Heavy Metals in the Fish Tenualosa ilisha Hamilton, 1822 in the Padma–Meghna River Confluence: Potential Risks to Public Health
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sample Collection
2.2. HMs Analysis in Fish
2.3. HMs Analysis in Water
2.4. Estimate of Potential Risks to Human Health
2.5. Length-Weight (L-W) Relationships and Condition Factor in T. ilisha
2.6. Data Analysis
3. Results
3.1. Fish Morphometry
3.2. HMs Concentrations in T. ilisha (µg g−1 Dry Weight)
3.2.1. Zinc (Zn)
3.2.2. Copper (Cu)
3.2.3. Chromium (VI) [Cr (VI)]
3.2.4. Lead (Pb)
3.2.5. Cadmium (Cd)
3.3. HMs Concentrations in Surface Water (µg mL−1)
3.4. Noncarcinogenic (THQ), Total THQ (TTHQ) and Carcinogenic (CR) Risks
3.5. HMs Bioaccumulation Factor (BAF)
3.6. Length-Weight (L-W) Relationships of T. ilisha
3.7. Relationship between Size Groups and HMs
4. Discussion
4.1. HMs in T. ilisha Tissues (µg g−1, Dry Wt.)
4.2. HMs in the Padma–Meghna River Water (µg mL−1)
4.3. Public Health Risk Assessment
4.4. L-W Relationships of the Selected Classes (S1–S5) of T. ilisha
4.5. T. ilisha Classes (S1–S5) vs. HMs Influence
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Department of Fisheries. Yearbook of Fisheries Statistics of Bangladesh, 2017—Fisheries Resources Survey System (FRSS); Ministry of Fisheries: Dhaka, Bangladesh, 2018.
- Mome, M.A. The Potential of the Artisanal Hilsa Fishery in Bangladesh: An Economically Efficient Fisheries Policy; Fisheries Training Programme: Reykjavik, Iceland, 2007. [Google Scholar]
- Islam, M.M.; Islam, N.; Sunny, A.R.; Jentoft, S.; Ullah, M.H.; Sharifuzzaman, S.M. Fishers’ Perceptions of the Performance of Hilsa Shad (Tenualosa ilisha) Sanctuaries in Bangladesh. Ocean Coast. Manag. 2016, 130, 309–316. [Google Scholar] [CrossRef]
- Islam, M.; Han, S.; Ahmed, M.; Masunaga, S. Assessment of Trace Metal Contamination in Water and Sediment of Some Rivers in Bangladesh. J. Water Environ. Technol. 2014, 12, 109–121. [Google Scholar] [CrossRef] [Green Version]
- Hezbullah, M.; Sultana, S.; Chakraborty, S.R.; Patwary, M.I. Heavy Metal Contamination of Food in a Developing Country Like Bangladesh: An Emerging Threat to Food Safety. J. Toxicol. Environ. Health Sci. 2016, 8, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Sarker, M.J.; Polash, A.U.; Islam, M.A.; Rima, N.N.; Farhana, T. Heavy Metals Concentration in Native Edible Fish at Upper Meghna River and Its Associated Tributaries in Bangladesh: A Prospective Human Health Concern. SN Appl. Sci. 2020, 2, 1667. [Google Scholar] [CrossRef]
- Salam, M.A.; Dayal, S.R.; Siddiqua, S.A.; Muhib, M.I.; Bhowmik, S.; Kabir, M.M.; Rak, A.A.E.; Srzednicki, G. Risk Assessment of Heavy Metals in Marine Fish and Seafood from Kedah and Selangor Coastal Regions of Malaysia: A High-Risk Health Concern for Consumers. Environ. Sci. Pollut. Res. 2021, 28, 55166–55175. [Google Scholar] [CrossRef]
- Romeo, M.; Siau, Y.; Sidoumou, Z.; Gnassia-Barelli, M. Heavy Metal Distribution in Different Fish Species from the Mauritania Coast. Sci. Total Environ. 1999, 232, 169–175. [Google Scholar] [CrossRef]
- Hoar, W.S.; Randall, D.J. Gills: Anatomy, Gas Transfer, and Acid-Base Regulation; Part A; Academic Press: Orlando, FL, USA, 1984; Volume 10. [Google Scholar]
- Reid, S.D.; McDonald, D.G. Metal Binding Activity of the Gills of Rainbow Trout (Oncorhynchus mykiss). Can. J. Fish. Aquat. Sci. 1991, 48, 1061–1068. [Google Scholar] [CrossRef]
- Altındağ, A.; Yiğit, S. Assessment of Heavy Metal Concentrations in the Food Web of Lake Beyşehir, Turkey. Chemosphere 2005, 60, 552–556. [Google Scholar] [CrossRef]
- WHO. Trace Elements in Human Nutrition and Health; World Health Organization: Geneva, Switzerland, 1996. [Google Scholar]
- García-Rico, L.; Leyva-Perez, J.; Jara-Marini, M.E. Content and Daily Intake of Copper, Zinc, Lead, Cadmium, and Mercury from Dietary Supplements in Mexico. Food Chem. Toxicol. 2007, 45, 1599–1605. [Google Scholar] [CrossRef]
- Korfali, S.I.; Hawi, T.; Mroueh, M. Evaluation of Heavy Metals Content in Dietary Supplements in Lebanon. Chem. Cent. J. 2013, 7, 10. [Google Scholar] [CrossRef] [Green Version]
- USP. The New USP <232 > (Elemental Impurities-Limits) and USP <233 > (Elemental Impurities-Procedures); United States Pharmacopeia: North Bethesda, MD, USA, 2012. Available online: https://www.fda.gov/media/99723/download (accessed on 5 December 2021).
