mogpog | 22 | Dampulan—Torrijos |
6 | Sayao—Mogpog | 23 | Marlanga—Torrijos |
7 | Mogpog | 24 | Cabuyo—Torrijos |
8 | Pili—Boac | 25 | Matuyatuya—Torrijos |
9 | Murallon—Boac | 26 | Torrijos |
10 | Ihatub—Boac | 27 | Tambangan—Santa Cruz |
11 | Caganhao—Boac | 28 | Tawiran—Tagum |
12 | Maybo—Boac | 29 | Tagum—Santa Cruz |
13 | Bunganay—Boac | 30 | Botilao—Santa Cruz |
14 | Boac | 31 | Dolores—Santa Cruz |
15 | Banot—Gasan | 32 | Kamandugan—Santa Cruz |
16 | Dawis—Gasan | 33 | Hupi—Santa Cruz |
17 | Gasan | 34 | Santa Cruz |
Sampling Location Code | Barangay | Municipality | Latitude | Longitude | Elevation |
---|---|---|---|---|---|
BGW1 | Tagwak | Boac | 13.44552° N | 121.87620° E | 96 m |
BGW2 | Maligaya | Boac | 13.47936° N | 121.84087° E | 10 m |
BGW3 | Puting Buhangin | Boac | 13.45117° N | 121.96087° E | 282 m |
BGW4 | Balarin | Boac | 13.41933° N | 121.82200° E | 17 m |
BGW5 | Bantay | Boac | 13.43247° N | 121.90953° E | 208 m |
BGW6 | Hinapulan | Boac | 13.41442° N | 121.94785° E | 242 m |
BGW7 | Boton | Boac | 13.44292° N | 121.86732° E | 61 m |
MGW1 | Sumangga | Mogpog | 13.47268° N | 121.87412° E | 68 m |
MGW2 | Nangka Dos (Site 1) | Mogpog | 13.47972° N | 121.85047° E | 24 m |
MGW3 | Nangka Dos (Site 2) | Mogpog | 13.47973° N | 121.85053° E | 24 m |
MGW4 | Janagdong | Mogpog | 13.46952° N | 121.85326° E | 29 m |
MGW5 | Butansapa | Mogpog | 13.48100° N | 121.91803° E | 145 m |
MGW6 | Putting Buhangin | Mogpog | 13.45533° N | 121.95198° E | 265 m |
BVGW1 | Malbog (Site 1) | Buenavista | 13.25813° N | 121.94488° E | 77 m |
BVGW2 | Malbog (Site 2) | Buenavista | 13.26675° N | 121.91648° E | 103 m |
BVGW3 | Libas (Site 1) | Buenavista | 13.25553° N | 121.93958° E | 69 m |
BVGW4 | Libas (Site 2) | Buenavista | 13.26807° N | 121.95612° E | 70 m |
BVGW5 | Bagtingon | Buenavista | 13.20521° N | 121.99482° E | 85 m |
BVGW6 | Sihi | Buenavista | 13.25813° N | 121.94488° E | 371 m |
GGW1 | Banuyo | Gasan | 13.27573° N | 121.89303° E | 5 m |
GGW2 | Masiga | Gasan | 13.35505° N | 121.82912° E | 16 m |
GGW3 | Libtangin | Gasan | 13.34647° N | 121.83297° E | 21 m |
GGW4 | Matandang Gasan | Gasan | 13.32178° N | 121.85268° E | 46 m |
GGW5 | Dawis | Gasan | 13.28638° N | 121.88908° E | 42 m |
GGW6 | Tiguion | Gasan | 13.34365° N | 121.86365° E | 86 m |
TGW1 | Marlangga | Torrijos | 13.32683° N | 122.08442° E | 56 m |
TGW2 | Poctoy (Site 1) | Torrijos | 13.32943° N | 122.09528° E | 37 m |
TGW3 | Dampulan | Torrijos | 13.22590° N | 122.04562° E | 25 m |
TGW4 | Sibuyao | Torrijos | 13.34091° N | 122.01261° E | 444 m |
TGW5 | Poctoy (Site 2) | Torrijos | 13.33164° N | 122.01261° E | 34 m |
TGW6 | Matuyatuya | Torrijos | 13.37778° N | 122.11611° E | 15 m |
