Presence of Arsenic in Potential Sources of Drinking Water Supply Located in a Mineralized and Mined Area of the Sierra Madre Oriental in Mexico
Abstract
:1. Introduction
2. Study Site Description
2.1. Geological and Hydrological Context
2.2. Origin and Characteristics of Abandoned Mine Waste Dumps
3. Materials and Methods
3.1. Water Sampling and Chemical Analysis
3.2. Waste and Sediment Mineralogical Characterization
3.3. Hydrogeochemical Analysis
4. Results and Discussion
4.1. As, Hg, and Tl: The Main Contaminants Identified in the Analyzed Water Bodies
4.2. PCA Values: A Strategy to Establish the Quality of Water Bodies
4.3. El Ojo de Agua Spring: As a Potential Drinking Water Supply, Is It Impacted by Natural or Anthropogenic Events?
4.4. Isotopic Analysis of δ34Ssulfate, δ18Osulfate, and Sulfate Presence in the El Ojo de Agua Spring
4.5. Arsenic Content in the El Ojo de Agua Spring and its Relationship with the Dragging of Fine Particles via Hydric Erosion
Abbreviation 1 | Name | Chemical Formula | Solid Sample | Index Saturation Range 2 | |
---|---|---|---|---|---|
Mineral Gangue | AMWD | Sediments | |||
Qz | Quartz | SiO2 | √ | √ | |
Als | Aluminosilicate | K (AlSi3O8) | √ | √ | |
Cal | Calcite | CaCO3 | √ | −0.8 to −1.2 | |
Primary phases | |||||
L | Lautite | CuAsS | √ | √ | (*) |
Ccp | Chalcopyrite | CuFeS2 | √ | (*) | |
Cct | Calcocite | Cu2S | √ | (*) | |
Sp | Sphalerite | ZnS | Hypothetic mineral phase | (*) | |
Gtn | Gratonite | PbS2As2S3 | √ | (*) | |
Py | Pyrite | FeS2 | √ | (*) | |
Rlg | Realgar | As4S4 | √ | √ | (*) |
Orp | Orpiment | As2S3 | √ | (*) | |
Slf | Sulfur | S | √ | √ | (*) |
Iron oxy-hydroxides | |||||
He | Hematite | Fe1.8H0.66O3 | √ | √ | 4.1 to −17.6 |
Gth | Goethite | Fe2O3 · H2O | √ | √ | 1.6 to −9.2 |
Lpd | Lepidocrocite | Fe+3O(OH) | √ | 2.8 to −10.7 | |
Fhy | Ferrihydrite | Fe2(OH)3 · 0.5H2O | Hypothetic mineral phase | 1.3 to -12.3 | |
Secondary mineral phases | |||||
Gy | Gypsum | CaSO4 · 2H2O | √ | √ | −0.6 to −2.1 |
Scr | Scorodite | FeAsO4 · 2H2O | √ | √ | −1.4 to −17.7 |
Bdt | Beudantite | Pb(Fe2.5Al0.46)(As1.07O4)SO4(OH)6 | √ | √ | −0.2 to −44.2 |
Pb-Jrs | Plumbojarosite | (Pb0.43K0.14)Fe3(SO4)2(OH)6 | √ | √ | |
K-Jrs | K-Jarosite | (K0.86(H3O)0.14)Fe3(SO4)2(OH)6 | √ | √ | −5 to 30.7 |
Adm | Adamite | Zn2(AsO4)(OH) | √ | −5.5 to −22.9 | |
Lnk | Lanarkite | Pb2(SO4)O | √ | −8.7 to −16.6 | |
Bch | Brochantite | Cu4(SO4)(OH)6 | √ | −6.9 to −30.1 | |
Cld | Claudetite | As2O3 | √ | −10.5 to −27.4 | |
Sgn | Segnetite | PbFe3(AsO4)(AsO3OH)(OH)6 | √ | −12.2 to −45.2 | |
Cqm | Coquimbite | Fe1.54Al0.46(SO4)3 · 9H2O | √ | −28.1 to −35.1 | |
Grn | Guerinite | Ca5(AsO4)2(AsO3(OH))(H2O)4 | √ | √ | −17.8 to −39.3 |
Skn | Sarkinite | Mn2AsO4(OH) | √ | √ | −26.5 to −47.8 |
Fcpp | Ferricopiapite | Fe4.67(SO4)6 (OH)2 · 20H2O | √ | −34 to −46 |
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lottermoser, B.G. Mine Wastes: Characterization, Treatment and Environmental Impacts, 3rd ed.; Springer: Berlin, Germany, 2010; pp. 1–334. [Google Scholar] [CrossRef]
- Bini, C. Environmental Impact of Abandoned Mine Waste: A Review, 1st ed.; Nova Science Publishers: New York, NY, USA, 2012; pp. 1–92. [Google Scholar]
- United State Environmental Protection Agency (USEPA). Available online: https://www.epa.gov/superfund/abandoned-mine-lands-basic-information-0 (accessed on 7 August 2021).
