Estimation of the Inhaled Dose of Pollutants in Different Micro-Environments: A Systematic Review of the Literature
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Dose Estimation
3.2. Principal Results—Parameters to Be Evaluated
3.2.1. Exposure Concentration Levels
3.2.2. Pulmonary Ventilation Rate
3.2.3. Residence Time
3.3. Principal Results—Factors Influencing Inhaled Dose
3.3.1. Indoor and Outdoor MEs
3.3.2. Transit MEs
4. Discussion
4.1. Parameters to Be Evaluated
4.2. Factors Influencing Inhaled Dose
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Authors | Title | Year of Publication |
---|---|---|
Dua and Hopke | Hygroscopicity of indoor aerosols and its influence on the deposition of inhaled radon decay products | 1995 |
Abadie et al. | Particle pollution in the French high-speed train (TGV) smoker cars: measurement and prediction of passengers’ exposure | 2004 |
Zuurbier et al. | In-traffic air pollution exposure and CC16, blood coagulation, and inflammation markers in healthy adults | 2011 |
de Nazelle et al. | A travel mode comparison of commuters’ exposures to air pollutants in Barcelona | 2012 |
Dons et al. | Personal exposure to black carbon in transport microenvironments | 2012 |
Nwokoro et al. | Cycling to work in London and inhaled dose of black carbon | 2012 |
Buonanno et al. | Children’s exposure assessment to ultrafine particles and black carbon: The role of transport and cooking activities | 2013 |
Almeida et al. | Exposure and dose assessment to particle components among an elderly population | 2014 |
Faria et al. | Evaluation of a numerical methodology to estimate pedestrians’ energy consumption and PM inhalation | 2014 |
Hu et al. | Air pollution exposure estimation and finding association with human activity using wearable sensor network | 2014 |
Vouitsis et al. | Microenvironment particle measurements in Thessaloniki, Greece | 2014 |
Almeida et al. | Exposure and inhaled dose of susceptible population to chemical elements in atmospheric particles | 2015 |
Ramos et al. | Estimating the inhaled dose of pollutants during indoor physical activity | 2015 |
Ramos et al. | Comparison of particulate matter inhalation for users of different transport modes in Lisbon | 2015 |
Adams et al. | Air pollution exposure: An activity pattern approach for active transportation | 2016 |
Cepeda et al. | Levels of ambient air pollution according to mode of transport: a systematic review | 2016 |
Lei et al. | Individual exposure of graduate students to PM2.5 and black carbon in Shanghai, China | 2016 |
Pasalic et al. | Air pollution, physical activity, and markers of acute airway oxidative stress and inflammation in adolescents. | 2016 |
Ramos et al. | Air pollutant exposure and inhaled dose during urban commuting: a comparison between cycling and motorized modes | 2016 |
Zwozdziak et al. | Implications of the aerosol size distribution modal structure of trace and major elements on human exposure, inhaled dose and relevance to the PM2.5 and PM10 metrics in a European pollution hotspot urban area | 2016 |
Broach and Bigazzi | Existence and use of low-pollution route options for observed bicycling trips | 2017 |
Chaney et al. | Personal exposure to fine particulate air pollution while commuting: An examination of six transport modes on an urban arterial roadway | 2017 |
Dons et al. | Wearable sensors for personal monitoring and estimation of inhaled traffic-related air pollution: evaluation of methods | 2017 |
Jeong and Park | Contribution of time-activity pattern and microenvironment to black carbon (BC) inhalation exposure and potential internal dose among elementary school children | 2017 |
Tan et al. | Particle exposure and inhaled dose during commuting in Singapore | 2017 |
Apparicio et al. | Exposure to noise and air pollution by mode of transportation during rush T hours in Montreal | 2018 |
