Determination of Median Lethal Concentration (LC50) for Endosulfan, Heptachlor and Dieldrin Pesticides to African Catfish, Clarias gariepinus and Their Impact on Its Behavioral Patterns and Histopathological Responses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fish and Acclimation Condition
2.2. Preparation of Aquariums and Stocking of Tests Fish
2.3. Exposure of Contaminants and Determination of LC50 (Range Test and Final Test)
2.4. Water Quality during Experiments
2.5. Investigation of the Behavioural Abnormalities of Fish
2.6. Study of Histopathological Responses
2.7. Statistical Analysis
3. Results
3.1. Median Lethal Concentration (LC50) for 96 h Exposure to Endosulfan through Dose-Response Test
3.2. Median Lethal Concentration (LC50) for 96 h Exposure to Dieldrin through Dose-Response Test
3.3. Median Lethal Concentration (LC50) for 96-h Exposure to Heptachlor through Dose-Response Test
3.4. Behavioural Abnormalities of Test Fish during the Exposure to Pesticides
3.5. Histopathological Responses of Liver, Gill and Muscle Tissues of Clarias gariepinus Due to the 96-h Exposure to Endosulfan, Dieldrin and Heptachlor
3.5.1. Histopathological Transformations in Liver
3.5.2. Histopathological Responses in Gill
3.5.3. Histopathological Responses in Muscle
4. Discussion
4.1. Median Lethal Concentration (LC50) for 96-h Exposure to Endosulfan, Dieldrin and Heptachlor
4.2. Behavioural Abnormalities of Test Fish during the Exposure to Pesticides
4.3. Histopathological Responses of Liver, Gill and Muscle Tissues of Clarias gariepinus Due to the 96-h Exposure to Endosulfan, Dieldrin and Heptachlor
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oruç, E. Özcan Oxidative stress, steroid hormone concentrations and acetylcholinesterase activity in Oreochromis niloticus exposed to chlorpyrifos. Pestic. Biochem. Physiol. 2010, 96, 160–166. [Google Scholar] [CrossRef]
- Adhikari, S.; Sarkar, B.; Chatterjee, A.; Mahapatra, C.T.; Ayyappan, S. Effects of cypermethrin and carbofuran hemato-logical parameters and prediction of their recovery in a freshwater teleost, Labeo rohita (Hamilton). Ecotoxicol. Environ. Saf. 2004, 58, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.Z.; Hossain, Z.; Mollah, M.F.A.; Ahmed, G.U. Effect of diazinum 60 EC on toxicant/xenobiotic and to meet energy required to sustain Anabas testudineus, Channa punctatus and Barbodes gonionotus Naga. ICLARM Q. 2002, 25, 8–12. [Google Scholar]
- Turner, K.J.; Sharpe, R.M. Environmental estrogens-present understanding. Rev. Reprod. 1997, 2, 69–73. [Google Scholar] [CrossRef]
- Waite, D.T.; Grover, R.; Westcott, N.D.; Irvine, D.G.; Kerr, L.A.; Sommerstad, H. Atmospheric deposition of pesticides in a small southern Saskatchewan watershed, Environ. Toxicol. Chem. 1995, 14, 1171–1175. [Google Scholar] [CrossRef]
- Huang, D.-J.; Wang, S.-Y.; Chen, H.-C. Effects of the endocrine disrupter chemicals chlordane and lindane on the male green neon shrimp (Neocaridina denticulata). Chemosphere 2004, 57, 1621–1627. [Google Scholar] [CrossRef] [PubMed]
- Industrial Toxicology Research Centre, ITRC (CSIR). Toxicity Data Handbook; Pesticides-A, TDS-161, Endosulfan; 1989; pp. 292–297. [Google Scholar]
- World Health Organization, WHO. Endosulfan: International programme in chemical safety. In Environmental Health Criteira 40; WHO: Geneva, Switzerland, 1984. [Google Scholar]
- Howard, P.H.; Sage, G.W.; Jarvis, W.F.; Gray, D.A. Handbook of Environmental Fate and Exposure Data for Organic Chemicals; Lewis Publishers: Chelsea, MI, USA, 1991; pp. 6–13. [Google Scholar]
- Shanahan, M. End of the Road for Endosulfan: A Call for Action Against a Dangerous Pesticide; Environmental Justice Foundation Ltd.: London, UK, 2003; Volume 4. [Google Scholar]
- Mhadhbi, L.; Beiras, R. Acute Toxicity of Seven Selected Pesticides (Alachlor, Atrazine, Dieldrin, Diuron, Pirimiphos-Methyl, Chlorpyrifos, Diazinon) to the Marine Fish (Turbot, Psetta maxima). Water Air Soil Pollut. 2012, 223, 5917–5930. [Google Scholar] [CrossRef]
- Martyniuk, C.J.; Doperalski, N.J.; Kroll, K.J.; Barber, D.S.; Denslow, N.D. Sexually dimorphic transcriptomic responses in the teleostean hypothalamus: A case study with the organochlorine pesticide dieldrin. NeuroToxicology 2013, 34, 105–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martyniuk, C.J.; Feswick, A.; Spade, D.; Kroll, K.J.; Barber, D.S.; Denslow, N.D. Effects of acute dieldrin exposure on neurotransmitters and global gene transcription in largemouth bass (Micropterus salmoides) hypothalamus. NeuroToxicology 2010, 31, 356–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kielhorn, J.; Schmidt, S.; Mangelsdorf, I. World Health Organization. In Heptachlor: Concise International Chemical Assessment Document; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Heptachlor/Heptachlor Epoxide; U.S. Department of Health and Human Services: Washington, DC, USA, 2007.
