A Review of Lysimeter Experiments Carried Out on Municipal Landfill Waste
Abstract
:1. Introduction
- seasons of the year–climatic variability;
- waste origin area–urban or rural;
- wealth of the local residents;
- ecological mentality of local residents.
2. Basic Assumptions Underlying Municipal Lysimeter Research
3. Application of Lysimeter to Determine the Quality of the Leachate
4. Application of Lysimeter to Simulate Different Landfill Conditions and Gas Production
- R1—it was filled with fresh municipal solid waste to simulate a young controlled landfill without leachate recirculation;
- R2—it was filled with fresh municipal solid waste to simulate a young landfill, a bioreactor with leachate recirculation;
- R3—it was filled with mined municipal solid waste to simulate an old controlled landfill without leachate recirculation;
- R4—it was filled with mined municipal solid waste to simulate an old landfill bioreactor with leachate recirculation [38].
5. Application of Lysimeter to Determine the Migration of Specific Pollutants and Risk Assessment
6. Conclusions
- The start of lysimeter tests on a waste sample should be preceded by testing the morphological properties of the waste, as well as the properties of construction (e.g., liner system). The average sift composition of the waste can be determined. The moisture content, plastic limit, liquid limit, plasticity index, and shrinkage limit can also be assessed in the case of the construction elements.
- The scope of research should take into account the potential pollution that can migrate from the waste as well as the climatic conditions in which the experiment takes place.
- It should be noted that not only the size of the waste sample and its duration are important in the final assessment of the leachate quality but also the type of redox conditions prevailing inside the lysimeter and the manner in which the tests are carried out.
Author Contributions
Funding
Conflicts of Interest
References
- Yang, R.; Xu, Z.; Chai, J. A Review of Characteristics of Landfilled Municipal Solid Waste in Several Countries: Physical Composition, Unit Weight, and Permeability Coefficient. Pol. J. Environ. Stud. 2018, 27, 2425–2435. [Google Scholar] [CrossRef]
- Grygorczuk-Petersons, E. Effect of not-sealed municipal waste landfill on the underground water quality. Inż. Ekolog. 2016, 48, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Aljaradin, M.; Peterson, K. The emission potential from municipal solid waste landfill in Jordan. J. Ecol. Eng. 2016, 17, 38–48. [Google Scholar] [CrossRef]
- Council Directive 1999/31/EC of 26 April 1999 on the landfill of waste. Off. J. Eur. Communities 1999, 182, 1–19.
- Slezak, R.; Krzystek, L.; Ledakowicz, S. Simulation of aerobic landfill in laboratory scale lysimeters—Effect of aeration rate. Chem. Pap. 2010, 64, 223–229. [Google Scholar] [CrossRef]
- Sobik, K. Badanie Wpływu Składowisk Odpadów na Środowisko Gruntowo-Wodne na Przykładzie Wybranych Obiektów Zlokalizowanych w Obrębie Zlewni Dunajca. Ph.D. Thesis, AGH, Kraków, Poland, 2007; p. 152. (In Polish). [Google Scholar]
- Soltysiak, M.; Rakoczy, M. An overview of the experimental research use of lysimeters. Environ. Socio-Econ. Stud. 2019, 7, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Cepuder, P.; Supersberg, H. Erfahrungen mit der Lysimeteranlage Groß-Enzersdorf; BAL—Bericht; Bundesanstalt für Alpenländische Landwirtschaft: Wien, Germany, 1991. (In German) [Google Scholar]
- Martins, I.; Faria, R.; Fabiano, P.; Dalri, A.; Oliverio, C.; Libardi, L. Weighing lysimeters for greenhouse evapotraspiration measurements. IRRIGA 2017, 22, 715–722. [Google Scholar] [CrossRef]
