The Use of the Contamination Index and the LWPI Index to Assess the Quality of Groundwater in the Area of a Municipal Waste Landfill
Abstract
:1. Introduction
2. Study Area and Data
3. Methods
4. Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Piezometer | Parameter | Background—P9 (Min, Max, Mean) | Background—Pz2 (Min, Max, Mean) | Background—Pz7 (Min, Max, Mean) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
P1 | EC | −0.34 | 1.02 | −0.14 | 0.34 | 3.53 | 0.74 | 1.64 | 7.96 | 2.45 |
Na | −0.17 | 1.36 | 0.31 | 1.01 | 4.73 | 2.19 | 23.71 | 69.47 | 38.2 | |
Fe | 1.8 | 491 | 121.95 | −0.98 | 2.25 | −0.19 | −0.90 | 16.45 | 3.36 | |
Cl | −0.3 | 1.83 | 0.14 | 0.22 | 3.92 | 0.99 | 4.12 | 19.66 | 7.34 | |
SO4 | −0.78 | 0.49 | −0.55 | −0.26 | 3.89 | 0.54 | −0.05 | 5.29 | 0.99 | |
P2 | EC | −0.3 | 1.25 | −0.11 | 0.41 | 3.06 | 0.79 | 1.78 | 7.04 | 2.54 |
Na | −1.01 | 0.32 | −0.54 | 0.83 | 4.73 | 1.52 | 21.54 | 69.47 | 30.01 | |
Fe | 96.2 | 435 | 143.81 | −0.36 | 2.25 | 0.03 | 2.45 | 16.45 | 4.53 | |
Cl | −0.47 | 1.51 | 0.006 | −0.08 | 3.92 | 0.85 | 2.86 | 19.66 | 6.78 | |
SO4 | −0.67 | 0.69 | −0.3 | 0.08 | 3.89 | 1.23 | 0.39 | 5.29 | 1.87 | |
P3 | EC | −0.2 | 3.81 | 0.71 | 0.61 | 8.66 | 2.45 | 2.18 | 18.12 | 5.82 |
Na | −1.0 | 3.34 | 0.6 | −1.00 | 9.55 | 2.89 | −1.00 | 128.75 | 46.79 | |
Fe | 6.6 | 319 | 119.59 | −0.95 | 1.11 | −0.20 | −0.73 | 10.35 | 3.28 | |
Cl | −0.14 | 2.38 | 0.57 | 0.5 | 4.89 | 1.74 | 5.29 | 23.73 | 10.51 | |
SO4 | −0.66 | 0.69 | −0.39 | 0.11 | 4.55 | 0.99 | 0.11 | 4.55 | 0.99 | |
P4 | EC | −0.26 | 1.34 | 0.23 | 0.48 | 3.71 | 1.47 | 1.93 | 8.32 | 3.89 |
Na | −0.12 | 1.45 | 0.56 | 1.13 | 4.95 | 2.8 | 25.22 | 72.14 | 45.7 | |
Fe | 185 | 595 | 376.8 | 0.23 | 2.94 | 1.5 | 5.6 | 20.13 | 12.4 | |
Cl | 0.02 | 2.21 | 0.88 | 0.77 | 4.59 | 2.28 | 6.43 | 22.47 | 12.76 | |
SO4 | −0.87 | 0.25 | −0.46 | −0.59 | 3.11 | 0.79 | −0.59 | 3.11 | 0.79 | |
P5 | EC | −0.21 | 1.01 | 0.13 | 0.58 | 3.04 | 1.27 | 2.13 | 7 | 3.48 |
Na | −0.33 | 1.48 | 0.31 | 0.62 | 5.02 | 2.19 | 18.87 | 72.98 | 38.23 | |
Fe | 151 | 639 | 390.58 | 0 | 3.23 | 1.59 | 4.39 | 21.7 | 12.89 | |
Cl | −0.1 | 2.28 | 0.46 | 0.57 | 4.71 | 1.55 | 5.58 | 23 | 9.7 | |
SO4 | −0.28 | 0.65 | −0.05 | 1.35 | 4.41 | 2.12 | 1.35 | 4.41 | 2.12 | |
P6 | EC | −0.27 | 0.87 | 0.19 | 0.47 | 2.75 | 1.4 | 1.91 | 6.42 | 3.75 |
Na | −0.25 | 0.78 | 0.19 | 0.82 | 3.33 | 1.9 | 21.38 | 52.27 | 34.67 | |
Fe | 36.6 | 355 | 184.58 | −0.75 | 1.35 | 0.23 | 0.33 | 11.62 | 5.58 | |
Cl | −0.29 | 1.28 | 0.38 | 0.23 | 2.96 | 1.4 | 4.18 | 15.62 | 9.07 | |
SO4 | −0.51 | 1.31 | 0.17 | 0.61 | 6.57 | 2.84 | 0.61 | 6.57 | 2.84 | |
P7 | EC | −0.04 | 0.35 | 0.16 | 0.92 | 1.71 | 1.34 | 2.8 | 4.36 | 3.63 |
Na | −0.28 | 0.55 | 0.1 | 0.74 | 2.76 | 1.67 | 20.37 | 45.26 | 31.78 | |
Fe | 42.2 | 279 | 188.24 | −0.71 | 0.85 | 0.25 | 0.53 | 8.93 | 5.71 | |
