Effects of Cadmium Sulfate on the Brown Garden Snail Cornu aspersum: Implications for DNA Methylation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Landsnail Origin, Maintenance and Exposure
2.2. Snail Fitness Parameters
2.3. Chemical Analyses
2.4. DNA Extraction and 5mC Quantification Analysis
2.5. Methyl Specific Polymerase Chain Reaction (MSP)
2.6. Statistical Analysis
3. Results
3.1. Hepatopancreas Cadmium
3.2. Fitness Parameters
3.2.1. Body Weight Gain
3.2.2. Snail Survival
3.3. Genome-Wide DNA Methylation in the Hepatopancreas
3.4. Methylation Status of CG Pairs at the 5′ Region of the Cd-MT Gene
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Nica, D.; Popescu, C.; Draghici, G.; Privistirescu, I.; Suciu, M.; Stöger, R. Effect of cadmium on cytosine hydroxymethylation in gastropod hepatopancreas. Environ. Sci. Pollut. Res. 2017, 24, 15187–15195. [Google Scholar] [CrossRef] [PubMed]
- ATSDR. Toxicological Profile for Cadmium. Agency for Toxic Substances and Disease Registry. Division of Toxicology and Environmental Medicine/Applied Toxicology Branch, Atlanta, Georgia. 2012. Available online: http://www.atsdr.cdc.gov/toxprofiles/tp5.pdf (accessed on 27 July 2021).
- Mikhailenko, A.V.; Ruban, D.A.; Ermolaev, V.A.; van Loon, A.J. Cadmium pollution in the tourism environment: A literature review. Geosciences 2020, 10, 242. [Google Scholar] [CrossRef]
- Nica, D.V.; Draghici, G.A.; Andrica, F.M.; Popescu, S.; Coricovac, D.E.; Dehelean, C.A.; Gergen, I.I.; Kovatsi, L.; Coleman, M.D.; Tsatsakis, A. Short-term effects of very low dose cadmium feeding on copper, manganese and iron homeostasis: A gastropod perspective. Environ. Toxicol. Pharmacol. 2019, 65, 9–13. [Google Scholar] [CrossRef] [Green Version]
- Genchi, G.; Sinicropi, M.S.; Lauria, G.; Carocci, A.; Catalano, A. The effects of cadmium toxicity. Int. J. Environ. Res. Public Health 2020, 17, 3782. [Google Scholar] [CrossRef]
- Wang, B.; Li, Y.; Shao, C.; Tan, Y.; Cai, L. Cadmium and its epigenetic effects. Curr. Med. Chem. 2012, 19, 2611–2620. [Google Scholar] [CrossRef]
- Nica, D.V.; Popescu, C.; Draghici, G.A.; Andrica, F.M.; Privistirescu, I.A.; Gergen, I.I.; Stöger, R. High-level dietary cadmium exposure is associated with global DNA hypermethylation in the gastropod hepatopancreas. PLoS ONE 2017, 12, e0184221. [Google Scholar] [CrossRef] [Green Version]
- Jones, P.A. Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 2012, 13, 484–492. [Google Scholar] [CrossRef]
- Fallet, M.; Luquet, E.; David, P.; Cosseau, C. Epigenetic inheritance and intergenerational effects in mollusks. Gene 2020, 729, 144–166. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Hu, H.; Panserat, S.; Marandel, L. Evolutionary history of DNA methylation related genes in chordates: New insights from multiple whole genome duplications. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Takiguchi, M.; Achanzar, W.E.; Qu, W.; Li, G.; Waalkes, M.P. Effects of cadmium on DNA-(Cytosine-5) methyltransferase activity and DNA methylation status during cadmium-induced cellular transformation. Exp. Cell. Res. 2003, 286, 350–365. [Google Scholar] [CrossRef]
- Martinez-Zamudio, R.; Ha, H.C. Environmental epigenetics in metal exposure. Epigenetics 2011, 6, 820–827. [Google Scholar] [CrossRef] [Green Version]
- Pierron, F.; Baillon, L.; Sow, M.; Gotreau, S.; Gonzalez, P. Effect of low-dose cadmium exposure on DNA methylation in the endangered European eel. Environ. Sci. Technol. 2013, 48, 797–803. [Google Scholar] [CrossRef]
- Head, J.A.; Dolinoy, D.C.; Basu, N. Epigenetics for ecotoxicologists. Environ. Toxicol. Chem. 2012, 31, 221–227. [Google Scholar] [CrossRef]