SGW1 | San Antonio | Santa Cruz | 13.44612° N | 121.98055° E | 272 m |
SGW2 | Dolores (Site 1) | Santa Cruz | 13.49177° N | 121.96383° E | 185 m |
SGW3 | Dolores (Site 2) | Santa Cruz | 13.49183° N | 121.96087° E | 191 m |
SGW4 | Napo | Santa Cruz | 13.43878° N | 122.07607° E | 65 m |
SGW5 | Matalaba | Santa Cruz | 13.46595° N | 122.05897° E | 53 m |
Parameter | Mean | PNSDW 2017 Guideline Value | WHO Guideline Value | Skewness | Kurtosis | CV% |
---|---|---|---|---|---|---|
Temp (°C) | 36.80 | - | - | 0.417 | −1.513 | 24.20 |
pH | 7.02 | 6.5–8.5 | 6.5–9.2 | −0.089 | −1.678 | 10.30 |
EC (µS/cm) | 935.17 | - | 1500 | 0.625 | −1.166 | 88.40 |
TDS (mg/L) | 372.77 | 600 | 1200 | 1.189 | 2.579 | 43.10 |
Cr (ppm) | 0.06285 | 0.050 | 0.050 | 0.693 | 0.232 | 47.40 |
Cd (ppm) | 0.03283 | 0.003 | 0.003 | 0.800 | −1.300 | 140.16 |
Fe (ppm) | 2.92944 | 1.000 | 0.300 | 4.026 | 14.917 | 378.74 |
Mn (ppm) | 0.71753 | 0.400 | 0.400 | 3.165 | 9.205 | 264.87 |
Ni (ppm) | 0.03902 | 0.070 | 0.070 | 0.754 | −1.170 | 124.54 |
Pb (ppm) | 0.05572 | 0.010 | 0.010 | 0.226 | −1.779 | 94.68 |
Zn (ppm) | 4.32901 | 5.000 | 3.000 | 3.374 | 10.135 | 299.87 |
Cu (ppm) | 0.12688 | 1.000 | 2.000 | 0.212 | −1.530 | 77.03 |
Parameter | Mean | PNSDW 2017 Guideline Value | WHO Guideline Value | Skewness | Kurtosis | CV% |
---|---|---|---|---|---|---|
Temp (°C) | 31.55 | - | - | 0.800 | −0.718 | 18.25 |
pH | 7.43 | 6.5–8.5 | 6.5–9.2 | 0.474 | −1.104 | 15.62 |
EC (µS/cm) | 780.61 | - | 1500 | 1.082 | −0.183 | 107.93 |
TDS (mg/L) | 428.09 | 600 | 1200 | 0.978 | −0.608 | 109.80 |
Cr (ppm) | 0.08929 | 0.050 | 0.050 | −0.048 | −1.787 | 81.20 |
Cd (ppm) | 0.06860 | 0.003 | 0.003 | −0.695 | −1.377 | 65.30 |
Fe (ppm) | 16.0672 | 1.000 | 0.300 | 0.899 | −1.095 | 143.96 |
Mn (ppm) | 3.99553 | 0.400 | 0.400 | 0.186 | −1.860 | 99.20 |
Ni (ppm) | 0.05355 | 0.070 | 0.070 | 0.276 | −1.749 | 100.63 |
Pb (ppm) | 0.06298 | 0.010 | 0.010 | −0.086 | −1.904 | 89.07 |
Zn (ppm) | 23.7530 | 5.000 | 3.000 | 0.358 | −1.629 | 100.99 |
Cu (ppm) | 0.13846 | 1.000 | 2.000 | −0.103 | −1.786 | 80.75 |
Temp | pH | EC | TDS | Cr | Cd | Fe | Mn | Ni | Pb | Zn | Cu | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Temp | 1.00 | −0.20 ** | 0.24 ** | −0.18 ** | −0.06 | −0.21 ** | −0.19 ** | −0.09 | 0.003 | −0.11 * | −0.04 | 0.13 * |
pH | 1.00 | 0.06 | −0.15 ** | −0.07 | −0.09 | −0.12 * | 0.18 ** | −0.17 ** | −0.18 ** | 0.03 | −0.08 | |
EC | 1.00 | 0.30 ** | −0.05 | −0.28 ** | 0.05 | 0.12 * | −0.18 ** | −0.23 ** | −0.04 | 0.10 | ||
TDS | 1.00 | 0.04 | 0.003 | 0.11 * | 0.08 | −0.17 ** | −0.01 | 0.09 | −0.20 ** | |||
Cr | 1.00 | 0.72 ** | 0.01 | 0.001 | 0.69 ** | 0.81 ** | 0.09 | 0.33 ** | ||||
Cd | 1.00 | −0.13 * | 0.05 | 0.78 ** | 0.83 ** | −0.11 * | 0.27 ** | |||||