- Augustijn-Beckers, P.W.M.; Hornsby, A.G.; Wauchope, R.D. The SCS/ARS/CES Pesticide properties database for environmental decision-making. II. Additional Compounds. Rev. Environ. Contam. Toxicol. 1994, 137, 1–82. [Google Scholar]
- International Agency for Research on Cancer, IARC. Heptachlor and Heptachlor Epoxide. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemical to Humans. Available online: http://www.fao.org/fishery/countrysector/naso_malaysia/en (accessed on 7 October 2021).
- Ibrahim, M.S. Chapter 14, Persistent Organic Pollutants in Malaysia. Dev. Environ. Sci. 2007, 7, 629–655. [Google Scholar] [CrossRef]
- Mahttiessen, P.; Sheahan, D.; Harrison, R.; Kirby, M.; Rycroft, R.; Turnbull, A.; Volkner, C.; William, R. Use of a Gammarus pulex bioassay to measure the effects of transient carbofuran run off from farmland. Ecotoxicol. Environ. Saf. 1995, 30, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Capkin, E.; Altinok, I.; Karahan, S. Water quality and fish size affect toxicity of endosulfan, an organochlorine pesticide, to rainbow trout. Chemosphere 2006, 64, 1793–1800. [Google Scholar] [CrossRef]
- Poleksić, V.; Karan, V. Effects of Trifluralin on Carp: Biochemical and Histological Evaluation. Ecotoxicol. Environ. Saf. 1999, 43, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Watt, J.; Pierce, G.J.; Boyle, P.R. Guide to the Identification of North Sea Fish Using Prernaxillae and Vertebrae; Trekroner Offset: Denmark, Copenhagen, 1997. [Google Scholar]
- Anbu, R.B.; Ramaswamy, M. Adaptive changes in respiratory movements of an air breathing fish, Channa striatus (Bleeker) exposed to carbamate pesticide. J. Ecobiol. 1991, 3, 11–16. [Google Scholar]
- Hii, Y.S.; Lee, M.Y.; Chuah, T.S. Acute toxicity of organochlorine insecticide endosulfan and its effect on behaviour and some hematological parameters of Asian swamp eel (Monopterus albus, Zuiew). Pestic. Biochem. Physiol. 2007, 89, 46–53. [Google Scholar] [CrossRef]
- Nordin, I.; Ibrahim, N.; Ahmad, S.; Hamidin, N.; Dahalan, F.; Shukor, M.A. Endosulfan Toxicity to Anabas testudineus and Histopathological Changes on Vital Organs. E3S Web Conf. 2018, 34, 02055. [Google Scholar] [CrossRef] [Green Version]
- Pillay, T.V.R. Aquaculture Principles and Practices; No. Ed. 2; Blackwell Publishing: Hoboken, NJ, USA, 2005. [Google Scholar]
- James, M.O.; Stuchal, L.D.; Nyagode, B.A. Glucuronidation and sulfonation, in vitro, of the major endocrine-active metabolites of methoxychlor in the channel catfish, Ictalurus punctatus and induction following treatment with 3-methylcholanthrene. Aquat. Toxicol. Vol. 2008, 86, 227–238. [Google Scholar] [CrossRef] [Green Version]
- Erhunmwunse, N.O.; Ogbeide, O.S.; Tongo, I.I.; Enuneku, A.A.; Adebayo, P.O. Acute toxicity of glyphosate-based iso-propylamine formulation to juvenile African catfish (Clarias gariepinus). Niger. J. Basic Appl. Sci. 2018, 26, 97–101. [Google Scholar] [CrossRef] [Green Version]
- OECD. Fish, Acute Toxicity Testing. In Test Guideline No. 203; OECD: Paris, France, 2019; pp. 1–24. [Google Scholar]
- Thoré, E.S.J.; Brendonck, L.; Pinceel, T. Conspecific density and environmental complexity impact behaviour of turquoise killifish (Nothobranchius furzeri). J. Fish Biol. 2020, 97, 1448–1461. [Google Scholar] [CrossRef]
- Kenneth, W.; Willem, S. Acute toxicity and lethal body burden of Endosulfan in Tilapia (Oreochromis niloticus (L)). Open Environ. Pollut. Toxicol. J. 2010, 2, 21–26. [Google Scholar]
