Relationship between Urine Creatinine and Urine Osmolality in Spot Samples among Men and Women in the Danish Diet Cancer and Health Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Urine Analyses
2.3. Statistical Analyses
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barr, D.B.; Wilder, L.C.; Caudill, S.P.; Gonzalez, A.J.; Needham, L.L.; Pirkle, J.L. Urinary creatinine concentrations in the U.S. population: Implications for urinary biologic monitoring measurements. Environ. Health Perspect. 2005, 113, 192–200. [Google Scholar] [CrossRef] [Green Version]
- Joffe, M.; Hsu, C.-Y.; Feldman, H.I.; Weir, M.; Landis, J.R.; Hamm, L.L. Variability of creatinine measurements in clinical laboratories: Results from the CRIC study. Am. J. Nephrol. 2010, 31, 426–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeh, H.C.; Lin, Y.-S.; Kuo, C.-C.; Weidemann, D.; Weaver, V.; Fadrowski, J.; Neu, A.; Navas-Acien, A. Urine osmolality in the US population: Implications for environmental biomonitoring. Environ. Res. 2015, 136, 482–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fogazzi, G. Urinalysis and microscopy. In Oxford Textbook of Clinical Nephrology; Davison, A.M., Cameron, J.S., Grunfeld, J.-P., Potnicelli, C., Ritz, E., Wineark, C.G., van Ypersele, C., Eds.; Oxford University Press: New York, NY, USA, 2005; pp. 23–46. [Google Scholar]
- Anyabolu, E.N.; Chukwuonye, I.I.; Arodiwe, E.B.; Ijoma, C.K.; Anyabolu, A.E.; Okoye, I.C.; Enwere, O.O. Determining the relationship between urine creatinine and urine osmolality; and a probable correction factor for hypothetical ratios for estimating 24-hour urine protein. Am. J. Med. Med. Sci. 2017, 7, 189–195. [Google Scholar]
- Tjonneland, A.; Olsen, A.; Boll, K.; Stripp, C.; Christensen, J.; Engholm, G.; Overvad, K. Study design, exposure variables, and socioeconomic determinants of participation in Diet, Cancer and Health: A population-based prospective cohort study of 57,053 men and women in Denmark. Scand. J. Public Health 2007, 35, 432–441. [Google Scholar] [CrossRef]
- Arndt, T. Urine-creatinine concentration as a marker of urine dilution: Reflections using a cohort of 45,000 samples. Forensic Sci. Int. 2009, 186, 48–51. [Google Scholar] [CrossRef]
- Godevithanage, S.; Kanankearachchi, P.P.; Dissanayake, M.P.; Jayalath, T.A.; Chandrasiri, N.; Jinasena, R.P.; Kumarasiri, R.P.; Goonasekera, C. Spot urine osmolality/creatinine ratio in healthy humans. Kidney Blood Press. Res. 2010, 33, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Warren, J.M.; Spencer, H. Metabolic balances of strontium in man. Clin. Orthop. Relat. Res. 1976, 117, 307–320. [Google Scholar] [CrossRef]
- Usuda, K.; Kono, K.; Dote, T.; Watanabe, M.; Shimizu, H.; Tanimoto, Y.; Yamadori, E. An overview of boron, lithium, and strontium in human health and profiles of these elements in urine of Japanese. Environ. Health Prev. Med. 2007, 12, 231–237. [Google Scholar] [CrossRef]
- Campanella, B.; Onor, M.; D’Ulivo, A.; Giannecchini, R.; D’Orazio, M.; Petrini, R.; Bramanti, E. Human exposure to thallium through tap water: A study from Valdicastello Carducci and Pietrasanta (northern Tuscany, Italy). Sci. Total. Environ. 2016, 548–549, 33–42. [Google Scholar] [CrossRef]