- Hammarstrom, J.M.; Smith, K.S. Geochemical and mineralogic characterization of solids and their effects on waters in metal mining environments. Chapter, B. In Progress on Geoenvironmental Models for Selected Mineral Deposits Types, 1st ed.; Seal, R.R., Foley, N.K., Eds.; U.S. Geological Survey: Lincoln, OR, USA, 2002; pp. 8–54. [Google Scholar]
- Hudson, K.; Jamieson, H.; Lottermoser, B. Mine wastes: Past, present and future. Elements 2011, 7, 375–380. [Google Scholar] [CrossRef]
- Plumlee, G.S. The environmental geology of mineral deposits. In Reviews in Economic Geology, 1st ed.; Plumlee, G.S., Logsdon, M.J., Eds.; U.S. Geology Survey: Littleton, CO, USA, 1999; Volume 6A, pp. 71–116. [Google Scholar]
- Blowes, D.W.; Ptacek, C.J.; Jambor, J.L.; Weisener, C.G.; Paktunc, D.; Gould, W.D.; Johnson, D.B. The geochemistry of acid mine drainage. In Treatise on Geochemistry, 2nd ed.; Lollar, B.S., Holland, H.D., Turekian, K.K., Eds.; Elsevier-Pergamon: Oxford, UK, 2014; Volume 11, pp. 131–190. [Google Scholar] [CrossRef]
- Nordstrom, D.K. Hydrogeochemical processes governing the origin, transport and fate of major and trace elements from mine wastes and mineralized rock to surface waters. Appl. Geochem. 2011, 26, 1777–1791. [Google Scholar] [CrossRef]
- Bundschuh, J.; Jean, J.S.; Liu, C.; López, D.; Armienta, M.; Guilherme, L.R.; Toujaguez, R. One century of arsenic exposure in Latin America: A review of history and occurrence from 14 countries. Sci. Total. Environ. 2012, 429, 2–35. [Google Scholar] [CrossRef]
- Nordstrom, D.K.; Blowes, D.W.; Ptacek, C.J. Hydrogeochemistry and microbiology of mine drainage: An update. Appl. Geochem. 2015, 57, 3–16. [Google Scholar] [CrossRef]
- Ramos-Arroyo, Y.R.; Guerrero-Aguilar, A.; Cano-Rodriguez, I.; Gutierrez-Valtierra, M.; Miranda, R. Arsenic Liberation from Mine Wastes Derived of Skarn Deposits at Sierra Madre Oriental, México. Procedia Earth Planet. Sci. 2017, 17, 833–836. [Google Scholar] [CrossRef]
- Bigham, J.M.; Schwertmann, U.; Traina, S.J.; Winland, R.L.; Wolf, M. Schwertmannite and the chemical modeling of iron in acid sulfate waters. Geochim. Cosmochim. AC 1996, 60, 2111–2121. [Google Scholar] [CrossRef]
- Cornell, R.M.; Schwertmann, U. The Iron Oxides. Structure, Properties, Reactions, Occurrences and Uses; Wiley-VCH Verlag GmbH and Co. KGaA: Weinheim, Germany, 2003; pp. 1–664. [Google Scholar] [CrossRef]
- Dold, B. Basic concepts in environmental geochemistry of sulfidic mine-waste management. In Waste Management, 1st ed.; Sunil, K.E., Ed.; IntechOpen: Rijeka, Croatia, 2010; Volume 1, pp. 173–198. [Google Scholar] [CrossRef] [Green Version]
- Hammarstrom, J.M.; Seal, R.R.; Meierb, A.L.; Kornfeld, J.M. Secondary sulfate minerals associated with acid drainage in the eastern US: Recycling of metals and acidity in surficial environments. Chem. Geol. 2005, 215, 407–431. [Google Scholar] [CrossRef] [Green Version]
- Armienta, M.A.; Villaseñor, G.; Rodríguez, R.; Ongley, L.K.; Mango, H. The role of arsenic bearing rocks in groundwater pollution at Zimapán Valley, México. Environ. Geol. 2011, 40, 571–581. [Google Scholar] [CrossRef]
- Armienta, M.A.; Rodriguez, R.; Aguayo, A.; Ceniceros, N.; Villaseñor, G.; Cruz, O. Arsenic contamination of groundwater at Zimapán, México. Hydrogeol. J. 1997, 5, 39–46. [Google Scholar] [CrossRef]
- Mandal, B.; Suzuki, K. Arsenic round the world: A review. Talanta 2002, 58, 201–235. [Google Scholar] [CrossRef]
- Verma, S.; Mukherjee, A.; Mahanta, C.; Choudhury, R.; Mitra, K. Influence of geology on groundwater–sediment interactions in arsenic enriched tectono-morphic aquifers of the Himalayan Brahmaputra river basin. J. Hydrol. 2016, 540, 176–195. [Google Scholar] [CrossRef]
- Mohan, D.; Pittman, C.U. Arsenic removal from water/wastewater using adsorbents- a critical review. J. Hazard. Mater. 2007, 142, 1–53. [Google Scholar] [CrossRef]
- Smedley, P.L.; Kinniburgh, D.G. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 2002, 17, 517–568. [Google Scholar] [CrossRef] [Green Version]