- Luckey, T.D.; Venugopal, B. Metal Toxicity in Mammals: Physiologic and Chemical Basis for Metal Toxicity; Springer: Boston, MA, USA, 1977; Volume 1. [Google Scholar]
- Lee, K.; Kweon, H.; Yeo, J.; Woo, S.; Han, S.; Kim, J.-H. Characterization of Tyrosine-Rich Antheraea pernyi Silk Fibroin Hydrolysate. Int. J. Biol. Macromol. 2011, 48, 223–226. [Google Scholar] [CrossRef]
- Al-Busaidi, M.; Yesudhason, P.; Al-Mughairi, S.; Al-Rahbi, W.A.K.; Al-Harthy, K.S.; Al-Mazrooei, N.A.; Al-Habsi, S.H. Toxic Metals in Commercial Marine Fish in Oman with Reference to National and International Standards. Chemosphere 2011, 85, 67–73. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy Metal Toxicity and the Environment. In Molecular, Clinical and Environmental Toxicology; Luch, A., Ed.; Experientia Supplementum; Springer: Basel, Switzerland, 2012; Volume 101, pp. 133–164. [Google Scholar]
- Calabrese, E.J.; Canada, A.T.; Sacco, C. Trace Elements and Public Health. Annu. Rev. Public Health 1985, 6, 131–146. [Google Scholar] [CrossRef] [PubMed]
- ATSDR. Toxicological Profile for Chromium; Agency for Toxic Substances and Disease Registry, U.S. Department of Health and Human Services, Public Health Service: Atlanta, GA, USA, 2008. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp7.pdf (accessed on 5 December 2021).
- Alipour, H.; Pourkhabbaz, A.; Hassanpour, M. Estimation of Potential Health Risks for Some Metallic Elements by Consumption of Fish. Water Qual. Expo. Health 2015, 7, 179–185. [Google Scholar] [CrossRef]
- Hossain, M.S.; Sarker, S.; Chowdhury, S.R.; Sharifuzzaman, S.M. Discovering Spawning Ground of Hilsa Shad (Tenualosa ilisha) in the Coastal Waters of Bangladesh. Ecol. Model. 2014, 282, 59–68. [Google Scholar] [CrossRef]
- Sarker, M.J.; Uddin, A.M.M.B.; Patwary, M.S.A.; Tanmay, M.M.H.; Rahman, F.; Rahman, M. Livelihood Status of Hilsa (Tenualosa ilisha) Fishermen of Greater Noakhali Regions of Bangladesh. Fish. Aquac. J. 2016, 7, 168. [Google Scholar] [CrossRef]
- Raknuzzaman, M.; Ahmed, M.K.; Islam, M.S.; Habibullah-Al-Mamun, M.; Tokumura, M.; Sekine, M.; Masunaga, S. Trace Metal Contamination in Commercial Fish and Crustaceans Collected from Coastal Area of Bangladesh and Health Risk Assessment. Environ. Sci. Pollut. Res. 2016, 23, 17298–17310. [Google Scholar] [CrossRef]
- Ahmed, A.S.S.; Rahman, M.; Sultana, S.; Babu, S.M.O.F.; Sarker, M.S.I. Bioaccumulation and Heavy Metal Concentration in Tissues of Some Commercial Fishes from the Meghna River Estuary in Bangladesh and Human Health Implications. Mar. Pollut. Bull. 2019, 145, 436–447. [Google Scholar] [CrossRef]
- Bhuyan, M.S.; Bakar, M.A.; Akhtar, A.; Islam, M.S. Heavy Metals Status in Some Commercially Important Fishes of Meghna River Adjacent to Narsingdi District, Bangladesh: Health Risk Assessment. Am. J. Life Sci. 2016, 4, 60–70. [Google Scholar] [CrossRef]
- Islam, M.S.; Habibullah-Al-Mamun, M. Accumulation of Trace Elements in Sediment and Fish Species of Paira River, Bangladesh. AIMS Environ. Sci. 2017, 4, 310–322. [Google Scholar] [CrossRef]
- Ali, M.M.; Ali, M.L.; Proshad, R.; Islam, S.; Rahman, Z.; Tusher, T.R.; Kormoker, T.; Al, M.A. Heavy Metal Concentrations in Commercially Valuable Fishes with Health Hazard Inference from Karnaphuli River, Bangladesh. Hum. Ecol. Risk Assess. 2020, 26, 2646–2662. [Google Scholar] [CrossRef]
- Atique Ullah, A.K.M.; Akter, M.; Musarrat, M.; Quraishi, S.B. Evaluation of Possible Human Health Risk of Heavy Metals from the Consumption of Two Marine Fish Species Tenualosa ilisha and Dorosoma cepedianum. Biol. Trace Elem. Res. 2019, 191, 485–494. [Google Scholar] [CrossRef]
- Islam, M.S.; Imran, M.H.; Kabir, M.H.; Noby, M.M.-U.; Hoq, M.E.; Rimu, S.H.; Rahman, M.S. Seasonal Dynamics of Heavy Metals in Commercially Important Marine Fish from the Bay of Bengal Coast of Bangladesh. Grassroots J. Nat. Resour. 2020, 3, 1–15. [Google Scholar] [CrossRef]
- Bristy, M.S.; Sarker, K.K.; Baki, M.A.; Quraishi, S.B.; Hossain, M.M.; Islam, A.; Khan, M.F. Health Risk Estimation of Metals Bioaccumulated in Commercial Fish from Coastal Areas and Rivers in Bangladesh. Environ. Toxicol. Pharmacol. 2021, 86, 103666. [Google Scholar] [CrossRef]
- Ahmed, M.K.; Biswas, D.R.; Islam, M.M.; Akter, M.S.; Kazi, A.I.; Sultana, G.N.N. Heavy Metal Concentrations in Different Organs of Fishes of the River Meghna, Bangladesh. Terr. Aquat. Environ. Toxicol. 2009, 3, 28–32. [Google Scholar]