Carvalho et al. | Variations in individuals’ exposure to black carbon particles during their daily activities: A screening study in Brazil | 2018 |
Pasqua et al. | Exercising in air pollution: The cleanest versus dirtiest Cities challenge | 2018 |
Slezakova et al. | Indoor air quality in health clubs: Impact of occupancy and type of performed activities on exposure levels | 2018 |
Xu et al. | Estimated individual inhaled dose of fine particles and indicators of lung function: A pilot study among Chinese young adults. | 2018 |
Betancourt et al. | Personal exposure to air pollutants in a Bus Rapid Transit System: Impact of fleet age and emission standard | 2019 |
Borghi et al. | Evaluation of the inhaled dose across different microenvironments | 2019 |
Correia et al. | Particle exposure and inhaled dose while commuting in Lisbon | 2019 |
Cunha-Lopes et al. | Children’s exposure to sized-fractioned particulate matter and black carbon in an urban environment | 2019 |
Engström and Forsberg | Health impacts of active commuters’ exposure to traffic-related air T pollution in Stockholm, Sweden | 2019 |
Li et al. | Associations between inhaled doses of PM2.5-bound polycyclic aromatic hydrocarbons and fractional exhaled nitric oxide | 2019 |
Polednik and Piotrowicz | Pedestrian exposure to traffic-related particles along a city road in Lublin, Poland | 2019 |
Qiu et al. | Exposure assessment of cyclists to UFP and PM on urban routes in Xi’an, China | 2019 |
Qiu et al. | Pedestrian exposure to PM2.5, BC and UFP of adults and teens: A case study in Xi’an, China | 2019 |
Velasco et al. | Particle exposure and inhaled dose while commuting by public transport in Mexico City | 2019 |
Borghi et al. | Commuters’ personal exposure assessment and evaluation of inhaled dose to different atmospheric pollutants | 2020 |
Borghi et al. | Estimation of the inhaled dose of airborne pollutants during commuting: Case study and application for the general population | 2020 |
Buregeya et al. | Short-term impact of traffic-related particulate matter and noise exposure on cardiac function | 2020 |
Faria et al. | Children’s exposure and dose assessment to particulate matter in Lisbon | 2020 |
Lizana et al. | Contribution of indoor microenvironments to the daily inhaled dose of air pollutants in children: The importance of bedrooms | 2020 |
Manojkumar, Monishraj and Srimuruganandam | Commuter exposure concentrations and inhalation doses in traffic and residential routes of Vellore city, India | 2021 |
References
- Vouitsis, I.; Taimisto, P.; Kelessis, A.; Samaras, Z. Microenvironment particle measurements in Thessaloniki, Greece. Urban Clim. 2014, 10, 608–620. [Google Scholar] [CrossRef]
- Karanasiou, A.; Viana, M.; Querol, X.; Moreno, T.; de Leeuw, F. Assessment of personal exposure to particulate air pollution during commuting in European cities-Recommendations and policy implications. Sci. Total Environ. 2014, 490, 785–797. [Google Scholar] [CrossRef]
- Apparicio, P.; Gelb, J.; Carrier, M.; Mathieu, M.È.; Kingham, S. Exposure to noise and air pollution by mode of transportation during rush hours in Montreal. J. Transp. Geogr. 2018, 70, 182–192. [Google Scholar] [CrossRef]
- Adams, M.D.; Yiannakoulias, N.; Kanaroglou, P.S. Air pollution exposure: An activity pattern approach for active transportation. Atmos. Environ. 2016, 140, 52–59. [Google Scholar] [CrossRef]
- Qiu, Z.; Lv, H.; Zhang, F.; Wang, W.; Hao, Y. Pedestrian exposure to PM2.5, BC and UFP of adults and teens: A case study in Xi’an, China. Sustain. Cities Soc. 2019, 51, 101774. [Google Scholar] [CrossRef]
- Correia, C.; Martins, V.; Cunha-Lopes, I.; Faria, T.; Diapouli, E.; Eleftheriadis, K.; Almeida, S.M. Particle exposure and inhaled dose while commuting in Lisbon. Environ. Pollut. 2020, 257, 113547. [Google Scholar] [CrossRef]