- Yuniari, S.H.; Hertika, A.M.S.; Leksono, A.S. Lethal Concentration 50 (LC50—96 hours) Nile Tilapia (Oreochromis niloticus) exposed Cypermethrin-based Pesticide. J. Exp. Life Sci. 2016, 6, 58–62. [Google Scholar] [CrossRef] [Green Version]
- Nwani, C.D.; Ivoke, N.; Ugwu, D.O.; Atama, C.; Onyishi, G.C.; Echi, P.C.; Ogbonna, S.A. Investigation on acute toxicity and behavioral changes in a freshwater African catfish, Clarias gariepinus (Burchell, 1822), exposed to organophosphorus pesticide, Termifos. Pak. J. Zool. 2013, 45, 959–965. [Google Scholar]
- Halappa, R.; David, M. Behavioural Responses of the Freshwater Fish, Cyprinus carpio (Linnaeus) Following Sublethal Exposure to Chlorpyrifos. Turk. J. Fish. Aquat. Sci. 2009, 9, 233–238. [Google Scholar] [CrossRef]
- Shivaramaiah, H.M.; Sánchez-Bayo, F.; Al-Rifai, J.; Kennedy, I.R. The Fate of Endosulfan in Water. J. Environ. Sci. Health Part B 2005, 40, 711–720. [Google Scholar] [CrossRef]
- Weis, J.S.; Smith, G.; Zhou, T.; Santiago-Bass, C.; Weis, P. Effects of Contaminants on Behaviour: Biochemical Mechanisms and Ecological Consequences. BioScience 2001, 51, 209–217. [Google Scholar] [CrossRef] [Green Version]
- Little, E.E.; Finger, S.E. Swimming behaviour as an indicator of sub-lethal toxicity in fish. Env. Toxicol. Chem. 1990, 9, 13–19. [Google Scholar] [CrossRef]
- Peterson, E.; Buchwalter, D.; Kerby, J.L.; Lefauve, M.K.; Varian-Ramos, C.W.; Swaddle, J.P. Integrative behavioral ecotoxicology: Bringing together fields to establish new insight to behavioral ecology, toxicology, and conservation. Curr. Zool. 2017, 63, 185–194. [Google Scholar] [CrossRef] [Green Version]
- Bancroft, J.D.; Gamble, M. Hematoxylin and eosin stains. In Theory and Practice of Histological Techniques, 6th ed.; Churchill Livingstone: New York, NY, USA, 2007. [Google Scholar]
- Sarma, K.; Pal, A.K.; Baruah, K. Alterations of the ionic composition in different organs of spotted murrel (Channa punctatus) exposed to sublethal concentration of endosulfan. Turk. J. Fish. Aquat. Sci. 2011, 11, 93. [Google Scholar] [CrossRef]
- Tellez-Bañuelos, M.C.; Santerre, A.; Casas-Solis, J.; Bravo-Cuellar, A.; Zaitseva, G. Oxidative stress in macrophages from spleen of Nile tilapia (Oreochromis niloticus) exposed to sublethal concentration of endosulfan. Fish Shellfish. Immunol. 2009, 27, 105–111. [Google Scholar] [CrossRef]
- Sunderam, R.I.M.; Thompson, G.B.; Cheng, D.M.H. Toxicity of endosulfan to native and introduced fish in Australia. Environ. Toxicol. Chem. Int. J. 1992, 11, 1469–1476. [Google Scholar] [CrossRef]
- Ferrando, M.D.; Sancho, E.; Andreu-Moliner, E. Comparative acute toxicities of selected pesticides to Anguilla anguilla. J. Environ. Sci. Health B. 1991, 26, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Da Cuña, R.H.; Vázquez, G.R.; Piol, M.N.; Guerrero, N.V.; Maggese, M.C.; Nostro, F.L. Assessment of the acute toxicity of the organochlorine pesticide endosulfan in Cichlasoma dimerus (Teleostei, Perciformes). Ecotoxicol. Environ. Saf. 2011, 74, 1065–1073. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Prabhu, P.A.J.; Pal, A.K.; Remya, S.; Aklakur, M.; Rana, R.S.; Gupta, S.; Raman, R.P.; Jadhao, S.B. Anti-oxidative and immuno-hematological status of Tilapia (Oreochromis mossambicus) during acute toxicity test of endosulfan. Pestic. Biochem. Phys. 2011, 99, 45–52. [Google Scholar] [CrossRef]
- Kegley, S.E.; Hill, B.R.; Orme, S.; Choi, A.H. PAN Pesticide Database, Pesticide Action Network, North America. San Francisco, CA. Available online: http://www.pesticideinfo.org/ (accessed on 7 October 2021).