- Begum, A.; Mustafa, A.I.; Amin, M.N.; Chowdhury, T.R.; Quraishi, S.B.; Banu, N. Levels of Heavy Metals in Tissues of Shingi Fish (Heteropneustes fossilis) from Buriganga River, Bangladesh. Environ. Monit. Assess. 2013, 185, 5461–5469. [Google Scholar] [CrossRef]
- Borrell, A.; Tornero, V.; Bhattacharjee, D.; Aguilar, A. Trace Element Accumulation and Trophic Relationships in Aquatic Organisms of the Sundarbans Mangrove Ecosystem (Bangladesh). Sci. Total Environ. 2016, 545–546, 414–423. [Google Scholar] [CrossRef]
- Mitra, A.; Ghosh, R. Bioaccumulation Pattern of Heavy Metals in Commercially Important Fishes on and Around Indian Sundarbans. Glob. J. Anim. Sci. Res. 2014, 2, 33–45. [Google Scholar]
- Hassan, M.; Tanvir Rahman, M.A.T.M.; Saha, B.; Kamal, A.K.I. Status of Heavy Metals in Water and Sediment of the Meghna River, Bangladesh. Am. J. Environ. Sci. 2015, 11, 427–439. [Google Scholar] [CrossRef] [Green Version]
- Bhuyan, M.S.; Bakar, M.A.; Akhtar, A.; Hossain, M.B.; Ali, M.M.; Islam, M.S. Heavy Metal Contamination in Surface Water and Sediment of the Meghna River, Bangladesh. Environ. Nanotechnol. Monit. Manag. 2017, 8, 273–279. [Google Scholar] [CrossRef]
- Ahmad, M.K.; Islam, S.; Rahman, M.S.; Islam, M.M. Heavy Metals in Water, Sediment and Some Fishes of Buriganga River, Bangladesh. Int. J. Environ. Res. 2010, 4, 321–332. [Google Scholar]
- Hasan, M.R.; Khan, M.Z.H.; Khan, M.; Aktar, S.; Rahman, M.; Hossain, F.; Hasan, A.S.M.M. Heavy Metals Distribution and Contamination in Surface Water of the Bay of Bengal Coast. Cogent Environ. Sci. 2016, 2, 1140001. [Google Scholar] [CrossRef]
- Chakraborty, S.; Rudra, T.; Guha, A.; Ray, A.; Pal, N.; Mitra, A. Spatial Variation of Heavy Metals in Tenualosa ilisha Muscle: A Case Study from the Lower Gangetic Delta and Coastal West Bengal. Int. J. Innov. Sci. Eng. Technol. 2016, 3, 1–14. [Google Scholar]
- Maurya, P.K.; Malik, D.S.; Yadav, K.K.; Kumar, A.; Kumar, S.; Kamyab, H. Bioaccumulation and Potential Sources of Heavy Metal Contamination in Fish Species in River Ganga Basin: Possible Human Health Risks Evaluation. Toxicol. Rep. 2019, 6, 472–481. [Google Scholar] [CrossRef]
- Mukherjee, D.P.; Bhupander, K. Assessment of Arsenic, Cadmium and Mercury Level in Commonly Consumed Coastal Fishes from Bay of Bengal, India. Food Sci. Qual. Manag. 2011, 2, 19–30. [Google Scholar]
- Cho Thin, C.; Minn, M.Z.; Aung, M.T. Heavy Metals Analysis of Some Fishes in Ayeyarwady River Segment of Salay Environs. J. Myanmar Acad. Arts Sci. 2020, 18, 15–27. [Google Scholar]
- Jaber, G.A.; Talal, A.A.; Hantoush, A.; Talal, A.; Water, M. The Concentrations of Heavy Metals (Copper, Nickel, Lead, Cadmium, Iron, Manganese) in Tenualosa ilisha (Hamilton, 1822) Hunted from Iraqi Marine Water. Mesop. Environ. J. 2015, 1, 31–43. [Google Scholar]
- Al-Najare, G.A.; Jaber, A.A.; Hantoush, A.A.; Talal, A.H. Accumulation of Some Heavy Metals in Tenualosa ilisha (Hamilton, 1822) Collected from Shatt Al-Arab River. Mesop. J. Mar. Sci. 2016, 31, 119–128. [Google Scholar]
- Yi, Y.J.; Zhang, S.H. Heavy Metal (Cd, Cr, Cu, Hg, Pb, Zn) Concentrations in Seven Fish Species in Relation to Fish Size and Location along the Yangtze River. Environ. Sci. Pollut. Res. 2012, 19, 3989–3996. [Google Scholar] [CrossRef]
- Niri, A.S.; Sharifian, S.; Ahmadi, R. Assessment of Metal Accumulation in Two Fish Species (Tenualosa ilisha and Otolithes ruber), Captured from the North of Persian Gulf. Bull. Environ. Contam. Toxicol. 2015, 94, 71–76. [Google Scholar] [CrossRef]
- Syed, Z.H.; Choi, G.; Byeon, S. A Numerical Approach to Predict Water Levels in Ungauged Regions—Case Study of the Meghna River Estuary, Bangladesh. Water 2018, 10, 110. [Google Scholar] [CrossRef] [Green Version]
- Huss, H.H. Quality and Quality Changes in Fresh Fish; FAO Fisheries Technical Paper No: 348; FAO: Rome, Italy, 1995. [Google Scholar]
- Traina, A.; Bono, G.; Bonsignore, M.; Falco, F.; Giuga, M.; Quinci, E.M.; Vitale, S.; Sprovieri, M. Heavy Metals Concentrations in Some Commercially Key Species from Sicilian Coasts (Mediterranean Sea): Potential Human Health Risk Estimation. Ecotoxicol. Environ. Saf. 2019, 168, 466–478. [Google Scholar] [CrossRef]
- USEPA. Integrated Risk Information System; U.S. Environmental Protection Agency: Washington, DC, USA, 2008. Available online: https://iris.epa.gov/AtoZ/?list_type=alpha (accessed on 5 December 2021).
