2,2-Bis(4-Hydroxyphenyl)-1-Propanol—A Persistent Product of Bisphenol A Bio-Oxidation in Fortified Environmental Water, as Identified by HPLC/UV/ESI-MS
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Liu, J.; Zhang, L.; Lu, G.; Jiang, R.; Yan, Z.; Li, Y. Occurrence, toxicity and ecological risk of Bisphenol A analogues in aquatic environment—A review. Ecotoxicol. Environ. Saf. 2021, 208, 111481. [Google Scholar] [CrossRef]
- Im, J.; Löffler, F.E. Fate of bisphenol A in terrestrial and aquatic environments. Environ. Sci. Technol. 2016, 50, 8403–8416. [Google Scholar] [CrossRef]
- Kang, J.-H.; Katayama, Y.; Kondo, F. Biodegradation or metabolism of bisphenol A: From microorganisms to mammals. Toxicology 2006, 217, 81–90. [Google Scholar] [CrossRef]
- Noszczyńska, M.; Piotrowska-Seget, Z. Bisphenols: Application, occurrence, safety, and biodegradation mediated by bacterial communities in wastewater treatment plants and rivers. Chemosphere 2018, 201, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, C. Microbial capability for the degradation of chemical additives present in petroleum-based plastic products: A review on current status and perspectives. J. Hazard. Mater. 2021, 402, 123534. [Google Scholar]
- Peng, Y.-H.; Chen, Y.-J.; Chang, Y.-J.; Shih, Y. Biodegradation of bisphenol A with diverse microorganisms from river sediment. J. Hazard. Mater. 2015, 286, 285–290. [Google Scholar] [CrossRef]
- Ike, M.; Jin, C.S.; Fujita, M. Biodegradation of bisphenol A in the aquatic environment. Water Sci. Technol. 2000, 42, 31–38. [Google Scholar] [CrossRef]
- Wang, W.; Yu, H.; Qin, H.; Longa, Y.; Ye, J.; Qu, Y. Bisphenol A degradation pathway and associated metabolic networks in Escherichia coli harboring the gene encoding CYP450. J. Hazard. Mater. 2020, 88, 121737. [Google Scholar] [CrossRef]
- Eltoukhy, A.; Jia, Y.; Nahurira, R.; Abo-Kadoum, M.A.; Khokhar, I.; Wang, J.; Yan, Y. Biodegradation of endocrine disruptor Bisphenol A by Pseudomonas putida strain YC-AE1 isolated from polluted soil, Guangdong, China. BMC Microbiol. 2020, 20, 11. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, M.; Akahira, A.; Oshiman, K.; Tsuchido, T.; Matsumura, Y. Purification of cytochrome P450 and ferredoxin, involved in bisphenol A degradation, from Sphingomonas sp. Strain AO1. Appl. Environ. Microbiol. 2005, 71, 8024–8030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, T.; Nakagawa, Y.; Kano, I.; Yaguchi, K.; Yasuda, K. Environmental fate of Bisphenol A and its biological metabolites in river water and their xeno-estrogenic activity. Environ. Sci. Technol. 2004, 38, 2389–2396. [Google Scholar] [CrossRef] [PubMed]
- Das, R.; Liang, Z.; Li, G.; Mai, B.; An, T. Genome sequence of a spore-laccase forming, BPA-degrading Bacillus sp. GZB isolated from an electronic-waste recycling site reveals insights into BPA degradation pathways. Arch. Microbiol. 2019, 201, 623–638. [Google Scholar] [CrossRef]
- Eio, E.J.; Kawai, M.; Tsuchiya, K.; Yamamoto, S.; Toda, T. Biodegradation of bisphenol A by bacterial consortia. Int. Biodeterior. Biodegrad. 2014, 96, 166–173. [Google Scholar] [CrossRef]