Cl | −0.06 | 0.75 | 0.33 | 0.64 | 2.04 | 1.31 | 5.88 | 11.76 | 8.72 | |
SO4 | −0.51 | 0.9 | 0.08 | 0.61 | 5.23 | 2.53 | 0.61 | 5.23 | 2.53 | |
P8 | EC | −0.42 | 0.47 | −0.02 | 0.16 | 1.95 | 0.97 | 1.3 | 4.84 | 2.89 |
Na | −0.75 | 0.73 | −0.12 | −0.38 | 3.21 | 1.15 | 6.58 | 50.77 | 25.4 | |
Fe | 30.8 | 607 | 239.87 | −0.79 | 3.02 | 0.59 | 0.13 | 20.56 | 7.54 | |
Cl | −0.94 | 0.87 | −0.12 | −0.90 | 2.25 | 0.54 | −0.58 | 12.64 | 5.46 | |
SO4 | −0.91 | 3.93 | −0.17 | −0.69 | 15.16 | 1.71 | −0.69 | 15.16 | 1.71 | |
P9 | EC | 1 | 1 | 1 | −1 | 1.54 | 0.01 | −1 | 4.03 | 0.99 |
Na | 1 | 1 | 1 | −1 | 3.06 | 0.22 | −1 | 48.93 | 13.94 | |
Fe | 1 | 1 | 1 | −1 | −0.97 | −1.00 | −1 | −0.82 | −0.99 | |
Cl | 1 | 1 | 1 | −1 | 2.05 | −0.13 | −1 | 11.79 | 2.65 | |
SO4 | 1 | 1 | 1 | −1 | 8.87 | 0.64 | −1 | 8.87 | 0.64 | |
P10 | EC | −0.34 | 1.21 | 0.42 | 0.34 | 3.44 | 1.86 | 1.65 | 7.79 | 4.66 |
Na | −0.44 | 0.53 | 0.02 | 0.36 | 2.72 | 1.47 | 15.67 | 44.76 | 29.34 | |
Fe | 465 | 2719 | 1420.42 | 2.08 | 16.97 | 8.39 | 15.52 | 95.45 | 49.4 | |
Cl | −0.16 | 0.84 | 0.28 | 0.46 | 2.2 | 1.22 | 5.12 | 12.43 | 8.33 | |
SO4 | −0.43 | 5.15 | 1.32 | 0.88 | 19.17 | 6.85 | 0.88 | 19.17 | 6.85 |
References
- Dąbrowska, D.; Witkowski, A.; Sołtysiak, M. Application of pollution indices for the assessment of the negative impact of a municipal landfill on groundwater (Tychy, southern Poland). Geol. Q. 2018, 62, 496–508. [Google Scholar] [CrossRef] [Green Version]
- Baghanam, A.; Nourani, V.; Aslani, H.; Taghipour, H. Spatiotemporal variation of water pollution near landfill site: Application of clustering methods to assess the admissibility of LWPI. J. Hydrol. 2020, 591. [Google Scholar] [CrossRef]
- Šourková, M.; Adamcová, D.; Zloch, J.; Skutnik, Z.; Vaverková, M. Evaluation of the Phytotoxicity of Leachate from a Municipal Solid Waste Landfill: The Case Study of Bukov Landfill. Environments 2020, 7, 111. [Google Scholar] [CrossRef]
- Vaverková, M.; Elbl, J.; Koda, E.; Adamcová, D.; Bilgin, A.; Lukas, V.; Podlasek, A.; Kintl, A.; Wdowska, M.; Brtnický, M.; et al. Chemical Composition and Hazardous Effects of Leachate from the Active Municipal Solid Waste Landfill Surrounded by Farmlands. Sustainability 2020, 12, 4531. [Google Scholar] [CrossRef]
- Klauck, C.; Rodrigues, M.; Silva, L. Evaluation of phytotoxicity of municipal landfill leachate before and after biological treatment. Braz. J. Biol. 2015, 75, 57–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaverková, M.; Elbl, J.; Voběrková, V.; Koda, E.; Adamcová, D.; Gusiatin, Z.; Rahman, A.; Radziemska, M.; Mazur, Z. Composting versus mechanical–biological treatment: Does it really make a difference in the final product parameters and maturity. Waste Manag. 2020, 106, 173–183. [Google Scholar] [CrossRef]