- USEPA. Regional Screening Levels (RSLs)—Generic Tables. Tables as of: May 2021; U.S. Environmental Protection Agency: Washington, DC, USA, 2021. Available online: https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables (accessed on 5 December 2021).
- Hang, X.; Wang, H.; Zhou, J.; Ma, C.; Du, C.; Chen, X. Risk Assessment of Potentially Toxic Element Pollution in Soils and Rice (Oryza sativa) in a Typical Area of the Yangtze River Delta. Environ. Pollut. 2009, 157, 2542–2549. [Google Scholar] [CrossRef] [PubMed]
- Abtahi, M.; Fakhri, Y.; Oliveri Conti, G.; Keramati, H.; Zandsalimi, Y.; Bahmani, Z.; Hosseini Pouya, R.; Sarkhosh, M.; Moradi, B.; Amanidaz, N.; et al. Heavy Metals (As, Cr, Pb, Cd and Ni) Concentrations in Rice (Oryza sativa) from Iran and Associated Risk Assessment: A Systematic Review. Toxin Rev. 2017, 36, 331–341. [Google Scholar] [CrossRef]
- USEPA. Regional Screening Level (RSL) Summery Table; United States Environmental Protection Agency: Washington, DC, USA, 2011. Available online: https://epa-prgs.ornl.gov/chemicals/download/master_sl_table_run_JUN2011.pdf (accessed on 5 December 2021).
- USEPA. A Risk Assessment-Multiway Exposure Spreadsheet Calculation Tool; United States Environmental Protection Agency: Washington, DC, USA, 1999.
- Zhong, W.; Zhang, Y.; Wu, Z.; Yang, R.; Chen, X.; Yang, J.; Zhu, L. Health Risk Assessment of Heavy Metals in Freshwater Fish in the Central and Eastern North China. Ecotoxicol. Environ. Saf. 2018, 157, 343–349. [Google Scholar] [CrossRef]
- USEPA. Guideline for Assessing Chemical Contaminant Data for Use in Fish Advisories, Vol. I: Fish Sampling and Analysis, 3rd ed.; Document No. EPA 823-B-November 2000; Office of Water, United States of Environmental Protection Agency: Washington, DC, USA, 2000. Available online: https://www.epa.gov/sites/default/files/2015-06/documents/volume1.pdf (accessed on 5 December 2021).
- Yin, S.; Feng, C.; Li, Y.; Yin, L.; Shen, Z. Heavy Metal Pollution in the Surface Water of the Yangtze Estuary: A 5-Year Follow-up Study. Chemosphere 2015, 138, 718–725. [Google Scholar] [CrossRef] [PubMed]
- USEPA. Risk-Based Concentration Table; United States of Environmental Protection Agency: Washington, DC, USA, 2015; (revised). Available online: https://archive.epa.gov/region9/superfund/web/pdf/master_sl_table_run_june2015_rev.pdf (accessed on 5 December 2021).
- Hu, B.; Jia, X.; Hu, J.; Xu, D.; Xia, F.; Li, Y. Assessment of Heavy Metal Pollution and Health Risks in the Soil-Plant-Human System in the Yangtze River Delta, China. Int. J. Environ. Res. Public Health 2017, 14, 1042. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y.-G.; Huang, H.-H.; Lin, Q. Concentrations and Human Health Implications of Heavy Metals in Wild Aquatic Organisms Captured from the Core Area of Daya Bay’s Fishery Resource Reserve, South China Sea. Environ. Toxicol. Pharmacol. 2016, 45, 90–94. [Google Scholar] [CrossRef] [PubMed]
- Vu, C.T.; Lin, C.; Yeh, G.; Villanueva, M.C. Bioaccumulation and Potential Sources of Heavy Metal Contamination in Fish Species in Taiwan: Assessment and Possible Human Health Implications. Environ. Sci. Pollut. Res. 2017, 24, 19422–19434. [Google Scholar] [CrossRef]
- USEPA. Integrated Risk Information System (IRIS); EPA-03-31-87; United States of Environmental Protection Agency: Washington, DC, USA, 1985.
- ATSDR. Coronet Industries, Incorporated (a/k/a Borden Feed Phosphate Complex) Plant City, Hillsborough County, Florida; ID: FLD001704741; Agency for Toxic Substances and Disease Registry, U.S. Department of Health and Human Services, Division of Health Assessment and Consultation: Atlanta, GA, USA, 2005. Available online: http://www.floridahealth.gov/environmental-health/hazardous-waste-sites/_documents/c/coronet011807.pdf (accessed on 5 December 2021).