Fe | 1.00 | 0.12 * | −0.12 * | −0.04 | 0.50 ** | −0.07 | ||||||
Mn | 1.00 | 0.07 | 0.02 | 0.14 ** | −0.09 | |||||||
Ni | 1.00 | 0.77 ** | −0.09 | 0.38 ** | ||||||||
Pb | 1.00 | −0.03 | 0.41 ** | |||||||||
Zn | 1.00 | −0.08 | ||||||||||
Cu | 1.00 |
Temp | pH | EC | TDS | Cr | Cd | Fe | Mn | Ni | Pb | Zn | Cu | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Temp | 1.00 | 0.04 | −0.22 ** | −0.22 ** | 0.01 | 0.11 * | −0.40 ** | 0.22 ** | −0.09 | −0.17 ** | −0.07 | 0.03 |
pH | 1.00 | −0.11 * | −0.06 | 0.23 ** | 0.15 ** | −0.06 | 0.36 ** | −0.36 ** | −0.28 ** | 0.33 ** | 0.49 ** | |
EC | 1.00 | 0.49 ** | −0.30 ** | −0.10 | 0.07 | −0.52 ** | −0.15 ** | 0.25 ** | 0.17 ** | 0.03 | ||
TDS | 1.00 | 0.04 | 0.18 ** | 0.06 | −0.19 ** | 0.18 ** | 0.04 | −0.07 | −0.08 | |||
Cr | 1.00 | 0.40 ** | −0.02 | 0.24 ** | 0.17 ** | 0.07 | 0.02 | 0.12 * | ||||
Cd | 1.00 | 0.09 | 0.19 ** | 0.26 ** | 0.25 ** | 0.19 ** | 0.27 ** | |||||
Fe | 1.00 | −0.08 | −0.01 | 0.17 ** | 0.22 ** | 0.04 | ||||||
Mn | 1.00 | −0.24 ** | −0.36 ** | −0.12 * | 0.05 | |||||||
Ni | 1.00 | 0.19 ** | −0.29 ** | −0.21 ** | ||||||||
Pb | 1.00 | 0.05 | −0.07 | |||||||||
Zn | 1.00 | 0.49 ** | ||||||||||
Cu | 1.00 |
Hidden Neurons | No. of Particles | No. of Iterations | Elapsed Time (sec) | MSE | R | ||
---|---|---|---|---|---|---|---|
Validation | Testing | ||||||
Temp | 22 | 7 | 2000 | 214.984 | 0.11275 | 0.99988 | 0.99925 |
pH | 27 | 5 | 2000 | 253.880 | 0.01176 | 0.98051 | 0.95432 |
EC | 24 | 5 | 2000 | 215.542 | 0.03365 | 0.99993 | 0.99994 |
TDS | 28 | 7 | 2000 | 220.718 | 0.00985 | 0.99061 | 0.99917 |
Cr | 28 | 8 | 2000 | 147.899 | 0.00032 | 0.99958 | 0.98867 |
Cd | 20 | 8 | 2000 | 110.308 | 0.00031 | 0.99669 | 0.98496 |
Fe | 29 | 10 | 2000 | 142.590 | 0.01073 | 0.99683 | 0.99737 |
Mn | 26 | 9 | 2000 | 146.913 | 0.00255 | 0.99788 | 0.99620 |
Ni | 22 | 1 | 2000 | 115.371 | 0.00050 | 0.99987 | 0.99995 |
Pb | 20 | 4 | 2000 | 115.961 | 0.00058 | 0.99949 | 0.99992 |
Zn | 27 | 7 | 2000 | 110.420 | 0.00087 | 0.99972 | 0.99967 |
Cu | 21 | 6 | 2000 | 138.813 | 0.00153 | 0.99985 | 0.99960 |
Hidden Neurons | No. of Particles | No. of Iterations | Elapsed Time (s) | MSE | R | ||
---|---|---|---|---|---|---|---|
Validation | Testing | ||||||
Temp | 23 | 6 | 2000 | 226.663 | 0.73235 | 0.99440 | 0.99161 |
pH | 23 | 6 | 2000 | 218.558 | 0.04694 | 0.99396 | 0.97383 |
EC | 21 | 9 | 2000 | 223.412 | 0.02622 | 0.99755 | 0.99990 |
TDS | 26 | 1 | 2000 | 205.010 | 0.00672 | 0.99360 | 0.99434 |
Cr | 25 | 9 | 2000 | 147.159 | 0.00153 | 0.99948 | 0.99912 |
Cd | 28 | 8 | 2000 | 145.022 | 0.00088 | 0.99998 | 0.99980 |
Fe | 29 | 7 | 2000 | 147.002 | 0.18100 | 0.99992 | 0.99999 |