- Salvo, L.M.; Sinhorini, I.L.; Malucelli, B.E.; Klemz, C.; Sanchez, D.C.O.; Nicaretta, L.; Malucelli, M.I.C.; Bacila, M.; Assis, H.C.S.D. Effects of endosulfan sublethal concentrations on carp (Cyprinus carpio, Linnaeus, 1758): Morphometric, hystologic, ultrastructural analyses and cholinesterase activity evaluation. Braz. J. Vet. Res. Anim. Sci. 2008, 45, 87–94. [Google Scholar] [CrossRef] [Green Version]
- United States Environmental Protection Agency. Office of Water Regulations, and Standards. In Criteria & Standards Division; Ambient Water Quality Criteria for Aldrin/dieldrin; USEPA: Washington, DC, USA, 1980; Volume 80. [Google Scholar]
- Peakall, D.B.B. Dieldrin and other cyclodiene pesticides in wildlife. In Environmental Contaminants in Wildlife, Interpreting Tissue Concentrations; Beyer, W.N., Heintz, G.H., Red-mon-Norwood, A.W., Eds.; SETAC, Lewis: Boca Raton, FL, USA, 1996; p. 73. [Google Scholar]
- Mayer, F.L.; Ellersieck, M.R. Manual of Acute Toxicity: Interpretation and Data Base for 410 Chemicals and 66 Species of Freshwater Animals (No. 160); U.S. Department of the Interior, Fish and Wildlife Service: Bailey’s Crossroads, VA, USA, 1986. [Google Scholar]
- Pillai, B.R.; Mahapatra, K.D.; Ponzoni, R.W.; Sahoo, L.; Lalrinsanga, P.L.; Nguyen, N.H.; Mohanty, S.; Sahu, S.; Khaw, H.L.; Patra, G. Genetic evaluation of a complete diallel cross involving three populations of freshwater prawn (Macrobrachium rosenbergii) from different geographical regions of India. Aquaculture 2011, 319, 347–354. [Google Scholar] [CrossRef]
- Lee, S.-E.; Kim, J.-S.; Kennedy, I.R.; Park, J.-W.; Kwon, G.-S.; Koh, S.-C.; Kim, J.-E. Biotransformation of an Organochlorine Insecticide, Endosulfan, by Anabaena Species. J. Agric. Food Chem. 2003, 51, 1336–1340. [Google Scholar] [CrossRef]
- Thoré, E.S.; Van Hooreweghe, F.; Philippe, C.; Brendonck, L.; Pinceel, T. Generation-specific and interactive effects of pesticide and antidepressant exposure in a fish model call for multi-stressor and multigenerational testing. Aquat. Toxicol. 2021, 232, 105743. [Google Scholar] [CrossRef]
- Philippe, C.; Gregoir, A.F.; Thoré, E.; De Boeck, G.; Brendonck, L.; Pinceel, T. Protocol for Acute and Chronic Ecotoxicity Testing of the Turquoise Killifish Nothobranchius furzeri. J. Vis. Exp. 2018, 134, e57308. [Google Scholar] [CrossRef]
- Shao, B.; Zhu, L.; Dong, M.; Wang, J.; Xie, H.; Zhang, Q.; Du, Z.; Zhu, S. DNA damage and oxidative stress induced by endosulfan exposure in Zebra fish Danio rerio. Ecotoxicology 2012, 21, 1533–1540. [Google Scholar] [CrossRef]
- Ansari, R.A.; Rahman, S.; Kaur, M.; Anjum, S.; Raisuddin, S. In vivo cytogenetic and oxidative stress-inducing effects of cypermethrin in freshwater fish, Channa punctata Bloch. Ecotoxicol. Environ. Saf. 2011, 74, 150–156. [Google Scholar] [CrossRef]
- Pandey, A.K.; Nagpure, N.S.; Trivedi, S.P.; Kumar, R.; Kushwaha, B.; Lakra, W.S. Investigation on acute toxicity and behavioral changes in Channa punctatus (Bloch) due to organophosphate pesticide profenofos. Drug Chem. Toxicol. 2011, 34, 424–428. [Google Scholar] [CrossRef]
- Ahmad, Z. Acute and hematological changes in common carp (Cyprinus carpio) caused by diazinon exposure. Afri. J. Biotech. 2011, 10, 13852–13859. [Google Scholar]
- Ahmad, Z. Toxicity bioaasay and effects of sublethal exposure of malathion on biochemical composition and hematological parameters of Clarias gariepinus. Afr. J. Biotech. 2012, 11, 8578–8585. [Google Scholar]