- Fleischer, M. Summary of the literature on the inorganic geochemistry of mercury. In Mercury in the Environment Geological Survey Professional Paper 713, 1st ed.; Hickel, W.J., Pecora, W.T., Eds.; U.S Geological survey: Washington, DC, USA, 1970; Volume 1, pp. 6–13. [Google Scholar]
- Hammarstrom, J.M. Environmental Geochemistry of Skarn and Polymetallic Carbonate-replacement deposit models. Chapter, H. In Progress on Geoenvironmental Models for Selected Mineral Deposits Types, 1st ed.; Seal, R.R., Foley, N.K., Eds.; U.S. Geological Survey: Lincoln, OR, USA, 2002; pp. 115–142. [Google Scholar]
- Wershaw, R.L. Sources and behavior of mercury in surface waters. In Mercury in the Environment Geological Survey Professional Paper 713, 1st ed.; Hickel, W.J., Pecora, W.T., Eds.; U.S Geological survey: Washington, DC, USA, 1970; Volume 1, pp. 29–34. [Google Scholar]
- Campanella, B.; Onor, M.; D’Ulivo, A.; Giannecchini, R.; D’Orazio, M.; Petrini, R.; Bramanti, E. Human exposure to thallium through tap water: A study from Valdicastello Carducci and Pietrasanta (northern Tuscany, Italy). Sci. Total Environ. 2016, 1, 548–549. [Google Scholar] [CrossRef]
- D’Orazio, M.; Biagioni, C.; Dini, A.; Vezzoni, S. Thallium-rich pyrite ores from the Apuan Alps, Tuscany, Italy: Constraints for their origin and environmental concerns. Miner. Deposita 2017, 52, 687–707. [Google Scholar] [CrossRef]
- Ramos-Arroyo, Y.R.; Arredondo, J.C.; Chávez, V.M.; Pérez, I.; Olvera, Á. Descripción del potencial de aprovechamiento hídrico y de riesgos hidrológicos en el municipio de Xichú, NE del estado de Guanajuato. Acta Universitaria 2016, 26, 7–21. [Google Scholar] [CrossRef]
- Tello-Vázquez, J. Xichú. Colección de Monografías Municipales de Guanajuato, 1st ed.; Dávalos Hermanos, S.A., Ed.; Gobierno del Estado de Guanajuato: Leon, Mexico, 2010; pp. 1–206.
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Comisión Nacional del Agua (CONAGUA) Datos de la Estación Meteorologica 11083—Inventarios de Registro por Década Año. Available online: https://smn.conagua.gob.mx/es/climatologia/informacion-climatologica/informacion-estadistica-climatologica (accessed on 16 November 2021).
- Martínez-Arredondo, J.C.; Ortega-Chávez, V.M.; Ramos-Arroyo, Y.R. Regional climatic indices for the Sierra Gorda of Guanajuato. Acta Universitaria 2013, 23, 10–25. [Google Scholar] [CrossRef]
- Arredondo-Mendoza, J.A.; Rivera-Venegas, I.; Servicios Geológicos Mineros, S.A de C.V. Carta Geológico-Minera Xichú F14-C36, Escala 1:50,000, Estado de Guanajuato, 1st ed.; Servicio Geológico Mexicano: Pachuca, Mexico, 2001.
- Cárdenas-Vargas, J.; Yañez-Mondragon, C.F.; Consejo de Recursos Minerales. Monografía Geológico-Minera del Estado de Guanajuato, 1st ed.; Secretaria de Energía, Minas e Industria Paraestatal, Subsecretaria de Minas e Industria Básica: Pachuca, Mexico, 1992.
- González-Ramos, A.; Rodríguez-Moreno, R. Informe de la Carta Geológico-Minera El Carricillo F14-C37 Escala 1:50 000 Estados de Guanajuato, Querétaro y San Luis Potosí Guanajuato, 1st ed.; Servicios Geológicos Mineros: Pachuca, Mexico, 2000.
- World Health Organization (WHO). Guidelines for Drinking-Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Diario Oficial de la Federación (DOF). Available online: http://www.dof.gob.mx/nota_detalle.php?codigo=2063863&fecha=22/11/2000 (accessed on 8 October 2021).
- United State Environmental Protection Agency (USEPA). Ambient Water Quality Criteria for Thallium EPA-440/5-80-074, 1st ed.; Office of Water Regulations and Standards Criteria and Standard Division: Springfield, IL, USA, 1980; pp. 1–71.
- Martínez, M.C. Geometría estructural de la sierra madre oriental, entre Peñamiller y Jalpan, estado de Querétaro. Revista Mexicana Ciencias Geológicas 1990, 9, 62–70. [Google Scholar]
- Comisión Nacional del Agua (CONAGUA). Available online: https://www.gob.mx/cms/uploads/attachment/file/103004/DR_1101.pdf (accessed on 8 October 2021).
