A Fast and Automated Strategy for the Identification and Risk Assessment of Unknown Substances (IAS/NIAS) in Plastic Food Contact Materials by GC-Q-Orbitrap HRMS: Recycled LDPE as a Proof-of-Concept
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Samples
2.2. Analytical Strategy
2.2.1. Sample Preparation and Solvent Extraction
2.2.2. GC-HRMS Analysis
2.2.3. Data Processing for Tentative Identification
2.3. Risk Assessment
3. Results and Discussion
3.1. System Suitability
3.2. Identification of Unknown Substances
3.3. Confirmation with Standards
3.4. Risk Assessment of Recycled LDPE
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Regulation, C. No 10/2011 of 14 January 2011 on Plastic Materials and Articles Intended to Come into Contact with Food (and Its Successive Amendments). Available online: http://data.europa.eu/eli/reg/2011/10/2020-09-23 (accessed on 20 September 2021).
- International Life Science Institute (ILSI) Europe. Guidance on Best Practices on the Risk Assessment of Non-Intentionally Added Substances (NIAS) in Food Contact Materials and Articles; ILSI Europe: Brussels, Belgium, 2015. [Google Scholar]
- Aznar, M.; Alfaro, P.; Nerín, C.; Jones, E.; Riches, E. Progress in mass spectrometry for the analysis of set-off phenomena in plastic food packaging materials. J. Chromatogr. A 2016, 1453, 124–133. [Google Scholar] [CrossRef] [PubMed]
- Yusà, V.; López, A.; Dualde, P.; Pardo, O.; Fochi, I.; Pineda, A.; Coscolla, C. Analysis of unknowns in recycled LDPE plastic by LC-Orbitrap Tribrid HRMS using MS3 with an intelligent data acquisition mode. Microchem. J. 2020, 158, 105256. [Google Scholar] [CrossRef]
- Gallart-Ayala, H.; Nunez, O.; Lucci, P. Recent advances in LC-MS analysis of food-packaging contaminants. TrAC Trends Anal. Chem. 2013, 42, 99–124. [Google Scholar] [CrossRef] [Green Version]
- Hoppe, M.; de Voogt, P.; Franz, R. Identification and quantification of oligomers as potential migrants in plastics food contact materials with a focus in polycondensates—A review. Trends Food Sci. Technol. 2016, 50, 118–130. [Google Scholar] [CrossRef]
- Sanchis, Y.; Yusà, V.; Coscollà, C. Analytical strategies for organic food packaging contaminants. J. Chromatogr. A 2017, 1490, 22–46. [Google Scholar] [CrossRef]
- Martínez-Bueno, M.J.; Gómez Ramos, M.J.; Bauer, A.; Fernández-Alba, A.R. An overview of non-targeted screening strategies based on high resolution accurate mass spectrometry for the identification of migrants coming from plastic food packaging materials. TrAC Trends Anal. Chem. 2019, 110, 191–203. [Google Scholar] [CrossRef]
- Wrona, M.; Nerín, C. Analytical approaches for analysis of safety of modern food packaging: A review. Molecules 2020, 25, 752. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, X.; Lu, Z.; Hu, Y.; Xie, Z.; Li, G. Research progress on sample pretreatment methods for migrating substances from food contact materials. J. Sep. Sci. 2021, 44, 879–894. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Bueno, M.J.; Cimmino, S.; Silvestre, C.; Tadeo, J.L.; García-Valcárcel, A.I.; Fernández-Alba, A.R.; Hernando, M.D. Characterization of non-intentionally added substances (NIAS) and zinc oxide nanoparticle release from evaluation of new antimicrobial food contact materials by both LC-QTOF-MS, GC-QTOF-MS and ICP-MS. Anal. Methods 2016, 8, 7209–7216. [Google Scholar] [CrossRef]
- Canellas, E.; Vera, P.; Nerín, C. UPLC-ESI-Q-TOF-MSE and GC-MS identification and quantification of non-intentionally added substances coming from biodegradable food packaging. Anal. Bioanal. Chem. 2015, 407, 6781–6790. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Qu, G.; Zhang, C.; Gao, Y.; Shi, J.; Du, Y.; Jiang, G. Identification of two novel brominated contaminants in water samples by ultra-high performance liquid chromatography-Orbitrap Fusion Tribrid mass spectrometer. J. Chromatogr. A 2015, 1377, 92–99. [Google Scholar] [CrossRef]