- Cattaneo, A.; Campo, L.; Iodice, S.; Spinazzè, A.; Olgiati, L.; Borghi, F.; Polledri, E.; Angelici, L.; Cavallo, D.M.; Fustinoni, S.; et al. Environmental and biological monitoring of personal exposure to air pollutants of adult people living in a metropolitan area. Sci. Total Environ. 2021, 767, 144916. [Google Scholar] [CrossRef]
- Ramos, C.A.; Reis, J.F.; Almeida, T.; Alves, F.; Wolterbeek, H.T.; Almeida, S.M. Estimating the inhaled dose of pollutants during indoor physical activity. Sci. Total Environ 2015, 527–528, 111–118. [Google Scholar] [CrossRef] [Green Version]
- Hu, K.; Davison, T.; Rahman, A.; Sivaraman, V. Air pollution exposure estimation and finding association with human activity using wearable sensor network. In Proceedings of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis—MLSDA’14, Gold Coast, Australia, 2 December 2014; pp. 48–55. [Google Scholar] [CrossRef] [Green Version]
- Ramos, M.J.; Vasconcelos, A.; Faria, M. Comparison of particulate matter inhalation for users of different transport modes in Lisbon. Transp. Res. Procedia 2015, 10, 433–442. [Google Scholar] [CrossRef] [Green Version]
- Monn, C. Exposure assessment of air pollutants: A review on spatial heterogeneity and indoor/outdoor/personal exposure to suspended particulate matter, nitrogen dioxide and ozone. Atmos. Environ. 2001, 35, 1–32. [Google Scholar] [CrossRef]
- Han, X.; Naeher, L.P. A review of traffic-related air pollution exposure assessment studies in the developing world. Environ. Int. 2006, 32, 106–120. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Altman, D.; Antes, G.; Atkins, D.; Barbour, V.; Barrowman, N.; Berlin, J.A.; et al. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6. [Google Scholar] [CrossRef] [Green Version]
- Borghi, F.; Spinazzè, A.; Rovelli, S.; Campagnolo, D.; Del Buono, L.; Cattaneo, A.; Cavallo, D.M. Miniaturized monitors for assessment of exposure to air pollutants: A review. Int. J. Environ. Res. Public Health 2017, 14, 909. [Google Scholar] [CrossRef] [Green Version]
- Slezakova, K.; Peixoto, C.; Pereira, M.d.C.; Morais, S. Indoor air quality in health clubs: Impact of occupancy and type of performed activities on exposure levels. J. Hazard. Mater. 2018, 359, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Buonanno, G.; Stabile, L.; Morawska, L.; Russi, A. Children exposure assessment to ultrafine particles and black carbon: The role of transport and cooking activities. Atmos. Environ. 2013, 79, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Borghi, F.; Spinazzè, A.; Fanti, G.; Campagnolo, D.; Rovelli, S.; Keller, M.; Cattaneo, A.; Cavallo, D.M. Commuters’ personal exposure assessment and evaluation of inhaled dose to different atmospheric pollutants. Int. J. Environ. Res. Public Health 2020, 17. [Google Scholar] [CrossRef] [PubMed]
- Borghi, F.; Cattaneo, A.; Spinazzè, A.; Manno, A.; Rovelli, S.; Campagnolo, D.; Vicenzi, M.; Mariani, J.; Bollati, V.; Cavallo, D.M. Evaluation of the inhaled dose across different microenvironments. In Proceedings of the IOP Conference Series: Earth and Environmental Science; IOPscience: Bristol, UK, 2019; Volume 296. [Google Scholar]
- Dons, E.; Int Panis, L.; Van Poppel, M.; Theunis, J.; Wets, G. Personal exposure to Black Carbon in transport microenvironments. Atmos. Environ. 2012, 55, 392–398. [Google Scholar] [CrossRef]
- Dons, E.; Laeremans, M.; Orjuela, J.P.; Avila-Palencia, I.; Carrasco-Turigas, G.; Cole-Hunter, T.; Anaya-Boig, E.; Standaert, A.; De Boever, P.; Nawrot, T.; et al. Wearable Sensors for Personal Monitoring and Estimation of Inhaled Traffic-Related Air Pollution: Evaluation of Methods. Environ. Sci. Technol. 2017, 51, 1859–1867. [Google Scholar] [CrossRef] [Green Version]