- USDOE. The Risk Assessment Information System (RAIS); U.S. Department of Energy’s Oak Ridge Operations Office (ORO): Oak Ridge, TN, USA, 2011. Available online: https://www.tn.gov/content/dam/tn/environment/remediation/documents/oakridgereservation/environmental-monitoring-reports/rem_2012-Environmental-Monitoring-Report.pdf (accessed on 5 December 2021).
- Zhang, L.; Shi, Z.; Jiang, Z.; Zhang, J.; Wang, F.; Huang, X. Distribution and Bioaccumulation of Heavy Metals in Marine Organisms in East and West Guangdong Coastal Regions, South China. Mar. Pollut. Bull. 2015, 101, 930–937. [Google Scholar] [CrossRef] [PubMed]
- Ricker, W.E. Computation and Interpretation of Biological Statistics of Fish Populations; Bulletin of the Fisheries Research Board of Canada, Bulletin 191; Department of the Environment, Fisheries and Marine Service: Ottawa, ON, Canada, 1975. [Google Scholar]
- Froese, R. Cube Law, Condition Factor and Weight-Length Relationships: History, Meta-Analysis and Recommendations. J. Appl. Ichthyol. 2006, 22, 241–253. [Google Scholar] [CrossRef]
- Ahmed, M.B.U.; Ahammad, A.K.S.; Shahjahan, M.; Rabbi, M.F.; Alam, M.A.; Sakib, M.N.; Bashar, M.A.; Rahman, M.A.; Hossain, M.Y.; Mahmud, Y. Age, Growth and Maturity of the Indian Shad, Tenualosa ilisha through Otolith Examination from Different Habitats in Bangladesh. Egypt. J. Aquat. Biol. Fish. 2020, 24, 343–359. [Google Scholar] [CrossRef]
- Ahmed, M.S.; Sharif, A.S.M.; Latifa, G.A. Age, Growth and Mortality of Hilsa Shad, Tenualosa ilisha in the River Meghna, Bangladesh. Asian J. Biol. Sci. 2008, 1, 69–76. [Google Scholar] [CrossRef] [Green Version]
- FAO/WHO. Evaluation of Certain Food Additives and the Contaminants Mercury, Lead, and Cadmium; Technical Report Series 505. 1972. Available online: https://apps.who.int/iris/handle/10665/40985 (accessed on 5 December 2021).
- CEPA. State Water Resources Control Board Water Quality: State Mussel Watch Program Data Report; Appendix V; California Environmental Protection Agency: Sacramento, CA, USA, 1995. [Google Scholar]
- MOFL. Bangladesh Gazette; SRO No. 233/Ayen; Bangladesh Ministry of Fisheries and Livestock: Dhaka, Bangladesh, 2014.
- WHO. Guidelines for Drinking-Water Quality, 2nd ed.; World Health Organization: Geneva, Switzerland, 1993. [Google Scholar]
- WHO. Guidelines for Drinking-Water Quality, 3rd ed.; Food Standards Programme, Codex Committee, Rotterdam; Reference CX/FAC 02/16; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- WHO. Guidelines for Drinking-Water Quality, 4th ed.; WHO Chronicle; World Health Organization: Geneva, Switzerland, 2011; Available online: http://apps.who.int/iris/bitstream/handle/10665/44584/9789241548151_eng.pdf?sequence=1 (accessed on 5 December 2021).
- Mortuza, M.G.; Al-Misned, F.A. Environmental Contamination and Assessment of Heavy Metals in Water, Sediments and Shrimp of Red Sea Coast of Jizan, Saudi Arabia. J. Aquat. Pollut. Toxicol. 2017, 1, 1–8. [Google Scholar]
- USEPA. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites; Office of Solid Waste and Emergency Response, United States Environmental Protection Agency: Washington, DC, USA, 2002.
- Vajargah, M.F.; Sattari, M.; Namin, J.I.; Bibak, M. Length-Weight, Length-Length Relationships and Condition Factor of Rutilus kutum (Actinopterygii: Cyprinidae) from the Southern Caspian Sea, Iran. J. Anim. Divers. 2020, 2, 56–61. [Google Scholar] [CrossRef]