- Wu, Y.; Gao, S.; Liu, Z.; Zhao, J.; Ji, B.; Zheng, X.; Yu, Z. The quantification of chlorinated paraffins in environmental samples by ultra-high-performance liquid chromatography coupled with Orbitrap Fusion Tribrid mass spectrometry. J. Chromatogr. A 2019, 1593, 102–109. [Google Scholar] [CrossRef]
- Yusà, V.; López, A.; Dualde, P.; Pardo, O.; Fochi, I.; Miralles, P.; Coscollà, C. Identification of 24 unknown substances (IAS/NIAS) from food contact polycarbonate by LC-Orbitrap Tribrid HRMS-DDMS3: Safety assessment. Int. J. Anal. Chem. 2021, 2021, 6654611. [Google Scholar] [CrossRef]
- Miralles, P.; López, A.; Dualde, P.; Coscollà, C.; Yusà, V. LC-Orbitrap Tribrid high-resolution MS using data dependent-tandem mass spectrometry with triple stage fragmentation as a screening tool to perform identification and risk assessment of unknown substances in food contact epoxy resin. J. Sep. Sci. 2021, 44, 3020–3030. [Google Scholar] [CrossRef]
- Horodytska, O.; Cabanes, A.; Fullana, A. Non-intentionally added substances (NIAS) in recycled plastics. Chemosphere 2020, 251, 126373. [Google Scholar] [CrossRef] [PubMed]
- Canellas, E.; Vera, P.; Nerín, C. Atmospheric pressure gas chromatography coupled to quadrupole-time of flight mass spectrometry as a tool for identification of volatile migrants from autoadhesive labels used for direct food contact. J. Mass Spectrom. 2014, 49, 1181–1190. [Google Scholar] [CrossRef]
- Martínez-Bueno, M.J.; Hernando, M.D.; Uclés, S.; Rajski, L.; Cimmino, S.; Fernández-Alba, A.R. Identification of non-intentionally added substances in food packaging nano films by gas and liquid chromatography coupled to orbitrap mass spectrometry. Talanta 2017, 172, 68–77. [Google Scholar] [CrossRef] [PubMed]
- García Ibarra, V.; Rodríguez Bernaldo de Quirós, A.; Paseiro Losada, P.; Sendón, R. Non-target analysis of intentionally and non-intentionally added substances from plastic packaging materials and their migration into food simulants. Food Packag. Shelf Life 2019, 21, 100325. [Google Scholar] [CrossRef]
- National Institute of Standards and Technology (NIST). NIST/EPA/NIH Mass Spectral Library (NIST 20); NIST: Gaithesburg, MD, USA, 2020. [Google Scholar]
- Biedermann, M.; Grob, K. Comprehensive two-dimensional gas chromatography for characterizing mineral oils in foods and distinguishing them from synthetic hydrocarbons. J. Chromatogr. A 2015, 1375, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Franz, R.; Welle, F. Contamination levels in recollected PET bottles from non-food applications and their impact on the safety of recycled PET for food contact. Molecules 2020, 25, 4998. [Google Scholar] [CrossRef]
- Van Velzen, E.U.T.; Brouwer, M.T.; Stärker, C.; Welle, F. Effect of recycled content and rPET quality of the properties of PET bottles, part II: Migration. Packag. Technol. Sci. 2020, 33, 359–371. [Google Scholar] [CrossRef]
- Omer, E.; Bichon, E.; Hutinet, S.; Royer, A.; Monteau, F.; Germon, H.; Hill, P.; Remaud, G.; Dervilly-Pinel, G.; Cariou, R.; et al. Toward the characterisation of non-intentionally added substances migrating from polyester-polyurethane lacquers by comprehensive gas chromatography-mass spectrometry technologies. J. Chromatogr. A 2019, 1601, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Wrona, M.; Nerin, C.; Lin, Q.; Zhong, H. Volatile non-intentionally added substances (NIAS) identified in recycled expanded polystyrene containers and their migration into food simulants. Food Packag. Shelf Life 2019, 20, 100318. [Google Scholar] [CrossRef]
