Alterations in CNS Functions and DNA Methylation in Rats after 24 h Exposure to Peat Smoke
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Exposure Study
2.3. Open-Field Test
2.4. Morris Water Maze
2.5. EEG Measurements
2.6. Comet Assay
2.7. Statistical Analyses
3. Results
3.1. Monitoring of Peat Combustion Product Concentration in Exposure Chamber
3.2. Behavioral Effects of Peat Smoke
3.3. EEG Analysis
3.4. Assessment of DNA Fragmentation and Global DNA Methylation in Rat Blood
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoscilo, A.; Page, S.E.; Tansey, K.J.; Rieley, J.O. Effect of repeated fires on land cover change on peatland in southern Central Kalimantan, Indonesia, 1973 to 2005. Int. J. Wildland Fire 2011, 20, 578–588. [Google Scholar] [CrossRef]
- Turetsky, M.R.; Benscoter, B.; Page, S.; Rein, G.; Werf, G.R.; Watts, A. Global vulnerability of peatlands to fire and carbon loss. Nat. Geosci. 2015, 8, 11–14. [Google Scholar] [CrossRef]
- Konovalov, I.B.; Beekmann, M.; Kuznetsova, I.N.; Yurova, A.Y.; Zvyagintsev, A.M. Atmospheric impacts of the 2010 Russian wild fires: Integrating modelling and measurements of the extreme air pollution episode in the Moscow megacity region. Atmos. Chem. Phys. 2011, 11, 10031–10056. [Google Scholar] [CrossRef] [Green Version]
- Turetsky, M.R.; Amiro, B.; Bosch, E.; Bhatti, J.S. Peatland burning and its relationship to fire weather in western Canada. Glob. Biogeochem. Cycles 2004, 18. [Google Scholar] [CrossRef]
- Kasischke, E.S.; Hyer, E.J.; Novelli, P.C.; Bruhwiler, L.P.; French, N.H.; Sukhinin, A.I.; Hewson, J.H.; Stocks, B.J. Influences of boreal fire emissions on Northern Hemisphere atmospheric carbon and carbon monoxide. Glob. Biogeochem. Cycles 2005, 19, GB1012. [Google Scholar] [CrossRef]
- Sapkota, A.; Symons, J.M.; Kleissl, J.; Wang, L.; Parlange, M.B.; Ondov, J.; Breysse, P.N.; Diette, G.B.; Eggleston, P.A.; Buckley, T.J. Impact of the 2002 Canadian forest fires on particulate matter air quality in Baltimore city. Environ. Sci. Technol. 2005, 39, 24–32. [Google Scholar] [CrossRef] [Green Version]
- Westerling, A.R. Increasing western US forest wildfire activity: Sensitivity to changes in the timing of spring. Phil. Trans. R Soc. B 2016, 371, 20150178. [Google Scholar] [CrossRef]
- Ellery, W.N.; Ellery, K.; McCarthy, T.S.; Cairncross, B.; Oeflofse, R. A peat fire in the Okavango Delta, Botswana, and its importance as an ecosystem process. Afr. J. Ecol. 1989, 27, 7–21. [Google Scholar] [CrossRef]
- Doerr, S.H.; Santín, C. Global trends in wildfire and its impacts: Perceptions versus realities in a changing world. Phil. Trans. R Soc. B 2016, 371. [Google Scholar] [CrossRef]
- Kim, Y.H.; Tong, H.; Daniels, M.; Boykin, E.; Krantz, Q.T.; McGee, J.; Hays, M.; Kovalcik, K.; Dye, J.A.; Gilmour, M.I. Cardiopulmonary toxicity of peat wildfire particulate matter and the predictive utility of precision cut lung slices. Part. Fibre Toxicol. 2014, 11, 29. [Google Scholar] [CrossRef] [Green Version]
- Wettstein, Z.S.; Hoshiko, S.; Fahimi, J.; Harrison, R.J.; Cascio, W.E.; Rappold, A.G. Cardiovascular and cerebrovascular emergency department visits associated with wildfire smoke exposure in California in 2015. J. Am. Heart Assoc. 2018, 7, e007492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cascio, W.E. Wildland fire smoke and human health. Sci. Total Environ. 2018, 624, 586–595. [Google Scholar] [CrossRef] [PubMed]
- Martin, B.L.; Thompson, L.C.; Kim, Y.; Williams, W.; Snow, S.J.; Schladweiler, M.C.; Phillips, P.; King, C.; Richards, J.; Haykal-Coates, N.; et al. Acute peat smoke inhalation sensitizes rats to the postprandial cardiometabolic effects of a high fat oral load. Sci. Total Environ. 2018, 643, 378–391. [Google Scholar] [CrossRef] [PubMed]