- Tarkan, A.S.; Gaygusuz, O.; Acipinar, H.; Gursoy, C.; Ozulug, M. Length-Weight Relationship of Fishes from the Marmara Region (NW-Turkey). J. Appl. Ichthyol. 2006, 22, 271–273. [Google Scholar] [CrossRef]
- Karim, R.; Roy, K.C.; Roy, P.R.; Ahmed, Z.F. Age and Growth of Hilsa Shad, Tenualosa ilisha (Hamilton, 1822) of the River Tentulia in Bangladesh. J. Fish. 2015, 3, 227. [Google Scholar] [CrossRef]
- Mensoor, M.; Said, A. Determination of Heavy Metals in Freshwater Fishes of the Tigris River in Baghdad. Fishes 2018, 3, 23. [Google Scholar] [CrossRef] [Green Version]
- Wong, C.; Wong, P.; Chu, L. Heavy Metal Concentrations in Marine Fishes Collected from Fish Culture Sites in Hong Kong. Arch. Environ. Contam. Toxicol. 2001, 40, 60–69. [Google Scholar] [CrossRef]
- Al-Baz, A.F.; Grove, D.J. Population Biology of Sbour Tenualosa ilisha (Hamilton-Buchanan) in Kuwait. Asian Fish. Sci. 1995, 8, 239–254. [Google Scholar]
- Narejo, N.T.; Ali, S.S.; Jafri, S.I.H.; Hussain, S.M. A Study on the Age and Growth of Palla, Tenualosa ilisha from the River Indus. Pak. J. Zool. 1999, 31, 25–29. [Google Scholar]
- Alam, M.A.; Shahjahan, M.; Datta, B.K.; Rabbi, M.F.; Alam, M.A.; Bashar, A.; Mahmud, Y. Age Analysis and Growth Patterns of Tenualosa ilisha Using Otolith Examination and Length-Weight Relationships from Different Regions of Bangladesh. bioRxiv 2018, 471664. [Google Scholar] [CrossRef]
- Bhakta, D.; Meetei, W.A.; Vaisakh, G.; Kamble, S.P.; Solanki, J.K.; Das, S.K. Season-Wise Length-Weight Relationship and Relative Condition Factor of Tenualosa ilisha (Hamilton, 1822) at Narmada Estuary, Gujarat, India. Indian J. Geo-Mar. Sci. 2019, 48, 635–638. [Google Scholar]
- Mandal, S.; Lal, K.K.; Singh, R.K.; Sah, R.S.; Jena, J.K.; Singh, A.; Mohindra, V. Comparative Length-Weight Relationship and Condition Factor of Hilsa Shad Tenualosa ilisha (Hamilton, 1822) from Freshwater, Estuarine and Marine Environments in India. Indian J. Fish 2018, 65, 33–41. [Google Scholar] [CrossRef]
- Usero, J.; Izquierdo, C.; Morillo, J.; Gracia, I. Heavy Metals in Fish (Solea vulgaris, Anguilla anguilla and Liza aurata) from Salt Marshes on the Southern Atlantic Coast of Spain. Environ. Int. 2004, 29, 949–956. [Google Scholar] [CrossRef]
- Labiosa, R.G.; Arrigo, K.R.; Genin, A.; Monismith, S.G.; van Dijken, G. The Interplay between Upwelling and Deep Convective Mixing in Determining the Seasonal Phytoplankton Dynamics in the Gulf of Aqaba: Evidence from SeaWiFS and MODIS. Limnol. Oceanogr. 2003, 48, 2355–2368. [Google Scholar] [CrossRef] [Green Version]
- De Conto Cinier, C.; Petit-Ramel, M.; Faure, R.; Garin, D.; Bouvet, Y. Kinetics of Cadmium Accumulation and Elimination in Carp Cyprinus carpio Tissues. Comp. Biochem. Physiol. Part C Pharmacol. Toxicol. Endocrinol. 1999, 122, 345–352. [Google Scholar] [CrossRef]
- Forgan, L.G. Influence of Oxygen Supply on Metabolism and Energetics in Fish Muscles. Ph.D. Thesis, University of Centerbury, Christchurch, New Zealand, 2009. [Google Scholar]
Size Class | Length Range Min.—Max. (Average) ± SD cm | Weight Range Min.—Max. (Average) ± SD g | Habitats | Trophic Level |
---|---|---|---|---|
S1 | 19.1–20.5 (20.0) ± 0.5 | 100.1–105.3 (102.9) ± 1.5 | ||
S2 | 25.1–26.6 (26.0) ± 0.4 | 175.2–180.3 (178) ± 1.6 | Phytoplankton, | |
S3 | 29.0–30.8 (29.8) ± 0.6 | 245.1–251.3 (247.5) ± 1.8 | Pelagic | zooplankton, |
S4 | 38.5–40.5 (39.4) ± 0.6 | 700.1–710.1 (706.3) ± 2.8 | plants, mollusks, | |
S5 | 45.0–46.5 (45.8) ± 0.5 | 1190.2–1200.4 (1194.2) ± 3.2 | crustaceans |
Organ | Size Class | Cu | Zn | Pb | Cd | Cr |
---|---|---|---|---|---|---|