- Simoniello, P.; Trinchella, F.; Filosa, S.; Scudiero, R.; Magnani, D.; Theil, T.; Motta, C.M. Cadmium contaminated soil affects retinogenesis in lizard embryos. J. Exp. Zool. A Ecol. Genet. Physiol. 2014, 321, 207–219. [Google Scholar] [CrossRef] [PubMed]
- Šrut, M.; Drechsel, V.; Höckner, M. Low levels of Cd induce persisting epigenetic modifications and acclimation mechanisms in the earthworm Lumbricus terrestris. PLoS ONE 2017, 12, e0176047. [Google Scholar] [CrossRef] [Green Version]
- Nica, D.V.; Bordean, D.M.; Borozan, A.B.; Gergen, I.; Bura, M.; Banatean-Dunea, I. Use of land snails (Pulmonata) for monitoring copper pollution in terrestrial ecosystems. Rev. Environ. Contam. Toxicol. 2013, 95–137. [Google Scholar]
- Kerney, M.P.; Cameron, R.A.D. A Field Guide to the Land Snails of Britain and Northwestern Europe; William Collins Sons & Co., Ltd.: London, UK, 1979; pp. 37–98. [Google Scholar]
- Keller, T.E.; Han, P.; Soojin, V.Y. Evolutionary transition of promoter and gene body DNA methylation across invertebrate-vertebrate boundary. Mol. Biol. Evol. 2015, 33, 1019–1028. [Google Scholar] [CrossRef]
- Zhang, S.C.; Wang, M.Y.; Feng, J.R.; Chang, Y.; Ji, S.R.; Wu, Y. Reversible promoter methylation determines fluctuating expression of acute phase proteins. eLife 2020, 9, e51317. [Google Scholar] [CrossRef]
- Arita, A.; Costa, M. Epigenetics in metal carcinogenesis: Nickel, arsenic, chromium and cadmium. Metallomics 2009, 1, 222–228. [Google Scholar] [CrossRef] [Green Version]
- Sanders, A.; Smeester, L.; Rojas, D.; DeBussycher, T.; Wu, M.; Wright, F.; Zhou, Y.H.; Laine, J.; Rager, J.; Swamy, G.; et al. Cadmium exposure and the epigenome: Exposure-associated patterns of DNA methylation in leukocytes from mother-baby pairs. Epigenetics 2014, 9, 212–221. [Google Scholar] [CrossRef]
- Riviere, G.; Wu, G.C.; Fellous, A.; Goux, D.; Sourdaine, P.; Favrel, P. DNA methylation is crucial for the early development in the oyster C. gigas. Mar. Biotechnol. 2013, 15, 739–753. [Google Scholar] [CrossRef]
- Rajasethupathy, P.; Antonov, I.; Sheridan, R.; Frey, S.; Sander, C.; Tuschl, T.; Kandel, E.R. A role for neuronal piRNAs in the epigenetic control of memory-related synaptic plasticity. Cell 2012, 149, 693–707. [Google Scholar] [CrossRef] [Green Version]
- Hispard, F.; Schuler, D.; de Vaufleury, A.; Scheifler, R.; Badot, P.M.; Dallinger, R. Metal distribution and metallothionein induction after cadmium exposure in the terrestrial snail Helix aspersa (Gastropoda, Pulmonata). Environ. Toxicol. Chem. Int. J. 2008, 27, 1533–1542. [Google Scholar] [CrossRef]
- Höckner, M.; Stefanon, K.; de Vaufleury, A.; Monteiro, F.; Pérez-Rafael, S.; Palacios, O.; Capdevila, M.; Atrian, S.; Dallinger, R. Physiological relevance and contribution to metal balance of specific and non-specific metallothionein isoforms in the garden snail, Cantareus aspersus. Biometals 2011, 24, 1079–1092. [Google Scholar] [CrossRef]
- Baurand, P.E.; Pedrini-Martha, V.; de Vaufleury, A.; Niederwanger, M.; Capelli, N.; Scheifler, R.; Dallinger, R. Differential expression of metallothionein isoforms in terrestrial snail embryos reflects early life stage adaptation to metal stress. PLoS ONE 2015, 10, e0116004. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Cao, D.; Liu, J.; Wang, X.; Geng, S.; Liu, B.; Shi, D. Tissue-specific and cation/anion-specific DNA methylation variations occurred in C. virgata in response to salinity stress. PLoS ONE 2013, 8, e78426. [Google Scholar] [CrossRef]
- MWFEP (Romania Ministry of Waters, Forests and Environmental Protection). Ordinul nr. 756/1997 al Ministerului Apelor, Padurilor şi Protecţiei Mediului Pentru Aprobarea Reglementării Privind Evaluarea Poluarii Mediului Modificat de Ordinul nr. 1144/2002 al Ministerului Apelor si Protectiei Mediului. 2002. Available online: http://www.unimed.ro/Ordin%20nr.%201144-2002.pdf (accessed on 28 July 2021).