- Torres-Rivera, S.; Ramos-Leal, J.A.; Moran-Ramírez, J.; Torres-Hernández, J.R.; Padilla-Sánchez, L.; Carranco-Lozada, S.E.; García-Arreola, M.E. Hydrogeochemical characterization and quantification of the groundwater mixture in a hydrogeological basin of the middle zone of San Luis Potosí. Geophy. Int. 2019, 58, 247–258. [Google Scholar] [CrossRef]
- Carrillo-Chávez, A.; Salas-Megchún, E.; Levresse, G.; Múñoz-Torres, C.; Pérez-Arvizu, O.; Gerke, T. Geochemistry and mineralogy of mine-waste material from a “skarn-type” deposit in central Mexico: Modeling geochemical controls of metal in the surface environment. J. Geochem. Explor. 2014, 144, 28–36. [Google Scholar] [CrossRef]
- Loredo-Portales, R.; Castillo-Michel, H.; Aquilanti, G.; De La Rosa-Alvarez, G.; Rocha-Amador, D.O.M.; Vogel-Mikus, K.; Kump, P.; Cruz-Jimenez, G. Synchrotron based study of as mobility and speciation in tailings from a mining site in Mexico. J. Environ. Chem. Eng. 2017, 5, 1140–1149. [Google Scholar] [CrossRef] [Green Version]
- Miranda-Gasca, M.A. Estudio geológico-geoquímico regional del área de Xichú. GTO. B. Soc. Geol. Mex. 1978, 39, 101–106. [Google Scholar] [CrossRef]
- Sánchez-González, J.A. Inventario Físico de Los Recursos Minerales del Municipio de Xichú, GTO, 1st ed.; Consejo de Recursos Minerales-Dirección de Minas de Guanajuato: Pachuca, Mexico, 2003; pp. 1–49. [Google Scholar]
- Wasteneys, G.M. Minas Aurora y Anexas Xichu, Gto. Archivo Técnico Servicio Geológico Mexicano 1922, 1, 1–19. [Google Scholar]
- Wolkersdorfer, C.; Nordstrom, D.K.; Beckie, R.D.; Cicerone, D.S.; Elliot, T.; Edraki, M.; Valente, T.; Alves-França, S.C.; Kumar, P.; Oyarzún-Lucero, R.A.; et al. Guidance for the integrated use of hydrological, geochemical, and isotopic tools in mining operations. Mine Water Environ. 2020, 39, 204–228. [Google Scholar] [CrossRef] [Green Version]
- Eaton, A.D.; Clesceri, L.S.; Rice, W.E.; Greenberg, A.E. Standard Methods for the Examination of Water and Wastewater, 21st ed.; American Public Health Association (APHA): Washington, DC, USA, 2005. [Google Scholar]
- Gray, N.F. Field assessment of acid mine drainage contamination in surface and ground water. Environ. Geol. 1996, 27, 358–361. [Google Scholar] [CrossRef]
- Ball, J.W.; Nordstrom, D.K. WATEQ4F-User’s Manual with Revised Thermodynamic Data Base and Test Cases for Calculating Speciation of Major, Trace and Redox Elements in Natural Waters; Open-File Report; USGS Publications Warehouse: Washington, DC, USA, 1991; pp. 90–129. [CrossRef]
- Nordstrom, D.K.; McCleskey, R.B.; Ball, J.W. Sulfur geochemistry of hydrothermal waters in Yellowstone National Park: IV Acid—Sulfate waters. Appl. Geochem. 2009, 24, 191–207. [Google Scholar] [CrossRef]
- Blanc, P.; Lassina, A.; Piantone, P.; Azaroual, M.; Jacquemet, N.; Fabbri, A.; Gaucherd, E.C. Thermoddem: A geochemical database focused on low temperature water/rock interactions and waste materials. Appl. Geochem. 2012, 27, 2107–2116. [Google Scholar] [CrossRef]
- Liao, Z.; Chen, Y.; Ma, J.; Islam, M.; Weng, L.; Li, Y. Cd, Cu, and Zn Accumulations Caused by Long-Term Fertilization in Greenhouse Soils and Their Potential Risk Assessment. Int. J. Environ. Res. Public Health 2019, 16, 2805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhiyuan, W.; Dengfeng, W.; Huiping, Z.; Zhiping, Q.I. Assessment of soil heavy metal pollution with principal component analysis and geoaccumulation index. Procedia Environ. Sci. 2011, 10, 1946–1952. [Google Scholar] [CrossRef] [Green Version]
- Martin, C.W. Heavy metal trends in floodplain sediments and valley fill, River Lahn. Germany. Catena 2000, 39, 53–68. [Google Scholar] [CrossRef]