- Ruiz-Penalver, L.; Vera-Repullo, J.; Jimenez-Buendia, M.; Guzman, I.; Molina-Martinez, J. Development of an innovative low cost weighing lysimeter for pottedplants: Application in lysimetric stations. Agric. Water Manag. 2015, 151, 103–113. [Google Scholar] [CrossRef]
- Barkle, G.; Wöhlingb, T.; Stengerb, R.; Mertensc, J.; Moorhead, B.; Wallb, A.; Clagueb, J. Automated Equilibrium Tension Lysimeters for Measuring Water Fluxes through a Layered, Volcanic Vadose Profile in New Zealand. Vadose Zone J. 2011, 10, 747–759. [Google Scholar] [CrossRef]
- Rey, E.; Weingartner, R.; Liniger, H. Case study of a hillside lysimeter with realistic boundary conditions on slope and hillside in an inner alpine area, Switzerland. Geophys. Res. Abstr. 2014, 16, EGU2014-5065. [Google Scholar]
- Ucles, O.; Villagarcia, L.; Canton, Y.; Domingo, F. Microlysimeter station for long term non-rainfall water input and evaporation studies. Agric. For. Meteorol. 2013, 182–183, 13–20. [Google Scholar] [CrossRef]
- Goss, M.; Ehlers, W. The role of lysimeters in the development of our understanding of soil water and nutrient dynamics in ecosystems. Soil Use Manag. 2009, 25, 213–223. [Google Scholar] [CrossRef]
- Putz, T.; Kiese, R.; Wollschlaeger, U.; Groh, J.; Rupp, H.; Zacharias, S. TERENO-SOILCan: A lysimeter-network in Germany observing soil processes and plant diversity influenced by climate change. Environ. Earth Sci. 2016, 75, 1242. [Google Scholar] [CrossRef]
- Yihdego, Y. Simulation of Groundwater Mounding Due to Irrigation Practice: Case of Wastewater Reuse Engineering Design. Hydrol. J. 2017, 4, 19. [Google Scholar] [CrossRef] [Green Version]
- Yihdego, Y.; Danis, C.; Paffard, A. Groundwater engineering in an environmentally sensitive urban area: Assessment, landuse change/infrastructure impacts and mitigation measures. Hydrol. J. 2017, 4, 37. [Google Scholar] [CrossRef] [Green Version]
- Yihdego, Y. Evaluation of Flow Reduction due to Hydraulic Barrier Engineering Structure: Case of Urban Area Flood, Contamination and Pollution Risk Assessment. J. Geotech. Geol. Eng. 2016, 34, 1643–1654. [Google Scholar] [CrossRef]
- Simunek, J.; van Genuchten, M.T. Modeling nonequilibrium flow and transport processes using HYDRUS. Vadose Zone J. 2007, 7, 782–797. [Google Scholar] [CrossRef] [Green Version]
- Swati, M.; Karthikeyan, O.; Joseph, K.; Visvanathan, C.; Nagendran, R. Pilot-scale simulation of landfill bioreactor and controlled dumping of fresh and partially stabilized municipal solid waste in a tropical developing country. J. Hazard. Toxic Radioact. Waste 2011, 15, 321–330. [Google Scholar] [CrossRef]
- Polap, D. Human-machine interaction in intelligent technologies using the augmented reality. Inf. Technol. Control 2018, 47, 691–703. [Google Scholar]
- Polap, D.; Winnicka, A.; Serwata, K.; Kesik, K.; Wozniak, M. An Intelligent System for Monitoring Skin Diseases. Sensors 2018, 18, 2552. [Google Scholar] [CrossRef] [Green Version]
- Włodarczyk-Sielicka, M.; Połap, D. Automatic Classification Using Machine Learning for Non-Conventional Vessels on Inland Waters. Sensors 2019, 19, 3051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blachnik, M.; Kordos, M.; Wieczorek, T.; Golak, S. Selecting Representative Prototypes for Prediction the Oxygen Activity in Electric Arc Furnace. Lect. Notes Comput. Sci. 2012, 7268, 539–547. [Google Scholar]
- Dai, W.; Ji, W. A Map Reduce Implementation of C4.5 Decision Tree Algorithm. Int. J. Database Theory Appl. 2014, 7, 49–60. [Google Scholar] [CrossRef]