- Canellas, E.; Vera, P.; Domeño, C.; Alfaro, P.; Nerín, C. Atmospheric pressure gas chromatography coupled to quadrupole-time of flight mass spectrometry as a powerful tool for identification of non-intentionally added substances in acrylic adhesives used in food packaging materials. J. Chromatogr. A 2012, 1235, 141–148. [Google Scholar] [CrossRef]
- Ubeda, S.; Aznar, M.; Nerín, C. Determination of volatile compounds and their sensory impact in a biopolymer based on polylactic acid (PLA) and polyester. Food Chem. 2019, 294, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Onghena, M.; van Hoeck, E.; van Loco, J.; Ibáñez, M.; Cherta, L.; Portolés, T.; Pitarch, E.; Hernández, F.; Lemière, F.; Covaci, A. Identification of substances migrating from plastic baby bottles using a combination of low-resolution and high-resolution mass spectrometric analysers coupled to gas and liquid chromatography. J. Mass Spectrom. 2015, 50, 1234–1244. [Google Scholar] [CrossRef] [PubMed]
- EFSA Scientific Committee. Scientific opinion on exploring options for providing advice about possible human health risk based on the concept of threshold of toxicological concern (TTC). EFSA J. 2012, 10, 2750. [Google Scholar]
- Canellas, E.; Vera, P.; Nerin, C. Migration assessment and the ‘threshold of toxicological concern’ applied to the safe design of an acrylic adhesive for food-contact laminates. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2017, 34, 1721–1729. [Google Scholar] [CrossRef] [PubMed]
- Pieke, E.N.; Granby, K.; Teste, B.; Smedsgaard, J.; Rivière, G. Prioritization before risk assessment: The viability of uncertain data on food contact materials. Regul. Toxicol. Pharmacol. 2018, 97, 134–143. [Google Scholar] [CrossRef] [Green Version]
- Patlewicz, G.; Jeliazkova, N.; Safford, R.J.; Worth, A.P.; Aleksiev, B. An evaluation of the implementation of the Cramer classification scheme in the Toxtree software. SAR QSAR Environ. Res. 2008, 19, 495–524. [Google Scholar] [CrossRef]
- Matthews, C.; Moran, F.; Jaiswal, A.K. A review on European Union’s strategy for plastics in a circular economy and its impact on food safety. J. Clean. Prod. 2021, 283, 125263. [Google Scholar] [CrossRef]
- Plastic Recyclers Europe (PRE). Flexible Polyethylene Recycling in Europe: Accelerating the Transition towards Circular Economy. Available online: https://www.pac.gr/bcm/uploads/flexible-pe-recycling-in-europe_june-2019.pdf (accessed on 20 September 2021).
- Commission Regulation. (EC) No 282/2008 of 27 March 2008 on Recycled Plastic Materials and Articles Intended to Come into Contact with Foods and Amending Regulation (EC) No 2003/2006 (and its Successive Amendments). Available online: http://data.europa.eu/eli/reg/2008/282/2015-10-26 (accessed on 20 September 2021).
- Fullana Font, A.; Lozano Morzillo, A. Method for Removing Ink Printed on Plastic Films. ES2427019A1, 28 october 2013. [Google Scholar]
- Compound Discoverer 3.2 Software. Thermo Fisher Scientific: Waltham, MA, USA, 2021. Available online: https://www.thermofisher.com/es/es/home/industrial/mass-spectrometry/liquid-chromatography-mass-spectrometry-lc-ms/lc-ms-software/multi-omics-data-analysis/compound-discoverer-software.html (accessed on 20 September 2021).
- Food Contact Additives (FCA). Risk Assessment of Non-Listed Substances (NLS) and Non-Intentionally Added Substances (NIAS) under the Requirements of Article 3 of the Framework Regulation (EC) 1935/2004, Version 3.0. 2020. Available online: https://fca.cefic.org/wp-content/uploads/2021/02/FCA_Risk_Assessment_Guidelines_v30-1.pdf (accessed on 20 September 2021).