- Altinok, I.; Capkin, E. Histopathology of Rainbow Trout Exposed to Sublethal Concentrations of Methiocarb or Endosulfan. Toxicol. Pathol. 2007, 35, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Gill, T.; Pande, J.; Tewari, H. Hepatopathotoxicity of three pesticides in a freshwater fish, Puntius conchoniusham. J. Environ. Sci. Health Part A Environ. Sci. Eng. Toxicol. 1990, 25, 653–663. [Google Scholar] [CrossRef]
- Maurya, P.K.; Malik, D.S.; Yadav, K.K.; Gupta, N.; Kumar, S. Haematological and histological changes in fish, Heteropneustes fossilis exposed to pesticides from industrial waste water. Human Ecol. Risk Assess. Int. J. 2019, 25. [Google Scholar] [CrossRef]
- Kumar, N.; Ambasankar, K.; Krishnani, K.; Gupta, S.; Bhushan, S.; Minhas, P. Acute toxicity, biochemical and histopathological responses of endosulfan in Chanos chanos. Ecotoxicol. Environ. Saf. 2016, 131, 79–88. [Google Scholar] [CrossRef]
- Kumar, N.; Gupta, S.; Chandan, N.K.; Aklakur, M.; Pal, A.K.; Jadhao, S.B. Lipotropes protect against patho-gen-aggravated stress and mortality in low dose pesticide-exposed fish. PLoS ONE 2014, 9, e93499. [Google Scholar]
- Glover, C.N.; Petri, D.; Tollefsen, K.-E.; Jørum, N.; Handy, R.D.; Berntssen, M.H. Assessing the sensitivity of Atlantic salmon (Salmo salar) to dietary endosulfan exposure using tissue biochemistry and histology. Aquat. Toxicol. 2007, 84, 346–355. [Google Scholar] [CrossRef]
- Sarma, K.; Pal, A.K.; Sahu, N.P.; Dalvi, R.S.; Chatterjee, N.; Mukherjee, S.C.; Baruah, K. Acute and chronic effects of endosulfan on the haemato-immunological and histopathological responses of a threatened freshwater fish, spotted murrel, Channa punctatus. Fish Physiol. Biochem. 2011, 38, 499–509. [Google Scholar] [CrossRef]
- Jonsson, C.M.; Toledo, M.C.F. Acute toxicity of endosulfan to the fish Hyphessobrycon bifasciatus and Brachydanio rerio. Arch. Environ. Contam. Toxicol. 1993, 24, 151–155. [Google Scholar] [CrossRef]
- Banaee, M. Physiological dysfunction in fish after insecticides exposure. In Insecticides-Development of Safer and More Effective Technologies; Intech Open: London, UK, 2013; pp. 103–142. [Google Scholar]
- Bhuvaneshwari, R.; Padmanaban, K.; Rajendran, R.B. Histopathological Alterations in Muscle, Liver and Gill Tissues of Zebra Fish Danio Rerio due to Environmentally Relevant Concentrations of Organochlorine Pesticides (OCPs) and Heavy Metals. Int. J. Environ. Res 2015, 9, 1365–1372. [Google Scholar]
- Miranda, A.; Roche, H.; Randi, M.; Menezes, M.; Ribeiro, C.O. Bioaccumulation of chlorinated pesticides and PCBs in the tropical freshwater fish Hoplias malabaricus: Histopathological, physiological, and immunological findings. Environ. Int. 2008, 34, 939–949. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, F.A.S.; Gad, N.S. Environmental pollution-induced biochemical changes in tissues of Tilapia zillii, Solea vulgaris and Mugil capito from Lake Qarun, Egypt. Global Vet. 2008, 2, 327–336. [Google Scholar]
- Mohamed, F.A. S Histopathological studies on Tilapia zillii and Solea vulgaris from Lake Qarun, Egypt. World J. Fish Mar. Sci. 2009, 1, 29–39. [Google Scholar]
- Brusle, J.; i Anadon, G.G. The structure and function of fish liver. In Fish morphology; Routledge: Oxfordshire, UK, 2017; pp. 77–93. [Google Scholar]
- Evans, D.H.; Piermarini, P.M.; Choe, K.P. The Multifunctional Fish Gill: Dominant Site of Gas Exchange, Osmoregulation, Acid-Base Regulation, and Excretion of Nitrogenous Waste. Physiol. Rev. 2005, 85, 97–177. [Google Scholar] [CrossRef]
- Ortiz, J.B.; de Canales, M.L.G.; Sarasquete, C. Histopathological changes induced by lindane (g-HCH) in various organs of fishes. Sci. Mar. 2003, 67, 53–61. [Google Scholar]
Exposure Conc. (mg/L) | Initial No. of Test Fish | Count of Dead Fish with the Time of Exposure | Cumulative Count of Dead Fish within 96-h. Exposure Time | % Mortality Response (avg.) | |||