- Comission European. Setting maximum levels for certain contaminants in foodstuffs. Regulation 2006, 364, 5–24. [Google Scholar]
- Hödl, E.; Felder, E.; Chabicovsky, M.; Dallinger, R. Cadmium stress stimulates tissue turnover in Helix pomatia: Increasing cell proliferation from metal tolerance to exhaustion in molluscan midgut gland. Cell Tissue Res. 2010, 341, 159–171. [Google Scholar] [CrossRef]
- Jurkowska, R.Z.; Ceccaldi, A.; Zhang, Y.; Arimondo, P.B.; Jeltsch, A. DNA methyltransferase assays. Methods Mol. Biol. 2011, 791, 157–177. [Google Scholar]
- Kurdyukov, S.; Bullock, M. DNA methylation analysis: Choosing the right method. Biology 2016, 5, 3. [Google Scholar] [CrossRef]
- Höckner, M.; Stefanon, K.; Schuler, D.; Fantur, R.; De Vaufleury, A.; Dallinger, R. Coping with cadmium exposure in various ways: The two Helicid snails Helix pomatia and Cantareus aspersus share the metal transcription factor-2, but differ in promoter organization and transcription of their Cd-metallothionein genes. J. Exper. Zool. A Ecol. Genet. Physiol. 2009, 311, 776–787. [Google Scholar] [CrossRef]
- Genereux, D.P.; Johnson, W.C.; Burden, A.F.; Stöger, R.; Laird, C.D. Errors in the bisulfite conversion of DNA: Modulating inappropriate-and failed-conversion frequencies. Nucleic Acids Res. 2008, 36, e150. [Google Scholar] [CrossRef] [Green Version]
- Laskowski, R.; Hopkin, S.P. Effect of Zn, Cu, Pb, and Cd on fitness in snails (Helix aspersa). Ecotoxicol. Environ. Saf. 1996, 34, 59–69. [Google Scholar] [CrossRef] [Green Version]
- Russell, L.K.; DeHaven, J.I.; Botts, R.P. Toxic effects of cadmium on the Garden snail (Helix aspersa). Bull. Environ. Contam. Toxicol. 1981, 26, 634–640. [Google Scholar] [CrossRef]
- Gomot, A. Dose-dependent efects of cadmium on the growth of snails in toxicity bioassays. Arch. Environ. Contam. Toxicol. 1997, 33, 209–216. [Google Scholar] [CrossRef]
- Czarnołęski, M.; Kozłowski, J.; Dumiot, G.; Bonnet, J.C.; Mallard, J.; Dupont-Nivet, M. Scaling of metabolism in Helix aspersa snails: Changes through ontogeny and response to selection for increased size. J. Exp. Biol. 2008, 211, 391–400. [Google Scholar] [CrossRef] [Green Version]
- Draghici, G.A.; Dehelean, C.A.; Pinzaru, I.; Bordean, D.M.; Pop, G.; Nica, D. An 112-Days Experiment on Dietary Cadmium Retention in Hepatopancreas in Adult Cantareus aspersus Snails. Rev. Chim. 2019, 70, 2803–2804. [Google Scholar] [CrossRef]
- Gomot-de Vaufleury, A.; Kerhoas, I. Effects of cadmium on the reproductive system of the land snail Helix aspersa. Bull. Environ. Contam. Toxicol. 2000, 64, 434–442. [Google Scholar] [CrossRef]
- Scheifler, R.; Gomot-De Vaufleury, A.; Toussaint, M.L.; Badot, P.M. Transfer and effects of cadmium in an experimental food chain involving the snail Helix aspersa and the predatory carabid beetle Chrysocarabus splendens. Chemosphere 2002, 48, 571–579. [Google Scholar] [CrossRef]
- Joe, M. The Epigenetic Effect of Trematode Infection on the Snail Host Zeacumantus subcarinatus. Master’s Thesis, The University of Otago, Dunedin, New Zeeland, 2013. Available online: https://ourarchive.otago.ac.nz/handle/10523/4163 (accessed on 29 July 2021).