- Milton, L.A.; White, A.R. The potential impact of bushfire smoke on brain health. Neurochem. Int. 2020, 139, 104796. [Google Scholar] [CrossRef]
- Braithwaite, I.; Zhang, S.; Kirkbride, J.B.; Osborn, D.P.J.; Hayes, J.F. Air pollution (particulate matter) exposure and associations with depression, anxiety, bipolar, psychosis and suicide risk: A systematic review and meta-analysis. Environ. Health Perspect. 2019, 127, 126002. [Google Scholar] [CrossRef] [Green Version]
- Schuller, A.; Montrose, L. Influence of woodsmoke exposure on molecular mechanisms underlying Alzheimer’s disease: Existing literature and gaps in our understanding. Epigenet. Insights 2020, 13, 2516865720954873. [Google Scholar] [CrossRef] [PubMed]
- Ku, T.; Li, B.; Gao, R.; Zhang, Y.; Yan, W.; Ji, X.; Li, G.; Sang, N. NF-κB-regulated microRNA-574-5p underlies synaptic and cognitive impairment in response to atmospheric PM2.5 aspiration. Part. Fibre Toxicol. 2017, 14, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sofronov, G.A.; Patkin, E.L. Epegentic toxicology: Perspectives of the development. Toxicol. Rev. 2018, 1, 2–7. [Google Scholar] [CrossRef]
- Sosedova, L.M.; Vokina, V.A.; Novikov, M.A.; Rukavishnikov, V.S.; Andreeva, E.S.; Zhurba, O.M.; Alekseenko, A.N. Paternal biomass smoke exposure in rats produces behavioral and cognitive alterations in the offspring. Toxics 2020, 9, 3. [Google Scholar] [CrossRef]
- Kulikov, A.V.; Tikhonova, M.A.; Kulikov, V.A. Automated measurement of special preference in the open field test with transmitted lighting. J. Neurosci. Meth. 2008, 170, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Durnev, A.D.; Zhanataev, A.K.; Sirota, N.P.; Tikhonov, V.P.; Shevchenko, T.V.; Homeland, I.A.; Pligina, K.L. Evaluation of Genotoxic Properties by the In Vitro DNA Comet Method MP 4.2.0014-10. Guidelines; Federal Center for Hygiene and Epidemiology of Rospotrebnadzor: Moscow, Russia, 2010; p. 15. [Google Scholar]
- Wentzel, J.F.; Gouws, C.; Huysamen, C.; Dyk, E.; Koekemoer, G.; Pretorius, P.J. Assessing the DNA methylation status of single cells with the comet assay. Anal. Biochem. 2010, 400, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.F.; Yip, P.K.; Chen, S.Y.; Lin, J.C.; Yeh, Z.T.; Kung, L.Y.; Wang, C.Y.; Fan, Y.M. The impacts of acute carbon monoxide poisoning on the brain: Longitudinal clinical and 99mTc ethyl cysteinate brain SPECT characterization of patients with persistent and delayed neurological sequelae. Clin. Neurol. Neurosurg. 2014, 119, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.; Choi, S. Acute carbon monoxide poisoning and delayed neurological sequelae: A potential neuroprotection bundle therapy. Neural. Regen. Res. 2015, 10, 36–38. [Google Scholar] [PubMed]
- Rose, J.J.; Wang, L.; Xu, Q.; McTiernan, C.F.; Shiva, S.; Tejero, J.; Gladwin, M.T. Carbon monoxide poisoning: Pathogenesis, management, and future directions of therapy. Am. J. Respir. Crit. Care Med. 2017, 195, 596–606. [Google Scholar] [CrossRef]
- Améndola, L.; Weary, D.M. Evidence for consistent individual differences in rat sensitivity to carbon dioxide. PLoS ONE 2019, 14, e0215808. [Google Scholar] [CrossRef]
- Jang, H.S.; Choi, H.S.; Lee, S.H.; Jang, K.H.; Lee, M.G. Evaluation of the anaesthetic effects of medetomidine and ketamine in rats and their reversal with atipamezole. Vet. Anaesth. Analg. 2009, 36, 319–327. [Google Scholar] [CrossRef]
- Brown, E.N.; Purdon, P.L.; Van Dort, C.J. General anesthesia and altered states of arousal: A systems neuroscience analysis. Annu. Rev. Neurosci. 2011, 34, 601–628. [Google Scholar] [CrossRef] [Green Version]