- Kotsiantis, S.B. Supervised Machine Learning: A Review of Classification Techniques. Informatica 2007, 31, 249–268. [Google Scholar]
- Meissner, R.; Rupp, H.; Schubert, M. Novel lysimeter techniques—A basis for the improved investigation of water, gas, and solute transport in soils. J. Plant Nutr. Soil Sci. 2000, 163, 603–608. [Google Scholar] [CrossRef]
- Dabrowska, D.; Soltysiak, M.; Cnota, L. Lysimeter experiments on municipal landfill waste—Overview of current global research. In Proceedings of the 18th International Multidisciplinary Scientific GeoConference SGEM 2018, Albena, Bulgaria, 2–8 July 2018; pp. 495–500. [Google Scholar]
- Rafizul, I.M.; Alamgir, M. Characterization and Tropical Seasonal Variation of Leachate: Results from Landfill Lysimeter Studied. J. Waste Manag. 2012, 32, 2080–2095. [Google Scholar] [CrossRef]
- Feng, S.; Zheng, Q.; Chen, H. Unsaturated flow parameters of municipal solid waste. Waste Manag. 2017, 63, 107–121. [Google Scholar] [CrossRef]
- Patil, B.; Anto, A.; Singh, D. Simulation of municipal solid waste degradation in aerobic and anaerobic bioreactor landfills. Waste Manag. Res. 2017, 35, 301–312. [Google Scholar] [CrossRef]
- Caribe, R.; Ribeiro, L.; Neto, A.; Sousa, R.; Nobrega, B.; Melo, M.; Paiva, W.; Monteiro, V. Analysis of volumetric variation and specific deformation of municipal solid waste in experimental lysimeters. Int. J. Environ. Waste Manag. 2020, 25, 508–520. [Google Scholar] [CrossRef]
- Pohland, F. Sanitary Landfill Stabilization with Leachate Recycle and Residual Treatment; Municipal Environmental Research Laboratory, U.S. Environmental Protection Agency: Cincinnati, OH, USA, 1975. [Google Scholar]
- Pohland, F.; Shank, D.; Benson, R.; Timmerman, H. Pilot-Scale Investigations of Accelerated Landfill Stabilization with Leachate Recycle; U.S. Environmental Protection Agency: Washington, DC, USA, 1978; pp. 283–295. [Google Scholar]
- Kemper, J.; Smith, R. Lysimeter tests indicate leachate diluted by processing solid waste. In Sanitation Industry Yearbook; PRJ Publishing Corporation: Cennai, India, 1981; pp. 131–138. [Google Scholar]
- Reinhart, D. Full-scale experiences with leachate recirculating landfills: Case studies. Waste Manag. Res. 1996, 14, 347–365. [Google Scholar] [CrossRef]
- Jalilzadeh, H.; Hettiaratchi, J.; Fleming, I.; Pokhrel, D. Effect of Soil Type and Vegetation on the Performance of Evapotranspirative Landfill Biocovers—1 Field Investigations and Water Balance Modelling. J. Hazard. Toxic Radioact. Waste 2020, 24, 535. [Google Scholar] [CrossRef]
- Ahsan, K.; Shaikh, M.; Rafizul, I.; Alamgir, M. Statistical Analysis of Leachate Characteristics in Pilot Scale Landfill Lysimeter. Int. J. Adv. Struct. Geotech. Eng. 2014, 3, 283–292. [Google Scholar]
- Xu, Q.; Qin, J.; Ko, J. Municipal solid waste landfill performance with different biogas collection practices: Biogas and leachate generations. J. Clean. Prod. 2019, 222, 446–454. [Google Scholar] [CrossRef]
- Morello, L.; Raga, R.; Sgarbossa, P.; Rosson, E.; Cossu, R. Storage potential and residual emissions from fresh and stabilized waste samples from a landfill simulation experiment. Waste Manag. 2018, 75, 372–383. [Google Scholar] [CrossRef] [PubMed]
- Dabrowska, D.; Soltysiak, M.; Biniecka, P.; Michalska, J.; Wasilkowski, D.; Nowak, A.; Nourani, V. Application of hydrogeological and biological research for the lysimeter experiment performance under simulated municipal landfill condition. J. Mater. Cycles Waste Manag. 2019, 21, 1477. [Google Scholar] [CrossRef] [Green Version]