- Müller, R.; Charaf, S.; Scherer, C.; Oppold, A.; Oehlmann, J.; Wagner, M. Phenotypic and epigenetic effects of vinclozolin in the gastropod Physella acuta. J. Molluscan Stud. 2016, 82, 320–327. [Google Scholar] [CrossRef] [Green Version]
- Drechsel, V.; Schauer, K.; Šrut, M.; Höckner, M. Regulatory plasticity of earthworm wMT-2 gene expression. Int. J. Mol. Sci. 2017, 18, 1113. [Google Scholar] [CrossRef] [Green Version]
- Gavery, M.R.; Roberts, S.B. DNA methylation patterns provide insight into epigenetic regulation in the Pacific oyster (Crassostrea gigas). BMC Genom. 2010, 1, 483. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wang, R.; Xun, X.; Wang, J.; Bao, L.; Thimmappa, R.; Ding, J.; Jiang, J.; Zhang, L.; Li, T.; et al. Sea cucumber genome provides insights into saponin biosynthesis and aestivation regulation. Cell Discov. 2018, 4, 1–17. [Google Scholar] [CrossRef]
- Egg, M.; Hoeckner, M.; Brandstaetter, A.; Schuler, D.; Dallinger, R. Structural and bioinformatic analysis of the Roman snail Cd-Metallothionein gene uncovers molecular adaptation towards plasticity in coping with multifarious environmental stress. Mol. Ecol. 2009, 18, 2426–2443. [Google Scholar] [CrossRef]
- Pedrini-Martha, V.; Niederwanger, M.; Kopp, R.; Schnegg, R.; Dallinger, R. Physiological, diurnal and stress-related variability of cadmium-metallothionein gene expression in land snails. PLoS ONE 2016, 11, e0150442. [Google Scholar] [CrossRef] [Green Version]
- Draghici, G.A.; Nica, D.; Dehelean, C.; Susan, R.; Susan, M. DNMT gene expression in Cantareus aspersus snails exposed to low cadmium dose. Naunyn Schmiedebergs Arch. Pharmacol. 2020, 393, 53–54. [Google Scholar]
- Parmakelis, A.; Kotsakiozi, P.; Kontos, C.K.; Adamopoulos, P.G.; Scorilas, A. The transcriptome of a “sleeping” invader: De novo assembly and annotation of the transcriptome of aestivating Cornu aspersum. BMC Genom. 2017, 18, 491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Georgescu, M.; Drăghici, G.A.; Oancea, E.-F.; Dehelean, C.A.; Şoica, C.; Vlăduţ, N.-V.; Nica, D.V. Effects of Cadmium Sulfate on the Brown Garden Snail Cornu aspersum: Implications for DNA Methylation. Toxics 2021, 9, 306. https://doi.org/10.3390/toxics9110306
Georgescu M, Drăghici GA, Oancea E-F, Dehelean CA, Şoica C, Vlăduţ N-V, Nica DV. Effects of Cadmium Sulfate on the Brown Garden Snail Cornu aspersum: Implications for DNA Methylation. Toxics. 2021; 9(11):306. https://doi.org/10.3390/toxics9110306
Chicago/Turabian StyleGeorgescu, Marius, George Andrei Drăghici, Eliza-Florentina Oancea, Cristina Adriana Dehelean, Codruţa Şoica, Nicolae-Valentin Vlăduţ, and Dragoș Vasile Nica. 2021. "Effects of Cadmium Sulfate on the Brown Garden Snail Cornu aspersum: Implications for DNA Methylation" Toxics 9, no. 11: 306. https://doi.org/10.3390/toxics9110306
APA StyleGeorgescu, M., Drăghici, G. A., Oancea, E. -F., Dehelean, C. A., Şoica, C., Vlăduţ, N. -V., & Nica, D. V. (2021). Effects of Cadmium Sulfate on the Brown Garden Snail Cornu aspersum: Implications for DNA Methylation. Toxics, 9(11), 306. https://doi.org/10.3390/toxics9110306