- Campbell, K.M.; Nordstrom, D.K. Arsenic speciation and sorption in natural environments. Rev. Mineral. Geochem. 2014, 79, 185–216. [Google Scholar] [CrossRef]
- Domagalski, J. Mercury and methylmercury in water and sediment of the Sacramento River Basin, California. Appl. Geochem. 2001, 16, 1667–1691. [Google Scholar] [CrossRef]
- Anawar, M.H. Sustainable rehabilitation of mining waste and acid mine drainage using geochemistry, mine type, mineralogy, texture, ore extraction and climate knowledge. J. Environ. Manag. 2015, 158, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Tadesse, I.; Green, F.B.; Puhakka, J.A. Seasonal and diurnal variations of temperature, pH and dissolved oxygen in advanced integrated wastewater pond system® treating tannery effluent. Water Res. 2004, 38, 645–654. [Google Scholar] [CrossRef]
- Tanner, C.C.; Craggs, R.J.; Sukias, J.P.S.; Park, J.B.K. Comparison of maturation ponds and constructed wetlands as the final stage of an advanced pond system. Water Sci. Technol. 2005, 51, 307–314. [Google Scholar] [CrossRef]
- Hindersmann, I.; Mansfeldt, T. Trace element solubility in a multimetal-contaminated soil as affected by redox conditions. Water Air Soil Pollut. 2014, 225, 2158. [Google Scholar] [CrossRef]
- Montes-Avila, I.; Espinosa-Serrano, E.; Castro-Larragoitia, J.; Lázaro, I.; Cardona, A. Chemical mobility of inorganic elements in stream sediments of a semiarid zone impacted by ancient mine residues. Appl. Geochem. 2019, 100, 8–21. [Google Scholar] [CrossRef]
- Puigdomenech, I.; Colas, E.; Grive, M.; Campos, I.; García, D. A tool to draw chemical equilibrium diagrams using SIT: Applications to geochemical systems and radionuclide solubility. Mater. Res. Soc. Symp. Proc. 2014, 1665, 111–116. [Google Scholar] [CrossRef]
- Segerstrom, K. Geology of the Bernal-Jalpan area, Estado de Querétaro, México. Bull. U.S. Geol. Surv. 1961, 1104, 9–86. [Google Scholar] [CrossRef]
- Martínez-Trinidad, S.; Hernández-Silva, G.; Ramírez-Islas, M.E.; Martínez-Reyes, J.; Solorio-Murguia, G.; Solís-Valdez, S.; García-Martínez, R. Total mercury in terrestrial systems (air-soil-plant-water) at the mining region of San Joaquín, Queretaro, Mexico. Geophy. Int. 2013, 52, 43–58. [Google Scholar] [CrossRef] [Green Version]
- Brenot, A.; Carignan, J.; France-Lanord, C.; Benoît, M. Geological and land use control on δ34S and δ18O of river dissolved sulfate: The Moselle river basin, France. Chem. Geol. 2007, 244, 25–41. [Google Scholar] [CrossRef]
- Dold, B.; Spangenber, J. Sulfur Speciation and Stable Isotope Trends of Water-Soluble Sulfates in Mine Tailings Profiles. Environ. Sci. Tech. 2005, 39, 5650–5656. [Google Scholar] [CrossRef]
- Dótor-Almazán, A.; Armienta-Hernández, M.A.; Árcega-Cabrera, F.; Talavera-Mendoza, O. Procesos de transporte de arsénico y metales en aguas superficiales del distrito minero de Taxco, México: Aplicación de isótopos estables. Hidrobiológica 2014, 24, 245–256. [Google Scholar]
- Otero, N.; Soler, A.; Canals, À. Controls of δ34S and δ18O in dissolved sulphate: Learning from a detailed survey in the Llobregat River (Spain). Appl. Geochem. 2008, 23, 1166–1185. [Google Scholar] [CrossRef]
- Claypool, G.E.; Holser, W.T.; Kaplan, I.R.; Sakai, H.; Zak, I. The age curve of sulfur and oxygen isotopes in marine sulfates and their mutual interpretation. Chem. Geol. 1980, 28, 199–260. [Google Scholar] [CrossRef]