- Slezak, R.; Krzystek, L.; Ledakowicz, S. Degradation of municipal solid waste in simulated landfill bioreactors under aerobic conditions. Waste Manag. 2015, 43, 293–299. [Google Scholar] [CrossRef]
- Top, S.; Akkaya, S.; Demir, A.; Yildiz, S.; Balahorli, V.; Bilgili, M. Investigation of Leachate Characteristics in Field-Scale Landfill Test Cells. Int. J. Environ. Res. 2019, 13, 829–842. [Google Scholar] [CrossRef]
- Bilgili, M.; Demir, A.; Ozkaya, B. Quality and quantity of leachate in aerobic pilot-scale landfills. Environ. Manag. 2006, 38, 189–196. [Google Scholar] [CrossRef]
- Grossule, V.; Lavagnolo, M.C. Lab tests on semi-aerobic landfilling of MSW under varying conditions of water availability and putrescible waste content. J. Environ. Manag. 2020, 256, 109995. [Google Scholar]
- Hou, H.; Yao, N.; Li, J.; Wei, Y.; Zhao, L.; Zhang, J.; Li, F. Migration and leaching risk of extraneous antimony in three representative soils of China: Lysimeter and batch experiments. Chemosphere 2013, 93, 1980–1988. [Google Scholar] [CrossRef]
- Chung, W.; Jung, S.; Chang, S. The Influence of Waste Composition on Landfill Gas Generation in a Pilot-Scale Lysimeter. Appl. Sci. 2019, 9, 4677. [Google Scholar] [CrossRef] [Green Version]
- Guidi Nissim, W.; Palm, E.; Pandolfi, C.; Mancuso, S.; Azzarello, E. Willow and poplar for the phyto-treatment of landfill leachate in Mediterranean climate. J. Environ. Manag. 2021, 277, 111454. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Liu, L.; Xue, Q.; Yang, Y.; Zhang, Y.; Fei, X. A systematic assessment of aeration rate effect on aerobic degradation of municipal solid waste based on leachate chemical oxygen demand. Chemosphere 2021, 263, 128218. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, J.; Chen, S.; Diao, W. Establishing indices for groundwater contamination risk assessment in the vicinity of hazardous waste landfills in China. Environ. Pollut. 2012, 165, 77–90. [Google Scholar] [CrossRef]
- Singh, M.; Mahato, N.; Singh, P. Longitudinal dispersion with time dependent source concentration in semi infinite aquifer. J. Earth Syst. Sci. 2008, 117, 945–949. [Google Scholar] [CrossRef] [Green Version]
- Weber, W.; Jang, W.; Townsend, T.; Laux, S. Leachate from land disposed residential construction waste. J. Environ. Eng. 2002, 128, 237–245. [Google Scholar] [CrossRef]
No | Lysimeter Specification | Duration | Aim of the Study | Reference |
---|---|---|---|---|
1 | The container with a length of 1 m, width of 1 m, and height of 1.6 m | 5 months | Analyzes antimony (Sb) distribution, solubility, and mobility into natural soils of China | Hou, H.; Yao, N.; Li, J.; Wei, Y.; Zhao, L.; Zhang, J.; Li, F. Migration and leaching risk of extraneous antimony in three representative soils of China: Lysimeter and batch experiments. Chemosphere 2013, 93, 1980–1988. |
2 | Three cylindrical lysimeter having an outer diameter of 1.98 m and inner diameter (ID of 1.48 m, with a height of 3.35 m | 6 weeks | Analyzes the characteristics of leachate in pilot scale landfill lysimeter for inorganic and organic compounds as well as metal and heavy metal concentrations against their operational conditions based on statistical tool through statistical package for social science (SPSS) software | Ahsan, K.; Shaikh, M.; Rafizul, I.; Alamgir, M. Statistical Analysis of Leachate Characteristics in Pilot Scale Landfill Lysimeter. International Journal of Advanced Structures and Geotechnical Engineering 2014, 3, 283–292. |