- Wdowczyk, A.; Szymańska-Pulikowska, A. How to Choose Pollution Indicators for Monitoring Landfill Leachates. Proceedings 2020, 51, 23. [Google Scholar] [CrossRef]
- Tarach, A.; Piekutowska, J.; Jastrzębska, H. The report carried out by the Environmental Protection Inspectorate of the control cycle Nationwide municipal waste landfills based on the National Waste Management Plan. GIOS 2010, 46. [Google Scholar]
- Witkowski, A.J.; Żurek, A. Impact of currently remediated industrial waste disposal sites on groundwater. Współczesne Probl. Hydrogeol. 2007, 13, 625–633, (In Polish with English summary). [Google Scholar]
- Rykała, W.; Dąbrowska, D. Risk assessment for groundwater in the region of municipal landfill systems in Tychy-Urbanowice (Southern Poland). Environ. Socio-Econ. Stud. 2020, 8, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Gibrilla, A.; Bam, E.K.P.; Adomako, D.; Ganyaglo, S.; Osae, S.; Akiti, T.T.; Kebede, S.; Achoribo, E.; Ahialey, E.; Ayanu, G.; et al. Application of Water Quality Index (WQI) and Multivariate Analysis for Groundwater Quality Assessment of the Birimian and Cape Coast Granitoid Complex: Densu River Basin of Ghana. Water Qual. Expo. Health 2011, 3, 63–78. [Google Scholar] [CrossRef]
- Bhatt, A.; Karanjekar, R.; Altouqi, S.; Sattler, M.; Hossain, M.; Chen, V. Estimating landfill leachate BOD and COD based on rainfall, ambient temperature, and waste composition: Exploration of a MARS statistical approach. Environ. Technol. Innov. 2017, 8, 1–16. [Google Scholar] [CrossRef]
- Shen, S.; Chen, Y.; Zhan, L.; Xie, H.; Bouazza, A.; He, F. Methane hotspot localization and visualization at a large-scale Xi’an landfill in China: Effective tool for landfill gas management. J. Environ. Manag. 2018, 225, 232–241. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, J.; Chen, S.; Diao, W. Establishing indices for groundwater contamination risk assessment in the vicinity of hazardous waste landfills in China. Environ. Pollut. 2012, 165, 77–90. [Google Scholar] [CrossRef]
- Singh, M.; Mahato, N.; Singh, P. Longitudinal dispersion with time dependent source concentration in semi-infinite aquifer. J. Earth Syst. Sci. 2008, 117, 945–949. [Google Scholar] [CrossRef] [Green Version]
- Tanna, R.; Moncur, M.; Birks, J.; Gibson, J.; Ptacek, C.; Mayer, B.; Wieser, M.; Wrona, F.; Munkittrick, K. Utility of a multi-tracer approach as a component of adaptive monitoring for municipal wastewater impacts. Water Qual. Res. J. 2020, 55, 327–341. [Google Scholar] [CrossRef]
- Vilomet, J.; Angeletti, B.; Moustier, S.; Ambrosi, J.; Wiesner, M.; Bottero, J.; Chatelet-Snidaro, L. Application of strontium isotopes for tracing landfill leachate plumes in groundwater. Environ. Sci. Technol. 2001, 35, 4586–4591. [Google Scholar] [CrossRef]