---|---|---|---|---|---|---|---|
24 h | 48 h | 72 h | 96 h | ||||
0 | 18 | 0 | 0 | 0 | 0 | 0 | 0 |
0.0001 | 18 | 0 | 0 | 0 | 3 | 3 | 17 |
0.001 | 18 | 0 | 0 | 0 | 6 | 6 | 33 |
0.01 | 18 | 0 | 3 | 3 | 6 | 12 | 67 |
0.1 | 18 | 0 | 12 | 3 | 0 | 15 | 83 |
1 | 18 | 18 | 0 | 0 | 0 | 18 | 100 |
Exposure Conc. (mg/L) | Initial No. of Test Fish | Count of Dead Fish with the Time of Exposure | Cumulative Count of Dead Fish within 96-h Exposure Time | % Mortality Response (avg.) | |||
---|---|---|---|---|---|---|---|
24 h | 48 h | 72 h | 96 h | ||||
0 | 18 | 0 | 0 | 0 | 0 | 0 | 0 |
0.0001 | 18 | 0 | 0 | 0 | 3 | 3 | 17 |
0.001 | 18 | 0 | 0 | 3 | 3 | 6 | 33 |
0.01 | 18 | 0 | 0 | 3 | 6 | 9 | 50 |
0.1 | 18 | 6 | 6 | 3 | 0 | 15 | 83 |
1 | 18 | 18 | 0 | 0 | 0 | 18 | 100 |
Exposure Conc. (mg/L) | Initial No. of Test Fish | Count of Dead Fish with the Time of Exposure | Cumulative Count of Dead Fish within 96-h Exposure Time | % Mortality Response (avg.) | |||
---|---|---|---|---|---|---|---|
24 h | 48 h | 72 h | 96 h | ||||
0 | 18 | 0 | 0 | 0 | 0 | 0 | 0 |
0.002 | 18 | 0 | 0 | 0 | 3 | 3 | 17 |
0.02 | 18 | 0 | 0 | 3 | 3 | 6 | 33 |
0.2 | 18 | 0 | 0 | 6 | 6 | 12 | 67 |
1 | 18 | 6 | 6 | 3 | 0 | 15 | 83 |
2 | 18 | 18 | 0 | 0 | 0 | 18 | 100 |
Compounds | Conc. (mg/L) | Tem. (°C) | DO (mg O2/L) | pH | TDS (mg/L) | EC (mS/cm) |
---|---|---|---|---|---|---|
Endosulfan | 0 | 25.60 ± 0.10 | 6.15 ± 0.02 | 6.63 ± 0.03 | 0.301 | 0.193 |
0.001 | 25.60 ± 0.20 | 6.14 ± 0.01 | 6.68 ± 0.33 | 0.301 | 0.193 | |
0.002 | 25.74 ± 0.16 | 6.10 ± 0.04 | 6.73 ± 0.38 | 0.301 | 0.193 | |
0.004 | 25.79 ± 0.22 | 6.09 ± 0.02 | 6.75 ± 0.30 | 0.301 | 0.193 | |
0.008 | 25.84 ± 0.13 | 6.05 ± 0.01 | 6.78 ± 0.30 | 0.301 | 0.192 | |
0.016 | 25.85 ± 0.26 | 5.93 ± 0.05 | 6.84 ± 0.14 | 0.301 | 0.192 | |
Dieldrin | 0 | 25.50 ± 0.15 | 6.21 ± 0.02 | 6.65 ± 0.03 | 0.299 | 0.186 |
0.001 | 25.60 ± 0.20 | 6.17 ± 0.03 | 6.68 ± 0.13 | 0.299 | 0.188 | |
0.002 | 25.64 ± 0.16 | 6.16 ± 0.04 | 6.76 ± 0.21 | 0.299 | 0.189 | |
0.004 | 25.76 ± 0.20 | 6.13 ± 0.02 | 6.78 ± 0.30 | 0.300 | 0.192 | |
0.008 | 25.78 ± 0.12 | 6.09 ± 0.01 | 6.80 ± 0.03 | 0.301 | 0.193 | |
0.016 | 25.86 ± 0.23 | 5.98 ± 0.02 | 6.83 ± 0.12 | 0.301 | 0.193 | |
Heptachlor | 0 | 25.65 ± 0.12 | 6.18 ± 0.02 | 6.65 ± 0.05 | 0.296 | 0.183 |
0.02 | 25.68 ± 0.02 | 6.16 ± 0.01 | 6.67 ± 0.32 | 0.296 | 0.187 | |
0.04 | 25.72 ± 0.06 | 6.12 ± 0.03 | 6.71 ± 0.18 | 0.297 | 0.190 | |
0.08 | 25.78 ± 0.12 | 6.09 ± 0.05 | 6.75 ± 0.30 | 0.300 | 0.191 | |
0.16 | 25.82 ± 0.16 | 6.08 ± 0.04 | 6.77 ± 0.03 | 0.301 | 0.193 | |
0.32 | 25.87 ± 0.27 | 5.95 ± 0.05 | 6.81 ± 0.11 | 0.301 | 0.193 |
Exposure Conc. (mg/L) | Total Test Fish | No. of Dead Fish | Total No. of Dead Fish | % Mortality | LC50 (mg/L) | ||
---|---|---|---|---|---|---|---|
Replicate | |||||||
1 | 2 | 3 | |||||
0 | 18 | 0 | 0 | 0 | 0 | 0 | 0.004 (0.001−0.01) |
0.001 | 18 | 2 | 1 | 3 | 6 | 33 | |
0.002 | 18 | 2 | 3 | 2 | 7 | 38 | |
0.004 | 18 | 4 | 2 | 3 | 9 | 50 | |
0.008 | 18 | 3 | 4 | 4 | 11 | 61 | |
0.016 | 18 | 4 | 5 | 4 | 13 | 72 |
Exposure Conc. (mg/L) | Total Test Fish | No. of Dead Fish | Total No. of Dead Fish | % Mortality | LC50 mg/L) | ||
---|---|---|---|---|---|---|---|
Replicate | |||||||
1 | 2 | 3 | |||||
0 | 18 | 0 | 0 | 0 | 0 | 0 | 0.006 |
0.001 | 18 | 2 | 1 | 3 | 6 | 33 | |
0.002 | 18 | 3 | 2 | 2 | 7 | 38 | |
0.004 | 18 | 2 | 3 | 3 | 8 | 45 | |
0.008 | 18 | 3 | 4 | 2 | 9 | 50 | |
0.016 | 18 | 4 | 4 | 3 | 11 | 62 |
Exposure Conc. (mg/L) | Total Test Fish | No. of Dead Fish | Total No. of Dead Fish | % Mortality | LC50 (mg/L) | ||