Mn | 24 | 7 | 2000 | 157.724 | 0.01737 | 0.99938 | 0.99985 |
Ni | 30 | 6 | 2000 | 155.655 | 0.15711 | 0.99498 | 0.98943 |
Pb | 25 | 4 | 2000 | 109.265 | 0.00177 | 0.99998 | 0.98257 |
Zn | 29 | 8 | 2000 | 178.172 | 0.17360 | 0.99305 | 0.99238 |
Cu | 27 | 4 | 2000 | 174.482 | 0.00494 | 0.99882 | 0.99937 |
Parameter | Season | Governing Interpolation Method | MAE | R |
---|---|---|---|---|
Temperature | Dry | OK+NN-PSO | 0.002000 | 0.941 |
pH | Dry | EBK+NN-PSO | 0.001000 | 0.945 |
EC | Dry | OK+NN-PSO | 0.002000 | 0.974 |
TDS | Dry | EBK+NN-PSO | 0.001000 | 0.901 |
Cr | Dry | EBK+NN-PSO | 0.000070 | 0.971 |
Cd | Dry | EBK+NN-PSO | 0.000065 | 0.981 |
Fe | Dry | EBK+NN-PSO | 0.045000 | 0.940 |
Mn | Dry | OK+NN-PSO | 0.005000 | 0.922 |
Ni | Dry | RBF+NN-PSO | 0.000200 | 0.991 |
Pb | Dry | EBK+NN-PSO | 0.000100 | 0.989 |
Zn | Dry | EBK+NN-PSO | 0.017000 | 0.951 |
Cu | Dry | EBK+NN-PSO | 0.000200 | 0.974 |
Temperature | Wet | OK+NN-PSO | 0.004000 | 0.925 |
pH | Wet | OK+NN-PSO | 0.000300 | 0.976 |
EC | Wet | EBK+NN-PSO | 0.000200 | 0.962 |
TDS | Wet | EBK+NN-PSO | 0.001000 | 0.964 |
Cr | Wet | OK+NN-PSO | 0.000100 | 0.963 |
Cd | Wet | OK+NN-PSO | 0.000100 | 0.961 |
Fe | Wet | EBK+NN-PSO | 0.055000 | 0.952 |
Mn | Wet | EBK+NN-PSO | 0.005000 | 0.935 |
Ni | Wet | EBK+NN-PSO | 0.000050 | 0.954 |
Pb | Wet | EBK+NN-PSO | 0.000200 | 0.900 |
Zn | Wet | RBF+NN-PSO | 0.019000 | 0.956 |
Cu | Wet | OK+NN-PSO | 0.000200 | 0.926 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Jesus, K.L.M.; Senoro, D.B.; Dela Cruz, J.C.; Chan, E.B. A Hybrid Neural Network–Particle Swarm Optimization Informed Spatial Interpolation Technique for Groundwater Quality Mapping in a Small Island Province of the Philippines. Toxics 2021, 9, 273. https://doi.org/10.3390/toxics9110273
De Jesus KLM, Senoro DB, Dela Cruz JC, Chan EB. A Hybrid Neural Network–Particle Swarm Optimization Informed Spatial Interpolation Technique for Groundwater Quality Mapping in a Small Island Province of the Philippines. Toxics. 2021; 9(11):273. https://doi.org/10.3390/toxics9110273
Chicago/Turabian StyleDe Jesus, Kevin Lawrence M., Delia B. Senoro, Jennifer C. Dela Cruz, and Eduardo B. Chan. 2021. "A Hybrid Neural Network–Particle Swarm Optimization Informed Spatial Interpolation Technique for Groundwater Quality Mapping in a Small Island Province of the Philippines" Toxics 9, no. 11: 273. https://doi.org/10.3390/toxics9110273
APA StyleDe Jesus, K. L. M., Senoro, D. B., Dela Cruz, J. C., & Chan, E. B. (2021). A Hybrid Neural Network–Particle Swarm Optimization Informed Spatial Interpolation Technique for Groundwater Quality Mapping in a Small Island Province of the Philippines. Toxics, 9(11), 273. https://doi.org/10.3390/toxics9110273