S1 | 9.12 ± 0.79 | 65.32 ± 5.2 | 0.013 ± 0.005 | 0.001 ± 0.000 | 7.60 ± 0.65 | |
S2 | 6.67 ± 0.540 | 49.56± 3.88 | 0.021± 0.004 | 0.003 ± 0.000 | 6.64 ± 0.56 | |
Muscle | S3 | 15.52 ± 1.170 | 47.16 ± 3.75 | 0.015 ± 0.002 | 0.001 ± 0.003 | 12.08 ± 1.03 |
S4 | 15.56 ± 1.41 | 61.32 ± 4.61 | 0.011 ± 0.001 | 0.008 ± 0.006 | 23.96 ± 2.43 | |
S5 | 4.76 ± 0.48 | 40.88 ± 3.39 | 0.014 ± 0.002 | 0.003 ± 0.000 | 5.44 ± 0.54 | |
S1 | 9.52 ± 0.92 | 63.4 ± 5.39 | 0.013 ± 0.002 | 0.004 ± 0.000 | 4.52 ± 0.48 | |
S2 | 23.48 ± 1.42 | 121.60 ± 10.7 | 0.017 ± 0.002 | 0.002 ± 0.000 | 172.32 ± 14.71 | |
Liver | S3 | 11.12 ± 0.90 | 117.43 ± 8.75 | 0.013 ± 0.001 | 0.003 ± 0.000 | 7.61 ± 0.63 |
S4 | 24.64 ± 1.62 | 108.76 ± 6.67 | 0.015 ± 0.002 | 0.004 ± 0.000 | 24.04 ± 2.02 | |
S5 | 23.68 ± 1.51 | 132.76 ± 11.08 | 0.014 ± 0.005 | 0.001 ± 0.000 | 15.88 ± 0.90 | |
S1 | 18.28 ± 1.61 | 189.04 ± 14.93 | 0.017 ± 0.001 | 0.019 ± 0.002 | 326.64 ± 19.58 | |
S2 | 17.84 ± 1.56 | 161.64 ± 11.47 | 0.086 ± 0.007 | 0.053 ± 0.004 | 48.76 ± 4.17 | |
Gill | S3 | 11.24 ± 1.09 | 96.40 ± 6.51 | 0.011 ± 0.002 | 0.03 ± 0.003 | 76.44 ± 6.54 |
S4 | 8.01 ± 0.99 | 148.36 ± 10.21 | 0.015 ± 0.001 | 0.129 ± 0.012 | 23.48 ± 1.98 | |
S5 | 25.04 ± 1.87 | 134.04 ± 9.99 | 0.016 ± 0.001 | 0.469 ± 0.02 | 49.00 ± 3.33 | |
Mean | 14.97 ± 6.96 | 102.71 ± 46.07 | 0.0194 ± 0.019 | 0.049 ± 0.120 | 53.63 ± 7.09 | |
Literature and guidelines | ||||||
Meghna estuary [25] | 4.06 | n/a | 3.33 | 0.10 | 0.64 | |
Meghna River, Narsingdi [27] | 1.18 | 11.21 | 0.64 | 0.085 | 0.057 | |
Karnaphuli River, Chittagong [29] | n/a | n/a | 0.62 | 0.12 | 0.46 | |
* FAO/WHO [73] | 38.46–115.38 (10.0–30.0) | 192.30–384.61 (50.0–100.0) | 1.92 (0.5) | 0.20 (0.05) | 7.70 (2.00) | |
* New Zealand CEPA [74] | 38.46– 384.61 (10.0 –100.0) | 153.84–384.61 (40.0 –100.0) | 7.70 (2.0) | 3.84 (1.0) | 3.84 (1.0) | |
* Bangladesh (MOFL) [75] | 19.23 (5.0) | 192.30 (50.0) | 1.15 (0.30) | 0.96 (0.25) | 3.84 (1.0) |
Source | Cu (µg mL−1) | Zn (µg mL−1) | Pb (µg mL−1) | Cd (µg mL−1) | Cr (µg mL−1) | References |
---|---|---|---|---|---|---|
Padma–Meghna rivers confluence | 0.058 ± 0.04 | 0.070 ± 0.005 | 0.002 ± 0.001 | 0.002 ± 0.001 | 0.035 ± 0.002 | Present study |
Meghna River, Narayanganj | na | 0.036 | bdl | 0.00 | 0.035 | [37] |
Meghna River, Narshingdi | 0.027 | 0.04 | 0.01 | 0.018 | 0.02 | [38] |
India | 2.750 | 6.180 | 0.562 | 0.712 | 0.495 | [42] |
Bay of Bengal | 0.119–0.192 | na | 0.01–0.694 | 0.002–0.01 | na | [40] |
Saudi Arabia | 7.85 ± 1.52 | 3.58 ± 0.94 | 0.56 ± 0.13 | 0.17 ± 0.04 | 1.36 ± 0.37 | [79] |
USEPA WHO | 0.05–2.0 | 3.0 | 0.01- 0.05 | 0.003–0.01 | 0.050–0.1 | [80]; [76,77,78] |
THQ | CR | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Organs | Sizes | Cu (A) | Cu (C) | Zn (A) | Zn (C) | Pb (A) | Pb (C) | Cd (A) | Cd (C) | Cr (A) | Cr (C) | Pb (A) | Pb (C) | Cd (A) | Cd (C) |
S1 | 0.047 | 0.207 | 0.047 | 0.207 | 0.001 | 0.003 | 0.000 | 0.001 | 0.522 | 2.305 | 2.15 × 10-8 | 1.01 × 10-7 | 1.30 × 10-6 | 5.73 × 10-6 | |
Muscles | S2 | 0.034 | 0.152 | 0.034 | 0.150 | 0.001 | 0.005 | 0.001 | 0.003 | 0.456 | 2.014 | 3.48 × 10-8 | 1.62 × 10-7 | 3.90 × 10-6 | 1.72 × 10-5 |
S3 | 0.080 | 0.353 | 0.032 | 0.143 | 0.001 | 0.004 | 0.000 | 0.001 | 0.830 | 3.664 | 2.49 × 10-8 | 1.16 × 10-7 | 1.30 × 10-6 | 5.73 × 10-6 | |
S4 | 0.080 | 0.354 | 0.042 | 0.186 | 0.001 | 0.003 | 0.002 | 0.007 | 1.646 | 7.268 | 1.99 × 10-8 | 9.28× 10-8 | 1.04 × 10-5 | 4.59 × 10-5 | |
S5 | 0.025 | 0.108 | 0.028 | 0.124 | 0.001 | 0.004 | 0.001 | 0.003 | 0.374 | 1.650 | 2.32 × 10-8 | 1.08 × 10-7 | 3.90 × 10-6 | 1.72 × 10-5 | |