Parameter | Criteria |
---|---|
NIST MS Library match (Total score) 1 | >90% |
Exact mass accuracy (ΔMass) 2 | <2 ppm |
Retention index absolute difference (ΔRI) 3 | <50 units |
Compound Name 1 | CAS Number | Molecular Formula | NIST Match (Total Score, %) 2 | ΔRI (a.u.) 3 |
---|---|---|---|---|
Acetate esters | ||||
7-Tetradecen-1-yl acetate | 16974-10-0 | C16 H30 O2 | 93.2 | 24 |
Hexadecyl acetate | 629-70-9 | C18 H36 O2 | 93.5 | 3 |
Hexadecyl trifluoroacetate | 6222-03-3 | C18 H33 F3 O2 | 95.9 | 20 |
Octadecyl trifluoroacetate | 79392-43-1 | C20 H37 F3 O2 | 95.6 | 14 |
Tri-n-butyl acetyl citrate * | 77-90-7 | C20 H34 O8 | 95.7 | 4 |
Aldehydes and ketones | ||||
Benzophenone * | 119-61-9 | C13 H10 O | 95.8 | 8 |
2,6-Di-tert-butyl-1,4- benzoquinone | 719-22-2 | C14 H20 O2 | 94.9 | 10 |
3,5-Di-tert-butyl-4- hydroxybenzaldehyde | 1620-98-0 | C15 H22 O2 | 96.1 | 17 |
7,9-Di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione | 82304-66-3 | C17 H24 O3 | 96.1 | 21 |
Dehydroabietic aldehyde | 13601-88-2 | C20 H28 O | 96.4 | 1 |
Alkenes | ||||
1-Hexadecene | 629-73-2 | C16 H32 | 96.5 | 1 |
9-Nonadecene | 31035-07-1 | C19 H38 | 91.4 | 29 |
1-Docosene | 1599-67-3 | C22 H44 | 91.3 | 50 |
9-Tricosene | 27519-02-4 | C23 H46 | 93.5 | 3 |
1-Tetracosene | 10192-32-2 | C24 H48 | 95.3 | 0 |
1-Hexacosene | 18835-33-1 | C26 H52 | 93.7 | 2 |
Squalene | 111-02-4 | C30 H50 | 96.4 | 0 |
Phenol derivatives | ||||
1,2-Diphenoxyethane | 104-66-5 | C14 H14 O2 | 97.5 | 10 |
2,4-Di-tert-butylphenol | 96-76-4 | C14 H22 O | 97.2 | 12 |
2,6-Di-tert-butylphenol | 128-39-2 | C14 H22 O | 96.8 | 10 |
Butylated hydroxytoluene * | 128-37-0 | C15 H24 O | 97.0 | 9 |
2,4-Di-tert-pentylphenol | 120-95-6 | C16 H26 O | 92.6 | 38 |
Metilox | 6386-38-5 | C18 H28 O3 | 94.7 | 16 |
Irganox 1076 * | 2082-79-3 | C35 H62 O3 | 93.0 | 8 |
Phthalates | ||||
Dibutyl phthalate * | 84-74-2 | C16 H22 O4 | 94.6 | 2 |
Diisobutyl phthalate | 84-69-5 | C16 H22 O4 | 96.4 | 13 |
Bis(2-ethylhexyl) phthalate * | 117-81-7 | C24 H38 O4 | 98.2 | 2 |
Bis(2-ethylhexyl) terephthalate * | 6422-86-2 | C24 H38 O4 | 94.7 | 28 |
Primary alcohols | ||||
3-Nonenol | 10340-23-5 | C9 H18 O | 95.7 | 48 |
Octadecanol | 112-92-5 | C18 H38 O | 96.2 | 3 |
Nonadecanol | 1454-84-8 | C19 H40 O | 96.3 | 18 |
Eicosanol | 629-96-9 | C20 H42 O | 90.9 | 20 |
Docosanol | 661-19-8 | C22 H46 O | 90.4 | 12 |
Tetracosanol | 506-51-4 | C24 H50 O | 86.2 | 11 |
Cyclic and aromatic hydrocarbons | ||||
2,6-Diisopropylnaphthalene | 24157-81-1 | C16 H20 | 96.7 | 8 |
2,2′,5,5′-Tetramethyl-1,1′- biphenyl | 3075-84-1 | C16 H18 | 94.2 | 42 |