- Spivack, J.; Leib, T.K.; Lobos, J.H. Novel pathway for bacterial metabolism of Bisphenol A. Rearrangements and stilbene cleavage in Bisphenol A metabolism. J. Biol. Chem. 1994, 269, 7323–7329. [Google Scholar] [CrossRef]
- Salgueiro-González, N.; Castiglioni, S.; Zuccato, E.; Turnes-Carou, I.; López-Mahía, P.; Muniategui-Lorenzo, S. Recent advances in analytical methods for the determination of 4-alkylphenols and bisphenol A in solid environmental matrices: A critical review. Anal. Chim. Acta 2018, 1024, 39–51. [Google Scholar] [CrossRef]
- Salgueiro-González, N.; Muniategui-Lorenzo, S.; López-Mahía, P.; Prada-Rodríguez, D. Trends in analytical methodologies for the determination of alkylphenols and bisphenol A in water samples. Anal. Chim. Acta 2017, 962, 1–14. [Google Scholar] [CrossRef]
- Sun, F.; Kang, L.; Xiang, X.; Li, H.; Luo, X.; Luo, R.; Lu, C.; Peng, X. Recent advances and progress in the detection of bisphenol A. Anal. Bioanal. Chem. 2016, 408, 6913–6927. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.-L. A review recent development on analytical methods for determination of bisphenol a in food and biological samples. J. Liq. Chromatogr. Relat. Technol. 2012, 35, 2795–2829. [Google Scholar] [CrossRef]
- Danzl, E.; Sei, K.; Soda, S.; Ike, M.; Fujita, M. Biodegradation of Bisphenol A, Bisphenol F and Bisphenol S in seawater. Int. J. Environ. Res. Public Health 2009, 6, 1472–1484. [Google Scholar] [CrossRef] [PubMed]
- Louati, I.; Dammak, M.; Nasri, R.; Belbahri, L.; Nasri, M.; Abdelkafi, S.; Mechichi, T. Biodegradation and detoxification of bisphenol A by bacteria isolated from desert soils. 3 Biotech 2019, 9, 228. [Google Scholar] [CrossRef] [PubMed]
- Babatabar, S.; Zamir, S.M.; Shojaosadati, S.A.; Yakhchali, B.; Zarch, A.B. Cometabolic degradation of bisphenol A by pure culture of Ralstonia eutropha and metabolic pathway analysis. J. Biosci. Bioeng. 2019, 127, 732–737. [Google Scholar] [CrossRef] [PubMed]
- Deborde, M.; Rabouan, S.; Mazellier, P.; Duguet, J.P.; Legube, B. Oxidation of bisphenol A by ozone in aqueous solution. Water Res. 2008, 42, 4299–4308. [Google Scholar] [CrossRef] [PubMed]
- Yoon, Y.; Westerhoff, P.; Snyder, S.A.; Esparz, M. HPLC-fluorescence detection and adsorption of bisphenol A, 17β-estradiol, and 17α-ethynyl estradiol on powdered activated carbon. Water Res. 2003, 37, 3530–3537. [Google Scholar] [CrossRef]
- Putman, L.; Nyland, C.; Parson, K. Green disposal of waste bisphenol A. Phys. Sci. Rev. 2016, 1, 20160075. [Google Scholar] [CrossRef]
- Xu, J.; Zhao, C.; Wang, T.; Yang, S.; Liu, Z. Photo-oxidation of Bisphenol A in aqueous solutions at near neutral pH by a Fe(III)-carboxylate complex with oxalacetic acid as a benign molecule. Molecules 2018, 23, 1319. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Y.; Wang, L.; Leung, C.; Liu, G.; Yang, S.; Lau, T.C. Preparation of nitrogen doped K2Nb4O11 with high photocatalytic activity for degradation of organic pollutants. Appl. Catal. A Gen. 2011, 402, 23–30. [Google Scholar] [CrossRef]
- Kitamura, S.; Suzuki, T.; Sanoh, S.; Kohta, R.; Jinno, N.; Sugihara, K.; Yoshihara, S.; Fujimoto, N.; Watanabe, H.; Ohta, S. Comparative study of the endocrine-disrupting activity of Bisphenol A and 19 related compounds. Toxicol. Sci. 2005, 84, 249–259. [Google Scholar] [CrossRef]