S1 | 0.049 | 0.217 | 0.044 | 0.192 | 0.001 | 0.003 | 0.001 | 0.004 | 0.311 | 1.371 | 2.15 × 10-8 | 1.01 × 10-7 | 5.19 × 10-6 | 2.29 × 10-5 | |
S2 | 0.121 | 0.534 | 0.084 | 0.369 | 0.001 | 0.004 | 0.000 | 0.002 | 11.841 | 52.270 | 2.82 × 10-8 | 1.31 × 10-7 | 2.60 × 10-6 | 1.15 × 10-5 | |
Liver | S3 | 0.057 | 0.253 | 0.081 | 0.356 | 0.001 | 0.003 | 0.001 | 0.003 | 0.522 | 2.305 | 2.15 × 10-8 | 1.01 × 10-7 | 3.90 × 10-6 | 1.72 × 10-5 |
S4 | 0.127 | 0.561 | 0.075 | 0.330 | 0.001 | 0.004 | 0.001 | 0.004 | 1.652 | 7.292 | 2.49 × 10-8 | 1.16 × 10-7 | 5.19 × 10-6 | 2.29 × 10-5 | |
S5 | 0.122 | 0.539 | 0.091 | 0.403 | 0.001 | 0.004 | 0.001 | 0.005 | 1.091 | 4.817 | 2.32 × 10-8 | 1.08 × 10-7 | 7.79 × 10-6 | 3.44 × 10-5 | |
S1 | 0.094 | 0.416 | 0.130 | 0.573 | 0.001 | 0.004 | 0.004 | 0.017 | 22.445 | 99.081 | 2.82 × 10-8 | 1.31 × 10-7 | 2.47 × 10-5 | 1.09 × 10-4 | |
S2 | 0.092 | 0.406 | 0.111 | 0.490 | 0.005 | 0.022 | 0.011 | 0.048 | 3.351 | 14.791 | 1.43 × 10-7 | 6.65 × 10-7 | 6.88 × 10-5 | 3.04 × 10-4 | |
Gills | S3 | 0.058 | 0.256 | 0.066 | 0.292 | 0.001 | 0.003 | 0.006 | 0.027 | 5.253 | 23.187 | 1.82 × 10-8 | 8.51 × 10-8 | 3.90 × 10-5 | 1.72 × 10-4 |
S4 | 0.041 | 0.182 | 0.102 | 0.450 | 0.001 | 0.004 | 0.027 | 0.117 | 1.613 | 7.122 | 2.49 × 10-8 | 1.16 × 10-7 | 1.68 × 10-4 | 7.40 × 10-4 | |
S5 | 0.129 | 0.570 | 0.092 | 0.407 | 0.001 | 0.004 | 0.097 | 0.427 | 3.367 | 14.863 | 2.49 × 10-8 | 1.16 × 10-7 | 6.09 × 10-4 | * 2.69 × 10-3 | |
Mean | 0.077 | 0.340 | 0.071 | 0.312 | 0.001 | 0.005 | 0.010 | 0.045 | 3.685 | 16.267 | 3.22 × 10-8 | 1.50 × 10-7 | 6.36 × 10-5 | 2.81 × 10-4 |
Organ | Sizes | Cu | Zn | Pb | Cd | Cr |
---|---|---|---|---|---|---|
Mussel | S1 | 40.9 | 253.8 | 1.7 | 0.1 | 56.5 |
S2 | 29.9 | 184.1 | 2.7 | 0.4 | 49.3 | |
S3 | 69.6 | 175.2 | 2.0 | 0.1 | 89.7 | |
S4 | 69.8 | 227.8 | 1.6 | 1.0 | 178.0 | |
S5 | 21.3 | 151.8 | 1.8 | 0.4 | 40.4 | |
Liver | S1 | 42.7 | 235.5 | 1.7 | 0.5 | 33.6 |
S2 | 105.3 | 451.7 | 2.2 | 0.3 | 1280.1 | |
S3 | 49.8 | 436.2 | 1.7 | 0.4 | 56.5 | |
S4 | 110.5 | 404.0 | 2.0 | 0.5 | 178.6 | |
S5 | 106.2 | 493.1 | 1.8 | 0.8 | 118.0 | |
Gill | S1 | 81.9 | 702.1 | 2.2 | 2.5 | 2426.5 |
S2 | 80.0 | 600.4 | 11.2 | 6.9 | 362.2 | |
S3 | 50.4 | 358.1 | 1.4 | 3.9 | 567.8 | |
S4 | 35.9 | 551.1 | 2.0 | 16.8 | 174.4 | |
S5 | 112.2 | 497.9 | 2.0 | 61.0 | 364.0 | |
Total | Mean | 67.1 | 381.5 | 2.5 | 6.4 | 398.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarker, M.J.; Islam, M.A.; Rahman, F.; Anisuzzaman, M. Heavy Metals in the Fish Tenualosa ilisha Hamilton, 1822 in the Padma–Meghna River Confluence: Potential Risks to Public Health. Toxics 2021, 9, 341. https://doi.org/10.3390/toxics9120341
Sarker MJ, Islam MA, Rahman F, Anisuzzaman M. Heavy Metals in the Fish Tenualosa ilisha Hamilton, 1822 in the Padma–Meghna River Confluence: Potential Risks to Public Health. Toxics. 2021; 9(12):341. https://doi.org/10.3390/toxics9120341
Chicago/Turabian StyleSarker, Md. Jahangir, Md. Ariful Islam, Farhana Rahman, and Md. Anisuzzaman. 2021. "Heavy Metals in the Fish Tenualosa ilisha Hamilton, 1822 in the Padma–Meghna River Confluence: Potential Risks to Public Health" Toxics 9, no. 12: 341. https://doi.org/10.3390/toxics9120341
APA StyleSarker, M. J., Islam, M. A., Rahman, F., & Anisuzzaman, M. (2021). Heavy Metals in the Fish Tenualosa ilisha Hamilton, 1822 in the Padma–Meghna River Confluence: Potential Risks to Public Health. Toxics, 9(12), 341. https://doi.org/10.3390/toxics9120341