Undecylcyclohexane | 54105-66-7 | C17 H34 | 94.6 | 3 |
1-Ethyldecylbenzene | 2400-00-2 | C18 H30 | 90.3 | 1 |
7-Isopropyl-1-methyl-1,2,3,4- tetrahydrophenanthrene | 6566-19-4 | C18 H22 | 96.2 | 11 |
7-Isopropyl-1,4-dimethyl tetradecahydrophenanthrene | 2221-95-6 | C19 H34 | 96.7 | 9 |
m-Camphorene | 20016-73-3 | C20 H32 | 92.6 | 44 |
1,3,5-Triphenylcyclohexane | 28336-57-4 | C24 H24 | 95.3 | 31 |
Fatty acid methyl esters (FAMEs) | ||||
Methyl laurate | 111-82-0 | C13 H26 O2 | 95.8 | 13 |
Methyl palmitate | 112-39-0 | C17 H34 O2 | 97.7 | 16 |
Methyl heptadecanoate | 1731-92-6 | C18 H36 O2 | 94.2 | 11 |
Methyl linolelaidate | 2566-97-4 | C19 H34 O2 | 98.0 | 20 |
Methyl elaidate | 1937-62-8 | C19 H36 O2 | 98.1 | 4 |
Methyl stearate | 112-61-8 | C19 H38 O2 | 97.8 | 12 |
Methyl erucate | 1120-34-9 | C23 H44 O2 | 91.8 | 0 |
Methyl isopimarate | 1686-62-0 | C21 H32 O2 | 92.1 | 1 |
Methyl icosanoate | 1120-28-1 | C21 H42 O2 | 97.2 | 13 |
Other fatty acid esters (FAEs) | ||||
Isopropyl myristate | 110-27-0 | C17 H34 O2 | 94.3 | 4 |
Ethyl palmitate | 628-97-7 | C18 H36 O2 | 92.1 | 1 |
Butyl palmitate * | 111-06-8 | C20 H40 O2 | 93.1 | 4 |
Butyl stearate * | 123-95-5 | C22 H44 O2 | 94.3 | 3 |
Hexadecyl palmitate | 540-10-3 | C32 H64 O2 | 95.0 | 0 |
Linear and branched polyethylene oligomers | ||||
Tetradecane | 629-59-4 | C14 H30 | 96.5 | 0 |
Hexadecane | 544-76-3 | C16 H34 | 96.7 | 0 |
Heptadecane | 629-78-7 | C17 H36 | 96.9 | 2 |
Octadecane | 593-45-3 | C18 H38 | 96.6 | 0 |
Eicosane | 112-95-8 | C20 H42 | 96.5 | 0 |
Tetracosane | 646-31-1 | C24 H50 | 95.7 | 0 |
Pentacosane | 629-99-2 | C25 H52 | 94.0 | 31 |
Heptacosane | 593-49-7 | C27 H56 | 94.4 | 2 |
Octacosane | 630-02-4 | C28 H58 | 96.1 | 0 |
Tetraiacontane | 14167-59-0 | C34 H70 | 92.1 | 0 |
3-Methylpentadecane | 2882-96-4 | C16 H34 | 93.1 | 1 |
3-Methylheptadecane | 6418-44-6 | C18 H38 | 94.9 | 2 |
3-Methylnonadecane | 6418-45-7 | C20 H42 | 95.5 | 2 |
2,6,10,15-Tetramethyl heptadecane | 54833-48-6 | C21 H44 | 92.3 | 30 |
3-Methylheneicosane | 6418-47-9 | C22 H46 | 95.9 | 1 |
5-Methylheneicosane | 25117-37-7 | C22 H46 | 95.5 | 1 |
11-Methyltricosane | 27538-41-6 | C24 H50 | 95.3 | 38 |
2-Methyloctacosane | 1560-98-1 | C29 H60 | 95.7 | 43 |
5-Methylnonacosane | 71868-29-6 | C30 H62 | 94.1 | 9 |
Other compounds | ||||
Diphenyl sulphone * | 127-63-9 | C12 H10 O2 S | 93.0 | - |
1-Chlorohexadecane | 4860-03-1 | C16 H33 Cl | 94.2 | 21 |
N,N-Dimethylpalmitylamine | 112-69-6 | C18 H39 N | 96.1 | - |
Galaxolide | 1222-05-5 | C18 H26 O | 95.8 | - |