---|---|---|---|---|---|---|---|
Replicate | |||||||
1 | 2 | 3 | |||||
0 | 18 | 0 | 0 | 0 | 0 | 0 | 0.056 (0.006−0.144) |
0.02 | 18 | 2 | 1 | 3 | 6 | 33 | |
0.04 | 18 | 2 | 3 | 4 | 9 | 50 | |
0.08 | 18 | 3 | 4 | 3 | 10 | 55 | |
0.16 | 18 | 4 | 4 | 3 | 11 | 61 | |
0.32 | 18 | 4 | 5 | 4 | 13 | 72 |
Conc. (mg/L). | Hyper Activity | Jerky Movement | Abnormal Swimming Behaviour | Loss of Equilibrium | Abnormal Ventilatory Function | Mucus Secretion | Abnormal Skin Pigmentation |
---|---|---|---|---|---|---|---|
24 h | |||||||
Control | - | - | - | - | - | - | - |
0.001 | - | - | + | - | - | - | - |
0.002 | + | - | + | - | - | - | - |
0.004 | + | - | + | - | + | - | - |
0.008 | + | + | + | + | + | - | - |
0.016 | + | + | ++ | + | + | - | - |
48 h | |||||||
Control | - | - | - | - | - | - | - |
0.001 | + | + | + | - | - | - | - |
0.002 | + | - | + | - | + | - | - |
0.004 | + | + | + | + | + | - | - |
0.008 | ++ | + | + | + | + | + | - |
0.016 | ++ | ++ | ++ | ++ | ++ | ++ | + |
72 h | |||||||
Control | - | - | - | - | - | - | - |
0.001 | + | + | + | + | + | + | - |
0.002 | ++ | + | + | + | + | + | - |
0.004 | ++ | ++ | ++ | ++ | ++ | + | + |
0.008 | ++ | ++ | ++ | ++ | ++ | ++ | ++ |
0.016 | +++ | +++ | +++ | +++ | +++ | +++ | ++ |
96 h | |||||||
Control | - | - | - | - | - | - | - |
0.001 | + | + | + | + | + | + | + |
0.002 | ++ | ++ | ++ | ++ | ++ | ++ | + |
0.004 | ++ | ++ | ++ | ++ | ++ | ++ | ++ |
0.008 | +++ | +++ | +++ | +++ | +++ | +++ | ++ |
0.016 | +++ | +++ | +++ | +++ | +++ | +++ | +++ |
Conc. (mg/L). | Hyper Activity | Jerky Movement | Abnormal Swimming Behaviour | Loss of Equilibrium | Abnormal Ventilatory Function | Mucus Secretion | Abnormal Skin Pigmentation |
---|---|---|---|---|---|---|---|
24 h | |||||||
Control | - | - | - | - | - | - | - |
0.001 | - | - | + | - | - | - | - |
0.002 | + | - | + | - | - | - | - |
0.004 | + | - | + | - | + | - | - |
0.008 | + | + | + | + | + | - | - |
0.016 | + | + | ++ | + | + | - | - |
48 h | |||||||
Control | - | - | - | - | - | - | - |
0.001 | + | + | + | - | - | - | - |
0.002 | + | - | + | - | + | - | - |
0.004 | + | + | + | + | + | - | - |
0.008 | ++ | + | + | + | + | + | - |
0.016 | ++ | ++ | ++ | ++ | ++ | ++ | + |
72 h | |||||||
Control | - | - | - | - | - | - | - |
0.001 | + | + | + | + | + | + | - |
0.002 | ++ | + | + | + | + | + | - |
0.004 | ++ | ++ | ++ | ++ | ++ | + | + |
0.008 | ++ | ++ | ++ | ++ | ++ | + | + |
0.016 | ++ | ++ | ++ | ++ | ++ | ++ | ++ |
96 h | |||||||
Control | - | - | - | - | - | - | - |
0.001 | + | + | + | + | + | + | + |
0.002 | ++ | ++ | ++ | ++ | ++ | + | + |
0.004 | ++ | ++ | ++ | ++ | ++ | ++ | ++ |
0.008 | +++ | ++ | ++ | +++ | ++ | ++ | ++ |
0.016 | +++ | +++ | +++ | +++ | +++ | +++ | ++ |
Conc. (mg/L). | Hyper Activity | Jerky Movement | Abnormal Swimming Behaviour | Loss of Equilibrium | Abnormal Ventilatory Function | Mucus Secretion | Abnormal Skin Pigmentation |
---|---|---|---|---|---|---|---|
24 h | |||||||
Control | - | - | - | - | - | - | - |
0.02 | - | - | + | - | - | - | - |
0.04 | + | - | + | - | - | - | - |
0.08 | + | - | + | - | + | - | - |
0.16 | + | + | + | + | + | - | - |
0.32 | + | + | ++ | + | + | - | - |
48 h | |||||||
Control | - | - | - | - | - | - | - |
0.02 | + | + | + | - | - | - | - |
0.04 | + | - | + | - | + | - | - |
0.08 | + | + | + | + | + | - | - |
0.16 | ++ | + | + | + | + | + | - |
0.32 | ++ | ++ | ++ | ++ | ++ | ++ | + |
72 h | |||||||
Control | - | - | - | - | - | - | - |
0.02 | + | + | + | + | + | + | - |
0.04 | ++ | + | + | + | + | + | - |
0.08 | ++ | ++ | ++ | ++ | ++ | + | + |
0.16 | ++ | ++ | ++ | ++ | ++ | ++ | ++ |
0.32 | +++ | +++ | +++ | +++ | +++ | +++ | ++ |