- Nwokoro, C.; Ewin, C.; Harrison, C.; Ibrahim, M.; Dundas, I.; Dickson, I.; Mushtaq, N.; Grigg, J. Cycling to work in London and inhaled dose of black carbon. Eur. Respir. J. 2012, 40, 1091–1097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zwozdziak, A.; Gini, M.I.; Samek, L.; Rogula-Kozlowska, W.; Sowka, I.; Eleftheriadis, K. Implications of the aerosol size distribution modal structure of trace and major elements on human exposure, inhaled dose and relevance to the PM2.5 and PM10 metrics in a European pollution hotspot urban area. J. Aerosol Sci. 2017, 103, 38–52. [Google Scholar] [CrossRef]
- Polednik, B.; Piotrowicz, A. Pedestrian exposure to traffic-related particles along a city road in Lublin, Poland. Atmos. Pollut. Res. 2020, 11, 686–692. [Google Scholar] [CrossRef]
- De Nazelle, A.; Fruin, S.; Westerdahl, D.; Martinez, D.; Ripoll, A.; Kubesch, N.; Nieuwenhuijsen, M. A travel mode comparison of commuters’ exposures to air pollutants in Barcelona. Atmos. Environ. 2012, 59, 151–159. [Google Scholar] [CrossRef]
- Abadie, M.; Limam, K.; Bouilly, J.; Génin, D. Particle pollution in the French high-speed train (TGV) smoker cars: Measurement and prediction of passengers exposure. Atmos. Environ. 2004, 38, 2017–2027. [Google Scholar] [CrossRef]
- Zuurbier, M.; Hoek, G.; Oldenwening, M.; Meliefste, K.; Krop, E.; van den Hazel, P.; Brunekreef, B. In-traffic air pollution exposure and CC16, blood coagulation, and inflammation markers in healthy adults. Environ. Health Perspect. 2011, 119, 1384–1389. [Google Scholar] [CrossRef] [Green Version]
- Engström, E.; Forsberg, B. Health impacts of active commuters’ exposure to traffic-related air pollution in Stockholm, Sweden. J. Transp. Health 2019, 14, 100601. [Google Scholar] [CrossRef]
- Borghi, F.; Fanti, G.; Cattaneo, A.; Campagnolo, D.; Rovelli, S.; Keller, M.; Spinazz, A.; Cavallo, D.M. Estimation of the Inhaled Dose of Airborne Pollutants during Commuting: Case Study and Application for the General Population. Int. J. Environ. Res. Public Health 2020, 17, 1–14. [Google Scholar] [CrossRef]
- Lizana, J.; Almeida, S.M.; Serrano-Jiménez, A.; Becerra, J.A.; Gil-Báez, M.; Barrios-Padura, A.; Chacartegui, R. Contribution of indoor microenvironments to the daily inhaled dose of air pollutants in children. The importance of bedrooms. The importance of bedrooms. Build. Environ. 2020, 183. [Google Scholar] [CrossRef]
- Faria, T.; Martins, V.; Correia, C.; Canha, N.; Diapouli, E.; Manousakas, M.; Eleftheriadis, K.; Almeida, S.M. Children’s exposure and dose assessment to particulate matter in Lisbon. Build. Environ. 2020, 171, 106666. [Google Scholar] [CrossRef]
- Cunha-Lopes, I.; Martins, V.; Faria, T.; Correia, C.; Almeida, S.M. Children’s exposure to sized-fractioned particulate matter and black carbon in an urban environment. Build. Environ. 2019, 155, 187–194. [Google Scholar] [CrossRef]
- Ramos, C.A.; Wolterbeek, H.T.; Almeida, S.M. Air pollutant exposure and inhaled dose during urban commuting: A comparison between cycling and motorized modes. Air Qual. Atmos. Health 2016, 9, 867–879. [Google Scholar] [CrossRef]
- Almeida-Silva, M.; Almeida, S.M.; Pegas, P.N.; Nunes, T.; Alves, C.A.; Wolterbeek, H.T. Exposure and dose assessment to particle components among an elderly population. Atmos. Environ. 2015, 102, 156–166. [Google Scholar] [CrossRef]
- Almeida, S.M.; Ramos, C.A.; Almeida-Silva, M. Exposure and inhaled dose of susceptible population to chemical elements in atmospheric particles. J. Radioanal. Nucl. Chem. 2016, 309, 309–315. [Google Scholar] [CrossRef]
- Faria, M.; Duarte, G.; Vasconcelos, A.; Farias, T. Evaluation of a numerical methodology to estimate pedestrians’ energy consumption and PM inhalation. Transp. Res. Procedia 2014, 3, 780–789. [Google Scholar] [CrossRef] [Green Version]