- Włodarczyk-Sielicka, M.; Połap, D. Automatic Classification Using Machine Learning for Non-Conventional Vessels on Inland Waters. Sensors 2019, 19, 3051. [Google Scholar] [CrossRef] [Green Version]
- Zhou, B.; Duan, X.; Ye, D.; Wei, W.; Woźniak, M.; Połap, D.; Damaševičius, R. Multi-Level Features Extraction for Discontinuous Target Tracking in Remote Sensing Image Monitoring. Sensors 2019, 19, 4855. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.; Verma, P.; Tiwari, A.; Sharma, S.; Purty, P. Review of various contamination index approaches to evaluate groundwater quality with Geographic Information System (GIS). Int. J. ChemTech Res. 2015, 7, 1920–1929. [Google Scholar]
- Mohan, S.; Nithila, P.; Reddy, S. Estimation of heavy metal in drinking water and development of heavy metal pollution index. J. Environ. Sci. Health 1996, 31, 283–289. [Google Scholar] [CrossRef]
- Tamasi, G.; Cini, R. Heavy metals in drinking waters from Mount Amiata. Possible risks from arsenic for public health in the province of Siena. Sci. Total Environ. 2004, 327, 41–51. [Google Scholar] [CrossRef]
- Shivasharanappa, P.; Huggi, M. Assessment of ground water quality characteristics and water quality index (WQI) of Bidar city and its industrial area, Karnataka state, India. Int. J. Environ. Sci. 2011, 2, 965–976. [Google Scholar]
- Backman, B.; Bodis, D.; Lahermo, P.; Rapant, S.; Tarvainen, T. Application of a contamination index in Finland and Slovakia. Environ. Geol. 1998, 36, 55–64. [Google Scholar] [CrossRef]
- Talalaj, I.; Biedka, P. Use of the Landfill Water Pollution Index (LWPI) for Groundwater Quality Assessment Near the Landfill Sites. Environ. Sci. Pollut. Res. 2016, 23, 24601–24613. [Google Scholar] [CrossRef] [Green Version]
- Talalaj, I. Assessment of groundwater quality near the landfill site using the modified water quality index. Environ. Monit. Assess. 2014, 186, 3673–3683. [Google Scholar] [CrossRef] [PubMed]
- Kondracki, J. Regional Geography of Poland; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2009; Volume 468. [Google Scholar]
- Różkowski, J.; Witkowski, A.; Kropka, J.; Rzepecki, S. The water chemistry and quality of the Quaternary aquifer in the area of reclaimed open pit Maczki-Bór in the light of monitoring data. Prz. Geol. 2017, 65, 1371–1376, (In Polish with English summary). [Google Scholar]
- Snopkowska, E.; Szyszka, I.; Szyszka, D.; Fijałkowski, J. Project of a Drainage Pipeline for the D/A Section Located at the Existing Landfill for Non-Hazardous and Inert Waste in Sosnowiec at Grenadierów Street; EKOTEST: Gliwice, Poland, 2019; Volume 19. (In Polish) [Google Scholar]
- Doktorowicz-Hrebnicki, S. Detailed Geological Map of the Upper Silesian Coal Basin, Scale 1:50,000. Structural Map; Geological Institute: Warsaw, Poland, 1957. [Google Scholar]