- Basáñez-Loyola, M.A.; Fernández-Turner, R.; Rosales-Domínguez, C. Cretaceous Platform of Valles-San Luis Potosi, Northeastern Central Mexico. In Cretaceous Carbonate Platforms, 1st ed.; Toni-Simo, J.A., Scott, R.W., Masse, J.P., Eds.; American Association of Petroleum Geologists B: Tulsa, OK, USA, 1993; Volume 1, pp. 51–59. [Google Scholar]
- Dill, H.G. Geogene and anthropogenic controls on the mineralogy and geochemistry of modern alluvial–(fluvial) gold placer deposits in man-made landscapes in France, Switzerland and Germany. J. Geochem. Explor. 2008, 99, 29–60. [Google Scholar] [CrossRef]
- Asta, M.P.; Cama, J.; Martínez., M.; Giménez, J. Arsenic removal by goethite and jarosite in acidic conditions and its environmental implications. J. Hazard. Mater. 2009, 171, 965–972. [Google Scholar] [CrossRef] [PubMed]
- Rochette, E.A.; Li, G.C.; Fendorf, S.E. Stability of arsenate minerals in soil under biotically generated reducing conditions. Soil Sci. Soc. Am. J. 1998, 62, 1530–1537. [Google Scholar] [CrossRef]
- Whitney, D.L.; Evans, B.W. Abbreviations for names of rock-forming minerals. Am. Mineral. 2010, 95, 185–187. [Google Scholar] [CrossRef]
Label Sample | UTM Coordinates | Altitude (m.a.s.l.) | Type of Sample | Description of the Sampling Site | |
---|---|---|---|---|---|
X | Y | ||||
L1 | 392,742 | 2,358,724 | 1120 | Leachates | Water sample from handmade rainwater channel for local irrigation, located on the lateral wall of AMWD1. |
L2 | 392,922 | 2,359,056 | 1104 | Leachates | Leachate water sample produced by water infiltration through the AMWD2. |
L3 | 392,958 | 2,359,158 | 1118 | Leachates | Water sample collected from the Xichú Stream, impacted by the runoff of leachate water from the walls of AMWD4. |
L4 | 392,972 | 2,359,161 | 1083 | Leachates | Water sample collected from the Xichú Stream, impacted by the runoff of water leachate from the lateral walls of AMWD2. |
L5 | 393,062 | 2,359,130 | 1140 | Leachates | Mine water sample collected from the mineralized zone of La Aurora, located in the La Fundición community. |
L6 | 393,081 | 2,359,369 | 1100 | Leachates | Water sample from handmade rainwater channel for local irrigation, located on the lateral wall of AMWD4. |
L7 | 393,483 | 2,360,138 | 1041 | Leachates | Water sample from the Xichú Stream, impacted by leachate runoff located 850 m downstream from AMWD4. |
W1 | 403,068 | 2,365,735 | 846 | Water well | Water sample from drinking water well of the La Laja community. |
W2 | 413,488 | 2,365,725 | 849 | Water well | Water sample from handmade drinking water well of the La Laja community, at 100 m from W1 sample. |
R1 | 386,596 | 2,355,721 | 1610 | Streams | Water sample from the Chiquito Stream located close to El Alamo community at 1634 m.a.s.l. at 8.5 km upstream from AMWD1. |
R2 | 402,933 | 2,372,130 | 761 | Streams | Water sample collected on the La Laja stream, located at 380 m downstream from the El Ojo de Agua spring. |
R3 | 402,846 | 2,372,215 | 765 | Streams | Water sample from the Santa María River, located 100 m before its confluence with the La Laja Stream. |
R4 | 402,614 | 2,372,157 | 763 | Streams | Water sample from the Santa María River, located 250 m before its confluence with the La Laja stream. |
R5 | 402,929 | 2,372,254 | 754 | Streams | Water sample from the Santa María River, located 100 m after its confluence with the La Laja stream. |
R6 | 403,063 | 2,372,233 | 759 | Streams | Water sample from the Santa María River, located 200 m after its confluence with the La Laja stream. |
OA | 402,758 | 2,371,729 | 756 | Spring | Water sample from the El Ojo de Agua Spring on the La Laja Stream bed. |
GA | 413,520 | 2,365,858 | 1029 | Spring | Water sample from Guayaba Agria spring. |