- Aprea, M.C.; Nuvolone, D.; Petri, D.; Voller, F.; Bertelloni, S.; Aragona, I. Human biomonitoring to assess exposure to thallium following contamination of drinking water. PLoS ONE 2020, 15, e0241223. [Google Scholar] [CrossRef]
- Boecker, B.B.; Redman, H.C.; Chiffelle, T.L.; Clapper, W.E.; Jones, R.K.; Lundgren, D.L.; Pickrell, J.A.; McClellan, R.O.; Rypka, E.W. Toxicity of inhaled 137CsCl in the beagle dog. II. In Fission Product Inhalation Program Annual Report 1968–1969; Fission Product Inhalation Program, Ed.; Lovelace Foundation for Medical Research and Education: Albuquerque, NM, USA, 1969; pp. 36–54. [Google Scholar]
- Lie, R. Deposition and retention of 137Cs in the rat following inhalation of the chloride and the nitrate. Health Phys. 1964, 10, 1071–1076. [Google Scholar] [CrossRef] [PubMed]
- Stara, J.F. Tissue distribution and excretion of cesium-137 in the guinea pig after administration by three different routes. Health Phys. 1965, 11, 1195–1202. [Google Scholar] [CrossRef]
- Khamis, M.M.; Holt, T.; Awad, H.; El-Aneed, A.; Adamko, D.J. Comparative analysis of creatinine and osmolality as urine normalization strategies in targeted metabolomics for the differential diagnosis of asthma and COPD. Metabolomics 2018, 14, 115. [Google Scholar] [CrossRef]
- Middleton, D.R.S.; Watts, M.; Lark, R.; Milne, C.J.; Polya, D.A. Assessing urinary flow rate, creatinine, osmolality and other hydration adjustment methods for urinary biomonitoring using NHANES arsenic, iodine, lead and cadmium data. Environ. Health 2016, 115, 68. [Google Scholar] [CrossRef] [Green Version]
- Middleton, D.R.S.; Watts, M.J.; Polya, D.A. A comparative assessment of dilution correction methods for spot urinary analyte concentrations in a UK population exposed to arsenic in drinking water. Environ. Int. 2019, 130, 104721. [Google Scholar] [CrossRef] [PubMed]
- Poulsen, A.H.; Sears, C.G.; Harrington, J.; Howe, C.J.; James, K.A.; Roswall, N.; Overvad, K.; Tjønneland, A.; Wellenius, G.A.; Meliker, J.; et al. Urinary cadmium and stroke—A case-cohort study in Danish never-smokers. Environ. Res. 2021, 200, 111394. [Google Scholar] [CrossRef]
- Sears, C.G.; Poulsen, A.H.; Eliot, M.; Howe, C.J.; James, K.A.; Harrington, J.M.; Roswall, N.; Overvad, K.; Tjønneland, A.; Raaschou-Nielsen, O.; et al. Urine cadmium and acute myocardial infarction among never smokers in the Danish Diet, Cancer and Health Cohort. Environ. Int. 2021, 150, 106428. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, K.M.; Upson, K.; Cook, N.R.; Weinberg, C.R. Environmental chemicals in urine and blood: Improving methods for creatinine and lipid adjustment. Environ. Health Perspect. 2016, 124, 220–227. [Google Scholar] [CrossRef]
- Flom, P.L.; Cassell, D.L. Stopping Stepwise: Why Stepwise and Similar Selection Methods are Bad, and What You Should Use. SESUG Stats and Data Analysis. Paper ST-155. 2007. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.110.8353&rep=rep1&type=pdf (accessed on 27 March 2021).