- Kropka, J.; Wróbel, J. Transformations of hydrogeological conditions in the areas of opencast mining sands in the area of the Upper Silesian Coal Basin. Przegl. Geol. 2001, 49, 631–638. [Google Scholar]
- Nowicki, Z.; Sadurski, A. Regionalization of Polish Groundwater in View of European Union Regulations. Regional Hydrogeology of Poland; Polish Geological Institute: Warsaw, Poland, 2007; Volume I, p. 538. [Google Scholar]
- Różkowski, A.; Rudzińska-Zapaśnik, T.; Siemiński, A. (Eds.) Map of the Conditions of Occurrence, Use, Threats and Protection of Ordinary Groundwater in the Upper Silesian Coal Basin and Its Margins on a Scale of 1:100,000 (with Explanations); Polish Geological Institute: Warsaw, Poland, 1997. [Google Scholar]
- Górnik, M.; Duda, I. Hydrogeological Documentation of the Maczki-Bór Sand Mine; Company Geo-Wier in Sławków: Katowice, Poland, 1994. [Google Scholar]
- Apollaro, C.; Fuoco, I.; Brozzo, G.; De Rosa, R. Release and fate of Cr (VI) in the ophiolitic aquifers of Italy: The role of Fe (III) as a potential oxidant of Cr (III) supported by reaction path modelling. Sci. Total Environ. 2019, 660, 1459–1471. [Google Scholar] [CrossRef] [PubMed]
- Paternoster, M.; Rizzo, G.; Sinisi, R.; Vilardi, G.; Di Palma, L.; Mongelli, G. Natural hexavalent chromium in the Pollino Massif groundwater (Southern Apennines, Italy): Occurrence, geochemistry and preliminary remediation tests by means of innovative adsorbent nanomaterials. Bull. Environ. Contam. Toxicol. 2020, 1–7. [Google Scholar] [CrossRef]
- Christensen, T.; Kjeldsen, P.; Bjerg, P.; Jensen, D.; Christensen, J.; Baun, A.; Albrechtsen, H.; Heron, G. Biogeochemistry of landfill leachate plumes. Appl. Geochem. 2001, 16, 659–718. [Google Scholar] [CrossRef]
- Brraich, O.; Jangu, S. Evaluation of water quality pollution indices for heavy metal contamination monitoring in the water of Harike Wetland (Ramsar Site), India. Int. J. Sci. Res. Publ. 2015, 5, 1–6. [Google Scholar]
- Rezaee, H.; Asghari, O.; Yamamoto, J. On the reduction of the ordinary kriging smoothing effect. J. Min. Environ. 2011, 2, 25–40. [Google Scholar]
Parameter | Unit | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | P9 | P10 |
---|---|---|---|---|---|---|---|---|---|---|---|
Water table level | m b.g.l | 23.868 | 28.512 | 29.876 | 30.791 | 28.184 | 19.126 | 19.104 | 19.099 | 23.628 | 19.358 |
Eh | mV | 154.608 | 160.638 | 189.023 | 159.646 | 160.172 | 169.738 | 164.428 | 159.472 | 297.167 | 140.352 |
pH | - | 9.624 | 10.654 | 10.792 | 10.415 | 6.944 | 6.928 | 6.872 | 7.024 | 7.092 | 6.860 |
EC | µS/cm | 1784.2 | 1765 | 3482.923 | 2377.654 | 2247.440 | 2319.200 | 2170.480 | 1847.120 | 1860.333 | 2692.520 |
Na | mg/L | 252.76 | 202.154 | 327.077 | 284.038 | 250.040 | 213.760 | 194.560 | 155.796 | 178.917 | 179.992 |
Mg | mg/L | 36.648 | 59.458 | 138.715 | 48.969 | 43.240 | 105.104 | 62.108 | 31.410 | 41.917 | 93.424 |