Methyl dehydroabietate | 1235-74-1 | C21 H30 O2 | 97.6 | 2 |
Methyl abietate | 127-25-3 | C21 H32 O2 | 96.2 | 4 |
Bis(2-ethylhexyl) adipate * | 103-23-1 | C22 H42 O4 | 93.5 | 12 |
Irgafos 168 * | 31570-04-4 | C42 H63 O3 P | 94.7 | 5 |
Compound Name | CAS Number | Migration (mg kg−1) 1 | SML (mg kg−1) 2 | Toxicological Hazard (Cramer Class) 3 | TDI (mg Person−1 day−1) 4 | EDI (mg Person−1 day−1) 5 |
---|---|---|---|---|---|---|
Irgafos 168 * | 31570-04-4 | 2.0 ± 0.2 | - | |||
Methyl palmitate | 112-39-0 | 0.058 | Low (Class I) | 1.80 | 0.058 | |
Methyl stearate | 112-61-8 | 0.058 | Low (Class I) | 1.80 | 0.058 | |
1,2-Diphenoxyethane | 104-66-5 | 0.033 | High (Class III) | 0.09 | 0.033 | |
Octadecane | 593-45-3 | 0.021 | Low (Class I) | 1.80 | 0.021 | |
Bis(2-ethylhexyl) terephthalate * | 6422-86-2 | 0.020 ± 0.002 | 60 | |||
Tetracosane | 646-31-1 | 0.018 | Low (Class I) | 1.80 | 0.018 | |
Octacosane | 630-02-4 | 0.013 | Low (Class I) | 1.80 | 0.013 | |
Butylated hydroxytoluene * | 128-37-0 | 0.010 ± 0.001 | 3 | |||
Hexadecane | 544-76-3 | 0.009 | Low (Class I) | 1.80 | 0.009 | |
Methyl dehydroabietate | 1235-74-1 | 0.009 | Low (Class I) | 1.80 | 0.009 | |
Tetraiacontane | 14167-59-0 | 0.007 | Low (Class I) | 1.80 | 0.007 | |
Eicosane | 112-95-8 | 0.005 | Low (Class I) | 1.80 | 0.005 | |
Benzophenone * | 119-61-9 | 0.0030 ± 0.0005 | 0.6 | |||
Bis(2-ethylhexyl) phthalate * | 117-81-7 | 0.0025 ± 0.0005 | 1.5 | |||
2,6-Di-tert-butylphenol | 128-39-2 | 0.002 | Intermediate (Class II) | 0.54 | 0.002 | |
N,N-Dimethylpalmitylamine | 112-69-6 | 0.002 | Low (Class I) | 1.80 | 0.002 | |
Octadecyl trifluoroacetate | 79392-43-1 | 0.0014 | High (Class III) | 0.09 | 0.0014 | |
2,6-Diisopropylnaphthalene | 24157-81-1 | 0.0014 | High (Class III) | 0.09 | 0.0014 | |
Diisobutyl phthalate | 84-69-5 | 0.0014 ± 0.0002 | Low (Class I) | 1.80 | 0.0014 | |
Irganox 1076 * | 2082-79-3 | 0.0013 | 6 | |||
7,9-Di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione | 82304-66-3 | 0.0010 | High (Class III) | 0.09 | 0.0010 | |
Methyl linolelaidate | 2566-97-4 | 0.0009 | Low (Class I) | 1.80 | 0.0009 | |
1-Tetracosene | 10192-32-2 | 0.0009 | Low (Class I) | 1.80 | 0.0009 | |
2,4-Di-tert-pentylphenol | 120-95-6 | 0.0008 | Low (Class I) | 1.80 | 0.0008 | |
Methyl elaidate | 1937-62-8 | 0.0007 | Low (Class I) | 1.80 | 0.0007 | |
Nonadecanol | 1454-84-8 | 0.0007 | Low (Class I) | 1.80 | 0.0007 | |
Squalene | 111-02-4 | 0.0007 | Low (Class I) | 1.80 | 0.0007 | |
3,5-Di-tert-butyl-4- hydroxybenzaldehyde | 1620-98-0 | 0.0005 | Intermediate (Class II) | 0.54 | 0.0005 | |