- Akeju, O.; Westover, M.; Pavone, K.; Sampson, A.; Hartnack, K.E.; Brown, E.; Purdon, P.L. Effects of sevoflurane and propofol on frontal electroencephalogram power and coherence. Anesthesiology 2014, 121, 990–998. [Google Scholar] [CrossRef] [Green Version]
- Purdon, P.L.; Sampson, A.; Pavone, K.J.; Brown, E.N. Clinical electroencephalography for anesthesiologists: Part I: Background and basic signatures. Anesthesiology 2015, 123, 937–960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hagihira, S. Changes in the electroencephalogram during anaesthesia and their physiological basis. Br. J. Anaesth. 2015, 115, 27–31. [Google Scholar] [CrossRef] [Green Version]
- Kopp, B.; Zalko, D.; Audebert, M. Genotoxicity of 11 heavy metals detected as food contaminants in two human cell lines. Environ. Mol. Mutagen. 2018, 59, 202–210. [Google Scholar] [CrossRef]
- Muthusamy, S.; Peng, C.; Ng, J.C. Genotoxicity evaluation of multi-component mixtures of polyaromatic hydrocarbons (PAHs), arsenic, cadmium, and lead using flow cytometry based micronucleus test in HepG2 cells. Mutation research. Genet. Toxicol. Environ. Mutagen. 2018, 827, 9–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ambatipudi, S.; Cuenin, C.; Hernandez-Vargas, H.; Ghantous, A.; Calvez-Kelm, F.L.; Kaaks, R.; Barrdahl, M.; Boeing, H. Tobacco smoking-associated genome-wide DNA methylation changes in the EPIC study. Epigenomics 2016, 8, 599–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsaprouni, L.G.; Yang, T.P.; Bell, J.; Dick, K.J.; Kanoni, S.; Nisbet, J.; Viñuela, A.; Grundberg, E. Cigarette smoking reduces DNA methylation levels at multiple genomic loci but the effect is partially reversible upon cessation. Epigenetics 2014, 9, 1382–1396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeilinger, S.; Kühnel, B.; Klopp, N.; Baurecht, H.; Kleinschmidt, A.; Gieger, C.; Weidinger, S.; Lattka, E.; Adamski, J.; Peters, A.; et al. Tobacco smoking leads to extensive genome-wide changes in DNA methylation. PLoS ONE 2013, 8, e63812. [Google Scholar] [CrossRef] [PubMed]
- Krejcova, L.; Richtera, L.; Hynek, D.; Labuda, J.; Adam, V. Current trends in electrochemical sensing and biosensing of DNA methylation. Biosens. Bioelectron. 2017, 15, 384–399. [Google Scholar] [CrossRef]
- Martín-Núñez, G.M.; Rubio-Martín, E.; Cabrera-Mulero, R.; Rojo-Martínez, G.; Olveira, G.; Valdés, S.; Soriguer, F.; Castaño, L.; Morcillo, S. Type 2 diabetes mellitus in relation to global LINE-1 DNA methylation in peripheral blood: A cohort study. Epigenetics 2014, 9, 1322–1328. [Google Scholar] [CrossRef] [Green Version]
- Bellavia, A.; Urch, B.; Speck, M.; Brook, R.; Scott, J.; Albetti, B.; Behbod, B.; North, M.; Valeri, L.; Bertazzi, P.A.; et al. DNA hypomethylation, ambient particulate matter, and increased blood pressure: Findings from controlled human exposure experiments. J Am Heart Assoc. 2013, 2, e000212. [Google Scholar] [CrossRef] [Green Version]
- Baccarelli, A.; Wright, R.O.; Bollati, V.; Tarantini, L.; Litonjua, A.A.; Suh, H.H.; Zanobetti, A.; Sparrow, D.; Vokonas, P.S.; Schwartz, J. Rapid DNA methylation changes after exposure to traffic particles. Am. J. Respir. Crit. Care Med. 2009, 179, 572–578. [Google Scholar] [CrossRef]
- Brook, R.D.; Rajagopalan, S.; Pope, C.A.; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Holguin, F.; Hong, Y.; Luepker, R.V.; Mittleman, M.A.; et al. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 2010, 121, 2331–2378. [Google Scholar] [CrossRef] [Green Version]