- Goulle, J.-P.; Mahieu, L.; Castermant, J.; Neveu, N.; Bonneau, L.; Lainé, G.; Bouige, D.; Lacroix, C. Metal and metalloid multi-elementary ICP-MS validation in whole blood, plasma, urine and hair. Reference values. Forensic Sci. Int. 2005, 153, 39–44. [Google Scholar] [CrossRef]
- Navas-Acien, A.; Silbergeld, E.K.; Sharrett, A.R.; Aranda, E.S.C.; Selvin, E.; Guallar, E. Metals in urine and peripheral arterial disease. Environ. Health Perspect. 2005, 113, 164–169. [Google Scholar] [CrossRef] [PubMed]
N (%) | Median, 25th–75th %iles: Cr, mg/L | Median, 25th–75th %iles: Osmolality, mOsm | |
---|---|---|---|
All | 1375 | 995 (462–1650) | 585 (313–784) |
Men | 704 (51) | 1330 (777–1910) | 693 (443–848) |
Women | 671 (49) | 654 (311–1275) | 448 (237–707) |
Age 50–<60 | 1045 (76) | 1030 (485–1710) | 603 (322–795) |
Age 60–64 | 330 (24) | 860 (399–1440) | 533 (280–735) |
Diabetes at baseline | 19 (1) | 1130 (655–1800) | 762 (609–901) |
Current Smoker | 175 (13) | 1040 (461–1920) | 610 (322–789) |
Never Smoker | 1200 (87) | 987 (466–1640) | 583 (312–784) |
BMI 15–25 | 562 (41) | 871 (379–1440) | 509 (266–746) |
BMI 25–30 | 587 (43) | 1070 (515–1730) | 623 (327–797) |
BMI ≥ 30 | 226 (16) | 1225 (586–1790) | 689 (448–849) |
Incident Case Populations | |||
AMI thru 2015 | 62 (5) | 1130 (595–1710) | 632 (355–802) |
HF thru 2015 | 64 (5) | 1170 (461–1880) | 659 (327–816) |
Stroke thru 2009 | 47 (3) | 1100 (659–1870) | 659 (492–824) |
Diabetes thru 2012 | 201 (15) | 1210 (586–1870) | 704 (431–824) |
β Coefficient # | Mean Square Error | R2 | |
---|---|---|---|
Model 1 and Model 2 * | 26,685 | 0.60 | |
Urine Creatinine (mg/L) | 0.27 | ||
Model 3 | 20,332 | 0.69 | |
Urine Creatinine (mg/L) | 0.19 | ||
Urine Strontium (µg/L) | 0.20 | ||
Urine Cesium (µg/L) | 10.21 | ||
Urine Thallium (µg/L) | 279.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozdemir, S.; Sears, C.G.; Harrington, J.M.; Poulsen, A.H.; Buckley, J.; Howe, C.J.; James, K.A.; Tjonneland, A.; Wellenius, G.A.; Raaschou-Nielsen, O.; et al. Relationship between Urine Creatinine and Urine Osmolality in Spot Samples among Men and Women in the Danish Diet Cancer and Health Cohort. Toxics 2021, 9, 282. https://doi.org/10.3390/toxics9110282
Ozdemir S, Sears CG, Harrington JM, Poulsen AH, Buckley J, Howe CJ, James KA, Tjonneland A, Wellenius GA, Raaschou-Nielsen O, et al. Relationship between Urine Creatinine and Urine Osmolality in Spot Samples among Men and Women in the Danish Diet Cancer and Health Cohort. Toxics. 2021; 9(11):282. https://doi.org/10.3390/toxics9110282
Chicago/Turabian StyleOzdemir, Selinay, Clara G. Sears, James M. Harrington, Aslak Harbo Poulsen, Jessie Buckley, Chanelle J. Howe, Katherine A. James, Anne Tjonneland, Gregory A. Wellenius, Ole Raaschou-Nielsen, and et al. 2021. "Relationship between Urine Creatinine and Urine Osmolality in Spot Samples among Men and Women in the Danish Diet Cancer and Health Cohort" Toxics 9, no. 11: 282. https://doi.org/10.3390/toxics9110282
APA StyleOzdemir, S., Sears, C. G., Harrington, J. M., Poulsen, A. H., Buckley, J., Howe, C. J., James, K. A., Tjonneland, A., Wellenius, G. A., Raaschou-Nielsen, O., & Meliker, J. (2021). Relationship between Urine Creatinine and Urine Osmolality in Spot Samples among Men and Women in the Danish Diet Cancer and Health Cohort. Toxics, 9(11), 282. https://doi.org/10.3390/toxics9110282