K | mg/L | 14.6 | 20.512 | 153.254 | 16.845 | 9.165 | 48.540 | 19.032 | 12.968 | 61.083 | 13.074 |
Ca | mg/L | 62.4 | 94.515 | 101.712 | 187.862 | 204.920 | 151.596 | 200.960 | 245.680 | 193.833 | 316.120 |
Mn | mg/L | 0.58436 | 4.775 | 4.521 | 11.748 | 1.141 | 1.875 | 27.202 | 2.236 | 1.817 | 4.884 |
Fe | mg/L | 7.832 | 12.762 | 9.478 | 22.764 | 20.336 | 10.141 | 9.590 | 13.034 | 0.055 | 70.122 |
TOC | mg/L | 3.14 | 7.785 | 46.181 | 17.373 | 3.504 | 7.144 | 4.782 | 3.796 | 4.945 | 4.076 |
HCO3 | mg/L | 344 | 360.885 | 1106.923 | 454.692 | 433.760 | 521.240 | 498.640 | 693.040 | 480.750 | 567.200 |
Cl | mg/L | 319.16 | 294.577 | 417.192 | 483.308 | 387.320 | 355.120 | 328.800 | 213.872 | 249.667 | 321.120 |
SO4 | mg/L | 190.236 | 253.654 | 239.731 | 214.538 | 350.720 | 426.400 | 374.600 | 292.280 | 351.667 | 829.920 |
NH4 | mg/L | 0.2718 | 5.153 | 81.677 | 7.239 | 0.818 | 5.117 | 4.842 | 3.281 | 0.202 | 3.966 |
Parameter | Weight (wi) |
---|---|
EC | 1 |
Na | 2 |
Fe | 3 |
Cl | 4 |
SO4 | 4 |
Sum of weights | 14 |
Piezometer | Cd with P9 | Cd with Pz2 | Cd with Pz7 |
---|---|---|---|
P1 | 121.72 | 4.27 | 52.34 |
P2 | 142.91 | 4.43 | 45.73 |
P3 | 121.09 | 7.86 | 67.39 |
P4 | 378.02 | 8.83 | 75.54 |
P5 | 391.44 | 8.71 | 66.41 |
P6 | 185.52 | 7.77 | 55.91 |
P7 | 188.91 | 7.10 | 52.37 |
P8 | 239.44 | 4.95 | 42.99 |
P9 | 1.00 | −0.27 | 17.24 |
P10 | 1422.59 | 19.79 | 98.59 |
Pz2 | 148.19 | 1.00 | 20.14 |
Pz7 | 23.93 | −3.21 | 1.00 |
Piezometer | LWPI with P9 | LWPI with Pz2 | LWPI with Pz7 |
---|---|---|---|
P1 | 27.06 | 1.76 | 9.73 |
P2 | 10.61 | 1.87 | 8.88 |
P3 | 8.65 | 2.32 | 12.25 |
P4 | 81.96 | 2.70 | 14.33 |
P5 | 84.87 | 2.79 | 12.85 |
P6 | 40.75 | 2.63 | 10.82 |
P7 | 41.48 | 2.49 | 10.24 |
P8 | 52.30 | 2.00 | 8.50 |
P9 | 1.00 | 0.89 | 3.29 |
P10 | 305.88 | 5.45 | 20.45 |
Pz2 | 32.70 | 1.00 | 3.08 |
Pz7 | 6.19 | 0.38 | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knopek, T.; Dabrowska, D. The Use of the Contamination Index and the LWPI Index to Assess the Quality of Groundwater in the Area of a Municipal Waste Landfill. Toxics 2021, 9, 66. https://doi.org/10.3390/toxics9030066
Knopek T, Dabrowska D. The Use of the Contamination Index and the LWPI Index to Assess the Quality of Groundwater in the Area of a Municipal Waste Landfill. Toxics. 2021; 9(3):66. https://doi.org/10.3390/toxics9030066
Chicago/Turabian StyleKnopek, Tomasz, and Dominika Dabrowska. 2021. "The Use of the Contamination Index and the LWPI Index to Assess the Quality of Groundwater in the Area of a Municipal Waste Landfill" Toxics 9, no. 3: 66. https://doi.org/10.3390/toxics9030066
APA StyleKnopek, T., & Dabrowska, D. (2021). The Use of the Contamination Index and the LWPI Index to Assess the Quality of Groundwater in the Area of a Municipal Waste Landfill. Toxics, 9(3), 66. https://doi.org/10.3390/toxics9030066