- Borm, P.J.; Kelly, F.; Künzli, N.; Schins, R.P.; Donaldson, K. Oxidant generation by particulate matter: From biologically effective dose to a promising, novel metric. Occup. Environ. Med. 2007, 64, 73–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valinluck, V.; Tsai, H.H.; Rogstad, D.K.; Burdzy, A.; Bird, A.; Sowers, L.C. Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-cpg binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic Acids Res. 2004, 32, 4100–4108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donaldson, K.; Stone, V.; Seaton, A.; MacNee, W. Ambient particle inhalation and the cardiovascular system: Potential mechanisms. Environ. Health Perspect. 2001, 109, 523–527. [Google Scholar] [PubMed] [Green Version]
- Adalsteinsson, B.T.; Gudnason, H.; Aspelund, T.; Harris, T.B.; Launer, L.J.; Eiriksdottir, G.; Smith, A.V.; Gudnason, V. Heterogeneity in white blood cells has potential to confound DNA methylation measurements. PLoS ONE 2012, 7, e46705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Behavior Parameter | Control | Peat Smoke |
---|---|---|
Distance ran, cm | 487 (394; 654) | 643 (517; 783) |
Time in the center, % | 1.2 (0.3; 5.2) | 3.8 (0.9; 8.5) |
% area explored | 36.4 (31.6; 40.7) | 55.1 (39.6; 60.6) * |
Rearing | 12 (9; 15) | 10 (5; 17) |
Freezing | 0 (0; 1) | 1.5 (0.5; 3) * |
Defecation | 0 (0; 2) | 1 (0; 1.5) |
Grooming | 1 (0; 2) | 0.5 (0; 2) |
Average Amplitude, μv | Rhythm Index, % | |||
---|---|---|---|---|
Peat Smoke | Control | Peat Smoke | Control | |
Bands | Left-side brain | |||
δ | 60.3 (39.8; 62.7) | 38.7 (27.7; 57.8) | 0.8 (0.4; 1.0) * | 0.3 (0.2; 0.4) |
θ | 49.2 (47.9; 55.5) | 50.2 (48.2; 52.0) | 11.3 (9.6; 11.9) | 9.90 (5.9; 11.2) |
α | 35.1 (34.0;4 1.5) | 37.7 (34.5; 41.1) | 27.9 (25.2; 32.9) | 23.4 (20.4; 31.8) |
β1 | 21.0 (19.8; 23.3) | 20.4 (18.0; 22.5) | 17.6 (16.9; 18.9) | 18.3 (17.4; 20.2) |
β2 | 12.3 (10.6; 16.1) | 13.6 (10.8; 15.2) | 15.2 (12.2; 22.5) * | 27.9 (19.8; 31.9) |
Right-side brain | ||||
δ | 71.9 (57.9; 74.5) * | 41.0 (19.3; 52.2) | 0.9 (0.5; 1.5) * | 0.2 (0.1; 0.4) |
θ | 49.8 (49.3; 53.2) | 55.4 (50.1; 56.1) | 11.1 (9.5; 11.9) | 10.3 (3.7; 11.6) |
α | 37.2 (34.5; 37.7) | 37.5 (34.9; 40.0) | 27.2 (24.0; 29.4) | 23.3 (19.4; 28.7) |
β1 | 20.0 (18.9; 22.2) | 21.9 (18.3; 26.4) | 18.2 (16.6; 20.6) | 18.9 (17.9; 2.30) |
β2 | 12.5 (11.9; 14.7) | 13.8 (11.7; 14.5) | 17.9 (17.8; 23.0) | 29.2 (20.7; 36.7) |
Indicators | Control | Peat Smoke |
---|---|---|
DNA fragmentation, % | 4.68 (3.4; 5.97) | 3.58 (0.37; 8.31) |
Global DNA methylation, % | 78.18 (51.6; 97.76) | 46.94 (13.87; 64.41) * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vokina, V.A.; Sosedova, L.M.; Novikov, M.A.; Rukavishnikov, V.S.; Kapustina, E.A.; Alekseenko, A.N.; Andreeva, E.S. Alterations in CNS Functions and DNA Methylation in Rats after 24 h Exposure to Peat Smoke. Toxics 2021, 9, 342. https://doi.org/10.3390/toxics9120342
Vokina VA, Sosedova LM, Novikov MA, Rukavishnikov VS, Kapustina EA, Alekseenko AN, Andreeva ES. Alterations in CNS Functions and DNA Methylation in Rats after 24 h Exposure to Peat Smoke. Toxics. 2021; 9(12):342. https://doi.org/10.3390/toxics9120342
Chicago/Turabian StyleVokina, Vera A., Larisa M. Sosedova, Mikhail A. Novikov, Viktor S. Rukavishnikov, Ekaterina A. Kapustina, Anton N. Alekseenko, and Elizaveta S. Andreeva. 2021. "Alterations in CNS Functions and DNA Methylation in Rats after 24 h Exposure to Peat Smoke" Toxics 9, no. 12: 342. https://doi.org/10.3390/toxics9120342
APA StyleVokina, V. A., Sosedova, L. M., Novikov, M. A., Rukavishnikov, V. S., Kapustina, E. A., Alekseenko, A. N., & Andreeva, E. S. (2021). Alterations in CNS Functions and DNA Methylation in Rats after 24 h Exposure to Peat Smoke. Toxics, 9(12), 342. https://doi.org/10.3390/toxics9120342