96 h | |||||||
Control | - | - | - | - | - | - | - |
0.02 | + | + | + | + | + | + | + |
0.04 | ++ | + | + | + | + | + | + |
0.08 | ++ | ++ | ++ | ++ | ++ | ++ | ++ |
0.16 | ++ | ++ | ++ | +++ | ++ | ++ | ++ |
0.32 | +++ | +++ | +++ | +++ | +++ | +++ | ++ |
Contaminant Pesticide | Fish Species | Life Stage | Test Type | Test Duration | LC50 (mg/L) | SOURCE |
---|---|---|---|---|---|---|
Dieldrin | African catfish, Clarias gariepinus | Juvenile | Static | 96-h | 0.006 | Present study |
Bluegill, Lepomis macrochirus | - | Static | 96-h | 0.017 | [48] | |
Turbot, Psetta maxima | Embryo–larvae | Semi-static | 96-h | 0.097 | [11] | |
Striped bass, Morone saxatilis | - | Static | 96-h | 0.019 | [48] | |
Striped mullet, Mugil cephalus | - | Static | 96-h | 0.023 | [48] | |
Northern puffer, Sphoeroides maculatus | - | Static | 96-h | 0.034 | [48] | |
Threespine stickleback, Gasterosteus aculeatus | - | Static | 96-h | 0.015 | [48] | |
Bluegill, Lepomis macrochirus | Adult | Semi-static | 24-h | 0.0055 | [49] | |
Rainbow trout, Oncorhynchus mykiss | Adult | Semi-static | 24-h | 0.0019 | [49] | |
Common goby, Pomatoschistus microps | Adult | Semi-static | 24-h | 0.0035 | [11] | |
Plaice, Pleuronectes platessa | Adult | Semi-static | 24-h | 0.0017 | [11] | |
Heptachlor | African catfish, Clarias gariepinus | Juvenile | Static | 96-h | 0.057 | Present study |
Fathead minnow, Pimephales promelas | Fingerling | Static | 96-h | 0.094 | [14] | |
Guppy, Poecilia reticulata | Fingerling | Static | 96-h | 0.11 | [14] | |
Goldfish, Carassius auratus | Fingerling | Static | 96-h | 0.23 | [14] | |
Black bullhead, Ictalurus melas | Fingerling | Static | 96-h | 0.063 | [50] | |
Bluegill sunfish, Lepomis macrochirus | Fingerling | Static | 96-h | 0.013 | [14] | |
Rainbow trout, Oncorhynchus mykiss | Fingerling | Static | 96-h | 0.032 | [50] | |
Channel catfish, Ictalurus punctatus | Fingerling | Static | 96-h | 0.025 | [14] | |
Reader sunfish, Lepomis microlophus | Fingerling | Static | 96-h | 0.017 | [50] | |
Largemouth bass, Micropterus salmoides | Fingerling | Static | 96-h | 0.010 | [50] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, M.A.; Amin, S.M.N.; Brown, C.L.; Juraimi, A.S.; Uddin, M.K.; Arshad, A. Determination of Median Lethal Concentration (LC50) for Endosulfan, Heptachlor and Dieldrin Pesticides to African Catfish, Clarias gariepinus and Their Impact on Its Behavioral Patterns and Histopathological Responses. Toxics 2021, 9, 340. https://doi.org/10.3390/toxics9120340
Islam MA, Amin SMN, Brown CL, Juraimi AS, Uddin MK, Arshad A. Determination of Median Lethal Concentration (LC50) for Endosulfan, Heptachlor and Dieldrin Pesticides to African Catfish, Clarias gariepinus and Their Impact on Its Behavioral Patterns and Histopathological Responses. Toxics. 2021; 9(12):340. https://doi.org/10.3390/toxics9120340
Chicago/Turabian StyleIslam, Md. Ariful, S. M. Nurul Amin, Christopher L. Brown, Abdul Shukor Juraimi, Md. Kamal Uddin, and Aziz Arshad. 2021. "Determination of Median Lethal Concentration (LC50) for Endosulfan, Heptachlor and Dieldrin Pesticides to African Catfish, Clarias gariepinus and Their Impact on Its Behavioral Patterns and Histopathological Responses" Toxics 9, no. 12: 340. https://doi.org/10.3390/toxics9120340
APA StyleIslam, M. A., Amin, S. M. N., Brown, C. L., Juraimi, A. S., Uddin, M. K., & Arshad, A. (2021). Determination of Median Lethal Concentration (LC50) for Endosulfan, Heptachlor and Dieldrin Pesticides to African Catfish, Clarias gariepinus and Their Impact on Its Behavioral Patterns and Histopathological Responses. Toxics, 9(12), 340. https://doi.org/10.3390/toxics9120340