CA | 413,539 | 2,365,666 | 1163 | Spring | Water sample from El Carricillito spring. |
EG | 414,872 | 2,364,717 | 1436 | Spring | Water sample from El Gato spring. |
ES | 415,394 | 2,364,923 | 1550 | Spring | Water sample from El Sarro spring. |
AMWD4 | 393,085 | 2,359,291 | 1110 | Waste | Solid samples of wastes taken from AMWD4. |
XS1 | 393,106 | 2,359,266 | 1103 | Sediment | Stream sediment from Xichú River impacted by fine particles generated by mineral secondary phases, precipitated chemically on the walls of the mining waste deposit. Sample located in the lower part of the AMWD4. |
XS2 | 394,683 | 2,360,714 | 1040 | Sediment | Surface layer of sediments from the Xichú stream in the low energy zone, 2.6 km downstream from the AMWD4. |
XS3 | 402,605 | 2,362,269 | 895 | Sediment | Superficial layer of stream sediments from Xichú Stream in the zone of low energy and produced by its drying, before its confluence with the Guamuchil stream. |
XS4 | 403,015 | 2,362,875 | 860 | Sediment | Superficial layer of stream sediments from Xichú Stream in the zone of low energy and produced by its drying, after its confluence with the Guamuchil stream. |
Variable | Units | Aqueous Samples | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Leachates | Streams | Wells | Springs | |||||||||||||||||||||
L1 | L2 | L3 | L4 | L5 | L6 | L7 | R1 | R2 | R3 | R4 | R5 | R6 | W1 | W2 | OA1 | OA2 | GA | CA | EG | ES | MDL | GV | ||
T | (°C) | 31.2 | 28.6 | 19.9 | 21.3 | 44.9 | 21.5 | 26.4 | 27.2 | 27 | 31.5 | 32.3 | 28.6 | 27.9 | 24.9 | 24.7 | 27.9 | 27.2 | 24.5 | 20.9 | 17.9 | 17.7 | − | - |
pH | - | 6.6 | 6.1 | 1.8 | 2.6 | 5.9 | 6.7 | 6.9 | 6.2 | 6.3 | 7.2 | 6.7 | 7.6 | 7 | 6.5 | 6.6 | 6 | 6.2 | 7.1 | 6.8 | 6.9 | 6.9 | − | 6.5 to 8.5 [36] |
EH | mV | 355 | 382 | 606 | 380 | 416 | 239 | 355 | 406 | 402 | 193 | 377 | 215 | 397 | 343 | 396 | 10 | 359 | 379 | 349 | 362 | 374 | − | - |
DO | mg/L | 10.7 | 4.3 | 3.5 | 6.4 | 0.5 | 3.1 | 6.3 | 4 | 2.8 | 4.1 | 6.4 | 2.3 | 4 | 5.1 | 3.2 | 3.2 | 4.2 | 5.2 | 4.2 | 4.8 | 6 | − | - |
EC | μS/cm | 697 | 1,234 | 8,480 | 2,868 | 1,954 | 691 | 1,102 | 810 | 829 | 1,016 | 1,008 | 970 | 840 | 436 | 466 | 967 | 825 | 600 | 668 | 466 | 456 | − | - |
Ca | mg/L | 73.8 | 169.6 | 314.4 | 69.2 | 205.6 | 86.3 | 157.6 | 27.4 | 110.5 | 53.3 | 111.5 | 113.5 | 88.5 | 63.2 | 67.1 | 113 | 112 | 30.4 | 76.4 | 73.6 | 72.8 | 0.03 | - |
Mg | 17.6 | 28.7 | 33.7 | 11.3 | 40.9 | 10.1 | 26.9 | 5.6 | 23.8 | 15.2 | 35.3 | 27.7 | 25.3 | 9.2 | 9.8 | 27.5 | 24.6 | 37.4 | 37.3 | 18.1 | 25.2 | 0.02 | - | |
Na | 22.6 | 29.6 | 31 | 21.8 | 42.3 | 20.1 | 29.6 | 6.6 | 6.8 | 4.5 | 8.5 | 11 | 7.1 | 8.2 | 8.3 | 10.6 | 7.1 | 0.4 | 0.9 | <0.02 | <0.02 | 0.02 | 200 [36] | |
K | 5.1 | 6.4 | 2.6 | 6.8 | 22.2 | 7.2 | 5.3 | 1.7 | 2 | 1.5 | 7.1 | 2.7 | 4.6 | 12.3 | 3.3 | 2.5 | 3.1 | 1 | 0.9 | 1.8 | 1.3 | 0.12 | - | |
Cl− | 21.6 | 80.7 | 92.2 | 75 | 30.5 | 68.1 | 116 | <0.2 | <0.2 | 50.5 | <0.2 | 55.6 | <0.2 | 20.7 | <0.2 | 14 | <0.2 | 19.4 | 18.7 | <0.2 | <0.2 | 0.2 | 250 [36] | |
NO3− | <10 | <10 | 98.2 | 53.1 | 11.4 | 10.1 | 31 | 75 | <10 | 13 | <10 | <10 | <10 | <10 | 18.7 | 17.6 | <10 | 42 | <10 | <10 | <10 | 10 | 50 [35] 44.2 [36] | |
HCO3− | 126.4 | 206.4 | <10 | <10 | 172.9 | 57.6 | 215.8 | 110.2 | 248.4 | 61.4 | 215.7 | 229.2 | 270.5 | 233.6 | 282.2 | 265.4 | 263.7 | 206.4 | 250.1 | 350.5 | 274.2 | 10 | - | |
CO32− | 15.5 | 18.1 | <10 | <10 | 18.1 | 22.8 | 12.9 | 12.9 | 20.6 | 10.7 | 15.5 | 12.1 | 12.9 | 10.3 | 7.7 | 15 | 18.1 | 5.2 | 2.6 | 10.3 | 15.5 | 10 | - | |
SO42− | 140 | 415 | 686 | 150 | 436 | 287 | 327 | 4 | 139.9 | 118.4 | 310.6 | 180.5 | 175.8 | 37.4 | 41.3 | 206.7 | 164.1 | 17.4 | 7.5 | 14.6 | 20 | 0.2 | 400 [36] | |