3 | Three lysimeters with a volume of 15 l | 239 days | The investigation of the effect of waste aeration on the dynamics of the aerobic degradation processes in lysimeters | Slezak, R.; Krzystek, L.; Ledakowicz, S. Degradation of municipal solid waste in simulated landfill bioreactors under aerobic conditions. Waste Management 2015, 43, 293–299. |
4 | Height 75 cm, inner diameter 18 cm, a compression plate (perforated stainless-steel plate with ID less than 18 cm) | 223 days | The performance of simulated landfills with different biogas collection practices, including upward biogas collection only and both upward and downward biogas collection | Xu, Q.; Qin, J.; Ko, J. Municipal solid waste landfill performance with different biogas collection practices: Biogas and leachate generations. J Clean. Prod. 2019, 222, 446–454. |
5 | Landfill test cells with the dimensions of 20 m × 40 m × 5 m | 450 days | Leachate recirculation and the impact of aeration on the waste decomposition rate by means of leachate quality and quantity in field-scale landfill test cells | Top, S.; Akkaya, S.; Demir, A.; Yildiz, S.; Balahorli, V.; Bilgili, M. Investigation of Leachate Characteristics in Field-Scale Landfill Test Cells. Int. J. Environ. Resources 2019, 13, 829–842. |
6 | 1 m height, inner diameter of 40 cm | 100 days | To investigate the effect of inverse conditions of landfilling | Grossule, V.; Lavagnolo, M.C. Lab tests on semi-aerobic landfilling of Municipal Solid Waste under varying conditions of water availability and putrescible waste content. Journal of Environmental Management 256, 2020. |
7 | 1.0 m height, inner diameter of 40 cm | 6 months, divided into two subsequent phases | To investigate the performance of semi-aerobic landfill under tropical dry–wet climate conditions and to assess the potential benefits afforded by appropriate management of water input when operating the landfill by overlaying a new layer of waste in each climate season | Grossule, V.; Lavagnolo, M.C. Optimised management of semi-aerobic landfilling under tropical wet-dry conditions; Multidisciplinary. Journal for Waste Resources & Residues. 2020. |
8 | 1.8 m × 1.8 m × 1.1 m | 1 year | To evaluate the water balance performance of Evapotranspirative Landfill Biocovers (ET-LBCs) under Canadian cold-climate conditions | Jalilzadeh, H.; Hettiaratchi, J. Effect of Soil Type and Vegetation on the Performance of Evapotranspirative Landfill Biocovers: Field Investigations and Water Balance Modeling. Journal of Hazardous, Toxic, and Radioactive. 2020. |
9 | 1 m3 polyethylene box set upon a 0.3 m tall wooden bench | 2 years | To investigate the ability of poplar and willow grown in mesocosm to withstand and remove specific pollutants | Nissim, W.G.; Oalm, E.; Pandolfi, C.; Mancuso, S.; Azzarello, E. Willow and poplar for the phyto-treatment of landfill leachate in Mediterranean climate. Journal of Environmental Management. 2021. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dabrowska, D.; Rykala, W. A Review of Lysimeter Experiments Carried Out on Municipal Landfill Waste. Toxics 2021, 9, 26. https://doi.org/10.3390/toxics9020026
Dabrowska D, Rykala W. A Review of Lysimeter Experiments Carried Out on Municipal Landfill Waste. Toxics. 2021; 9(2):26. https://doi.org/10.3390/toxics9020026
Chicago/Turabian StyleDabrowska, Dominika, and Wojciech Rykala. 2021. "A Review of Lysimeter Experiments Carried Out on Municipal Landfill Waste" Toxics 9, no. 2: 26. https://doi.org/10.3390/toxics9020026
APA StyleDabrowska, D., & Rykala, W. (2021). A Review of Lysimeter Experiments Carried Out on Municipal Landfill Waste. Toxics, 9(2), 26. https://doi.org/10.3390/toxics9020026