2,4-Di-tert-butylphenol | 96-76-4 | 0.0005 | Low (Class I) | 1.80 | 0.0005 | |
2,6-Di-tert-butyl-1,4- benzoquinone | 719-22-2 | 0.0005 | Intermediate (Class II) | 0.54 | 0.0005 | |
Bis(2-ethylhexyl) adipate * | 103-23-1 | 0.0005 ± 0.0001 | 18 | |||
Galaxolide | 1222-05-5 | 0.0005 | High (Class III) | 0.09 | 0.0005 | |
1-Chlorohexadecane | 4860-03-1 | 0.0004 | High (Class III) | 0.09 | 0.0004 | |
1-Hexadecene | 629-73-2 | 0.0003 | Low (Class I) | 1.80 | 0.0003 | |
Hexadecyl palmitate | 540-10-3 | 0.0003 | Low (Class I) | 1.80 | 0.0003 | |
Isopropyl myristate | 110-27-0 | 0.0003 | Low (Class I) | 1.80 | 0.0003 | |
Hexadecyl trifluoroacetate | 6222-03-3 | 0.0003 | High (Class III) | 0.09 | 0.0003 | |
Methyl abietate | 127-25-3 | 0.0003 | High (Class III) | 0.09 | 0.0003 | |
2,6,10,15-Tetramethyl heptadecane | 54833-48-6 | 0.0003 | Low (Class I) | 1.80 | 0.0003 | |
Butyl palmitate * | 111-06-8 | 0.0002 | - | |||
11-Methyltricosane | 27538-41-6 | 0.0002 | Low (Class I) | 1.80 | 0.0002 | |
Hexadecyl acetate | 629-70-9 | 0.0002 | Low (Class I) | 1.80 | 0.0002 | |
3-Nonenol | 10340-23-5 | 0.00018 | Low (Class I) | 1.80 | 0.00018 | |
Metilox | 6386-38-5 | 0.00017 | Intermediate (Class II) | 0.54 | 0.00017 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miralles, P.; Yusà, V.; Pineda, A.; Coscollà, C. A Fast and Automated Strategy for the Identification and Risk Assessment of Unknown Substances (IAS/NIAS) in Plastic Food Contact Materials by GC-Q-Orbitrap HRMS: Recycled LDPE as a Proof-of-Concept. Toxics 2021, 9, 283. https://doi.org/10.3390/toxics9110283
Miralles P, Yusà V, Pineda A, Coscollà C. A Fast and Automated Strategy for the Identification and Risk Assessment of Unknown Substances (IAS/NIAS) in Plastic Food Contact Materials by GC-Q-Orbitrap HRMS: Recycled LDPE as a Proof-of-Concept. Toxics. 2021; 9(11):283. https://doi.org/10.3390/toxics9110283
Chicago/Turabian StyleMiralles, Pablo, Vicent Yusà, Adriana Pineda, and Clara Coscollà. 2021. "A Fast and Automated Strategy for the Identification and Risk Assessment of Unknown Substances (IAS/NIAS) in Plastic Food Contact Materials by GC-Q-Orbitrap HRMS: Recycled LDPE as a Proof-of-Concept" Toxics 9, no. 11: 283. https://doi.org/10.3390/toxics9110283
APA StyleMiralles, P., Yusà, V., Pineda, A., & Coscollà, C. (2021). A Fast and Automated Strategy for the Identification and Risk Assessment of Unknown Substances (IAS/NIAS) in Plastic Food Contact Materials by GC-Q-Orbitrap HRMS: Recycled LDPE as a Proof-of-Concept. Toxics, 9(11), 283. https://doi.org/10.3390/toxics9110283