SiTot | 18.9 | 16.7 | 29.5 | 8.4 | 18.9 | 6.9 | 15.3 | 23.3 | 32.4 | 3.7 | 20.3 | 8.4 | 17 | 20.5 | 21.2 | 8.5 | 16.2 | 9.6 | 8.1 | 9.1 | 7.6 | 0.02 | - | |
As | μg/L | 164 | 373 | 69.3 | 34.4 | 93.6 | 47 | 89 | 24.7 | 45 | 17.5 | 14.7 | 44.8 | 47.2 | 26.9 | 23.2 | 121 | 81.5 | 28.2 | 43.2 | 9.1 | 5 | 3 | 10 [36] 25 [36] |
Hg | 18.1 | 19.6 | 18 | 39.7 | 37.4 | <10 | 33 | 33 | 23.4 | 17.7 | 36.9 | <10 | <10 | <10 | 24.6 | <10 | 33 | 22.2 | 32.6 | 22.3 | 10.1 | 10 | 6 [35] 1 [36] | |
Tl | 14.5 | <10.3 | 918 | 16.5 | 21.1 | 73 | 22.3 | 21.7 | 22.7 | 18.7 | 30.4 | 26.8 | 16.7 | 12.4 | 19.3 | 49.1 | 23.6 | 15 | 21.6 | 17.1 | 18.7 | 10 | 13 [37] | |
Pb | <5 | <5 | 27.4 | 6.9 | <5 | 6.9 | 9.5 | <5 | <5 | 5.7 | <5 | 27.5 | <5 | 8.3 | 5.2 | 55.2 | <5 | <5 | <5 | <5 | <5 | 5 | 10 [35,36] | |
Fe | <6.2 | 6.2 | 1, 214 | 100 | 11 | 33.6 | <6.2 | 33.7 | 43 | 10.4 | <6.2 | 16.4 | <6.2 | <6.2 | 8.2 | <6.2 | 17.9 | <6.2 | 7.65 | <6.2 | <6.2 | 6.2 | 300 [36] | |
Cu | <11.9 | <11.9 | 2, 559 | 25.1 | 35.5 | 16.2 | <11.9 | <11.9 | <11.9 | <11.9 | <11.9 | <11.9 | <11.9 | 6.1 | 6.6 | 11.9 | <11.9 | <11.9 | <11.9 | <11.9 | <11.9 | 11.9 | 2000 [35] | |
Zn | <5 | 22.4 | 12,924 | 52 | 314 | 11.5 | <5 | 5.3 | <5 | 14.7 | <5 | 46.4 | <5 | <5 | 8.5 | 12.2 | <5 | 8.4 | <5 | <5 | <5 | 5 | 3000 [35]; 5000 [36] | |
Sr | 579 | 1, 054 | 436 | 1, 107 | 2, 042 | 380 | 1, 105 | 191 | 924 | 602 | 1, 220 | 656 | 949 | 294 | 312 | 1, 211 | 958 | 67 | 65 | 95 | 62 | 3.4 | 4000 [35] | |
Al | 5.6 | 11.4 | 16, 356 | 303 | 23.6 | 24.7 | <5 | 10.7 | 12.8 | 7.8 | <5 | 36.1 | <5 | <5 | <5 | 14.8 | 5.2 | 13 | 26.3 | <5 | <5 | 5 | 200 [36] | |
Sb | 15.6 | 16.2 | 34.2 | 64 | 21.2 | 69.2 | 20.1 | 17.7 | 16.4 | 28.4 | 15.6 | 57.3 | 14.6 | 13 | 15.8 | 43 | 13.4 | 11.8 | 15.4 | 12.2 | 11.4 | 9.7 | 20 [35] | |
Se | <7.3 | <7.3 | 14 | 15.4 | 10.2 | 14.6 | 11.3 | 11 | 8.32 | 14 | <7.3 | 15.3 | <7.3 | <7.3 | <7.3 | 14.2 | <7.3 | 16.5 | <7.3 | <7.3 | 21.6 | 7.3 | 40 [35] | |
CI | % | 12.4 | −18 | 95.6 | 30.7 | 27.5 | −42 | −23.8 | −33.3 | 13 | −22.6 | −12.1 | −7.3 | −17.3 | −12.8 | −23.8 | −11.6 | 4.1 | −7.1 | 37.5 | 15.4 | 16 | − | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Escot-Espinoza, V.M.; Ramos-Arroyo, Y.R.; Lázaro, I.; Montes-Avila, I.; Carrizalez-Yañez, L.; Briones-Gallardo, R. Presence of Arsenic in Potential Sources of Drinking Water Supply Located in a Mineralized and Mined Area of the Sierra Madre Oriental in Mexico. Toxics 2021, 9, 307. https://doi.org/10.3390/toxics9110307
Escot-Espinoza VM, Ramos-Arroyo YR, Lázaro I, Montes-Avila I, Carrizalez-Yañez L, Briones-Gallardo R. Presence of Arsenic in Potential Sources of Drinking Water Supply Located in a Mineralized and Mined Area of the Sierra Madre Oriental in Mexico. Toxics. 2021; 9(11):307. https://doi.org/10.3390/toxics9110307
Chicago/Turabian StyleEscot-Espinoza, Victor Manuel, Yann Rene Ramos-Arroyo, Isabel Lázaro, Isidro Montes-Avila, Leticia Carrizalez-Yañez, and Roberto Briones-Gallardo. 2021. "Presence of Arsenic in Potential Sources of Drinking Water Supply Located in a Mineralized and Mined Area of the Sierra Madre Oriental in Mexico" Toxics 9, no. 11: 307. https://doi.org/10.3390/toxics9110307
APA StyleEscot-Espinoza, V. M., Ramos-Arroyo, Y. R., Lázaro, I., Montes-Avila, I., Carrizalez-Yañez, L., & Briones-Gallardo, R. (2021). Presence of Arsenic in Potential Sources of Drinking Water Supply Located in a Mineralized and Mined Area of the Sierra Madre Oriental in Mexico. Toxics, 9(11), 307. https://doi.org/10.3390/toxics9110307