- Liu, H.; Chen, M.; Yin, H.; Hu, P.; Wang, Y.; Liu, F.; Tian, X.; Huang, C. Exploration of the hepatoprotective chemical base of an orally administered herbal formulation (YCHT) in normal and CCl4-intoxicated liver injury rats. Part 1: Metabolic profiles from the liver-centric perspective. J. Ethnopharmacol. 2019, 237, 81–91. [Google Scholar] [CrossRef]
- Attygalle, A.B.; Ruzicka, J.; Varughese, D.; Bialecki, J.B.; Jafri, S. Low-energy collision-induced fragmentation of negative ions derived from ortho-, meta-, and para-hydroxyphenyl carbaldehydes, ketones, and related compounds. J. Mass Spectrom. 2007, 42, 1207–1217. [Google Scholar] [CrossRef]
- Horikoshi, S.; Tokunaga, A.; Hidaka, H.; Nerpone, N. Environmental remediation by an integrated microwave/UV illumination method VII. Thermal/non-thermal effects in the microwave-assisted photocatalyzed mineralization of bisphenol-A. J. Photochem. Photobiol. A Chem. 2004, 162, 33–40. [Google Scholar] [CrossRef]
- Vo, H.N.P.; Ngo, H.H.; Guo, W.; Nguyen, K.H.; Chang, S.W.; Nguyen, D.D.; Liu, Y.; Liu, Y.; Ding, A.; Bui, X.T. Micropollutants cometabolism of microalgae for wastewater remediation: Effect of carbon sources to cometabolism and degradation products. Water Res. 2020, 183, 115974. [Google Scholar] [CrossRef]
- Zhou, N.A.; Kjeldal, H.; Gough, H.L.; Nielsen, J.L. Identification of putative genes involved in Bisphenol A degradation using differential protein abundance analysis of Sphingobium sp. BiD32. Environ. Sci. Technol. 2015, 49, 12232–12241. [Google Scholar] [CrossRef] [PubMed]
- Ike, M.; Chen, M.Y.; Jin, C.S.; Fujita, M. Acute toxicity, mutagenicity, and estrogenicity of biodegradation products of bisphenol-A. Environ. Toxicol. Int. J. 2002, 17, 457–461. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Dai, J.; Guo, P.; Wang, L.; Wei, Z.; Zhang, Z. Quantitative structure-toxicity relationships for benzaldehydes to Daphnia magna. Chemosphere 1998, 37, 79–85. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drzewiecka, M.; Beszterda, M.; Frańska, M.; Frański, R. 2,2-Bis(4-Hydroxyphenyl)-1-Propanol—A Persistent Product of Bisphenol A Bio-Oxidation in Fortified Environmental Water, as Identified by HPLC/UV/ESI-MS. Toxics 2021, 9, 49. https://doi.org/10.3390/toxics9030049
Drzewiecka M, Beszterda M, Frańska M, Frański R. 2,2-Bis(4-Hydroxyphenyl)-1-Propanol—A Persistent Product of Bisphenol A Bio-Oxidation in Fortified Environmental Water, as Identified by HPLC/UV/ESI-MS. Toxics. 2021; 9(3):49. https://doi.org/10.3390/toxics9030049
Chicago/Turabian StyleDrzewiecka, Małgorzata, Monika Beszterda, Magdalena Frańska, and Rafał Frański. 2021. "2,2-Bis(4-Hydroxyphenyl)-1-Propanol—A Persistent Product of Bisphenol A Bio-Oxidation in Fortified Environmental Water, as Identified by HPLC/UV/ESI-MS" Toxics 9, no. 3: 49. https://doi.org/10.3390/toxics9030049
APA StyleDrzewiecka, M., Beszterda, M., Frańska, M., & Frański, R. (2021). 2,2-Bis(4-Hydroxyphenyl)-1-Propanol—A Persistent Product of Bisphenol A Bio-Oxidation in Fortified Environmental Water, as Identified by HPLC/UV/ESI-MS. Toxics, 9(3), 49. https://doi.org/10.3390/toxics9030049