- Pasalic, E. Air pollution, physical activity, and markers of acute airway oxidative stress and inflammation in adolescents. J. Georg. Public Health Assoc. 2016, 6 (Suppl. 2), 314–330. [Google Scholar] [CrossRef]
- Dua, S.K.; Hopke, P.K. Hygroscopicity of indoor aerosols and its influence on the deposition of inhaled radon decay products. Environ. Int. 1997, 22, 941–947. [Google Scholar] [CrossRef]
- Chaney, R.A.; Sloan, C.D.; Cooper, V.C.; Robinson, D.R.; Hendrickson, N.R.; McCord, T.A.; Johnston, J.D. Personal exposure to fine particulate air pollution while commuting: An examination of six transport modes on an urban arterial roadway. PLoS ONE 2017, 12, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Broach, J.; Bigazzi, A.Y. Existence and Use of Low-Pollution Route Options for Observed Bicycling Trips. Transp. Res. Rec. 2017, 2662, 152–159. [Google Scholar] [CrossRef]
- Buregeya, J.M.; Apparicio, P.; Gelb, J. Short-term impact of traffic-related particulate matter and noise exposure on cardiac function. Int. J. Environ. Res. Public Health 2020, 17, 1220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasqua, L.A.; Damasceno, M.V.; Cruz, R.; Matsuda, M.; Martins, M.G.; Lima-Silva, A.E.; Marquezini, M.; Saldiva, P.H.N.; Bertuzzi, R. Exercising in air pollution: The cleanest versus dirtiest cities challenge. Int. J. Environ. Res. Public Health 2018, 15, 1502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, A.M.; Krecl, P.; Targino, A.C. Variations in individuals’ exposure to black carbon particles during their daily activities: A screening study in Brazil. Environ. Sci. Pollut. Res. 2018, 25, 18412–18423. [Google Scholar] [CrossRef] [PubMed]
- Morales Betancourt, R.; Galvis, B.; Rincón-Riveros, J.M.; Rincón-Caro, M.A.; Rodriguez-Valencia, A.; Sarmiento, O.L. Personal exposure to air pollutants in a Bus Rapid Transit System: Impact of fleet age and emission standard. Atmos. Environ. 2019, 202, 117–127. [Google Scholar] [CrossRef]
- Velasco, E.; Retama, A.; Segovia, E.; Ramos, R. Particle exposure and inhaled dose while commuting by public transport in Mexico City. Atmos. Environ. 2019, 219. [Google Scholar] [CrossRef]
- Li, T.; Wang, Y.; Hou, J.; Zheng, D.; Wang, G.; Hu, C.; Xu, T.; Cheng, J.; Yin, W.; Mao, X.; et al. Associations between inhaled doses of PM2.5-bound polycyclic aromatic hydrocarbons and fractional exhaled nitric oxide. Chemosphere 2019, 218, 992–1001. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Hou, J.; Cheng, J.; Zhang, R.; Yin, W.; Huang, C.; Zhu, X.; Chen, W.; Yuan, J. Estimated individual inhaled dose of fine particles and indicators of lung function: A pilot study among Chinese young adults. Environ. Pollut. 2018, 235, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Z.; Wang, W.; Zheng, J.; Lv, H. Exposure assessment of cyclists to UFP and PM on urban routes in Xi’an, China. Environ. Pollut. 2019, 250, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Lei, X.; Xiu, G.; Li, B.; Zhang, K.; Zhao, M. Individual exposure of graduate students to PM2.5 and black carbon in Shanghai, China. Environ. Sci. Pollut. Res. 2016, 23, 12120–12127. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.H.; Roth, M.; Velasco, E. Particle exposure and inhaled dose during commuting in Singapore. Atmos. Environ. 2017, 170, 245–258. [Google Scholar] [CrossRef]
- Jeong, H.; Park, D. Contribution of time-activity pattern and microenvironment to black carbon (BC) inhalation exposure and potential internal dose among elementary school children. Atmos. Environ. 2017, 164, 270–279. [Google Scholar] [CrossRef]
- Manojkumar, N.; Monishraj, M.; Srimuruganandam, B. Commuter exposure concentrations and inhalation doses in traffic and residential routes of Vellore city, India. Atmos. Pollut. Res. 2020, 12, 219–230. [Google Scholar] [CrossRef]
- Cepeda, M.; Schoufour, J.; Freak-Poli, R.; Koolhaas, C.M.; Dhana, K.; Bramer, W.M.; Franco, O.H. Levels of ambient air pollution according to mode of transport: A systematic review. Lancet Public Health 2017, 2, e23–e34. [Google Scholar] [CrossRef] [Green Version]
- Anjilvel Satish Asgharian, B. A Multiple-Path Model of Particle Deposition in the Rat Lung. Toxicol. Sci. 1995, 28, 41–50. [Google Scholar] [CrossRef]
- Miller, F.J.; Asgharian, B.; Schroeter, J.D.; Price, O. Improvements and additions to the Multiple Path Particle Dosimetry model. J. Aerosol Sci. 2016, 99, 14–26. [Google Scholar]
- Kuempel, E.D.; Sweeney, L.M.; Morris, J.B.; Jarabek, A.M. Advances in Inhalation Dosimetry Models and Methods for Occupational Risk Assessment and Exposure Limit Derivation. J. Occup. Environ. Hyg. 2015, 12, S18–S40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hänninen, O.O.; Alm, S.; Katsouyanni, K.; Künzli, N.; Maroni, M.; Nieuwenhuijsen, M.J.; Saarela, K.; Srám, R.J.; Zmirou, D.; Jantunen, M.J. The EXPOLIS study: Implications for exposure research and environmental policy in Europe. J. Expo. Anal. Environ. Epidemiol. 2004, 14, 440–456. [Google Scholar] [CrossRef] [PubMed]
- Klepeis, N.E.; Nelson, W.C.; Ott, W.R.; Robinson, J.P.; Tsang, A.M.; Switzer, P.; Behar, J.V.; Hern, S.C.; Engelmann, W.H. The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants. J. Expo. Anal. Environ. Epidemiol. 2001, 11, 231–252. [Google Scholar] [CrossRef] [Green Version]
- Querol, X.; Moreno, T.; Karanasiou, A.; Reche, C.; Alastuey, A.; Viana, M.; Font, O.; Gil, J.; de Miguel, E.; Capdevila, M. Variability of levels and composition of PM10 and PM2.5 in the Barcelona metro system. Atmos. Chem. Phys. 2012, 12, 5055–5076. [Google Scholar] [CrossRef] [Green Version]
Database | Search Query |
---|---|
PubMed | (((((((((((((micro-environment*) OR transport*) OR mode) OR commuting) OR car*) OR bus*) OR public) OR subway) OR underground) OR cyclist*) OR train*)) AND “inhaled dose”) AND ((pollut*) OR “air pollution”) |
Scopus | TITLE-ABS-KEY (micro-environment* OR transport* OR mode OR commuting OR car* OR bus* OR public OR subway OR underground OR cyclist* OR train*) AND TITLE-ABS-KEY (“inhaled dose”) AND TITLE-ABS-KEY (pollut* OR “air pollution”) |
Web of Science | TS = (micro-environment* OR transport* OR mode OR commuting OR car* OR bus* OR public OR subway OR underground OR cyclist* OR train*) AND TS = (“inhaled dose”) AND TS = (pollut* OR “air pollution”) |
Pollutant | Number of Papers | Reference |
---|---|---|
UFPs | 6 | [5,16,17,23,24,47] |
PM0.5 | 1 | [8] |
PM1 | 8 | [1,8,15,17,18,23,28,32,47,51] |
PM2.5 | 26 | [1,4,5,6,8,10,17,18,22,23,24,26,28,31,32,36,38,40,41,43,44,45,46,47,48,49,51,52] |
PM4 | 4 | [15,17,18,28,32] |
PM5 | 1 | [8] |
PM10 | 16 | [6,8,10,17,18,22,23,26,28,31,32,33,34,35,40,41,47] |
TSP | 2 | [17,18] |
BC | 16 | [1,5,6,16,19,20,21,24,31,36,42,43,48,49,50,52] |
Particle number | 3 | [1,26,49] |
CO | 7 | [8,9,24,32,43,49,52] |
CO2 | 4 | [8,15,24,32] |
NO2 | 5 | [3,17,18,27,52] |
O3 | 4 | [8,15,32,36] |
VOCs | 3 | [8,15,29,32] |
CH2O | 1 | [8] |
Aldehydes | 1 | [29] |
Particle-bound PAHs | 1 | [49] |
ME | Number of Papers | Reference |
---|---|---|
Indoor (general) | 2 | [17,18,28,33,34,37,48] |
Home | 7 | [18,19,20,29,30,42,50] |
Dormitories | 2 | [45,46] |
Offices | 2 | [45,46] |
Schools or academies | 3 | [29,31,50] |
Laboratories | 2 | [45,46] |
Hospitals | 1 | [18] |
Fitness centers or gymnasiums | 4 | [8,15,20,30] |
Swimming pools | 1 | [30] |
Shops/Supermarkets | 1 | [30] |
Cinemas/Theaters | 1 | [30] |
Restaurants/Bars | 2 | [30,50] |
Outdoor (general) | 4 | [18,34,41,48] |
Beaches | 1 | [30] |
Playgrounds/Gardens | 2 | [30,50] |
Domestic outdoor | 1 | [42] |
Public transport (general) | 6 | [3,21,42,48,50,52] |
Walking | 19 | [4,5,27,28,30,38,43,44,49,51,52,10,17,18,19,20,21,23,24] |
Bicycle | 20 | [1,3,4,6,17,18,19,21,24,26,27,28,32,38,39,40,44,47,51,52] |
Car | 17 | [1,3,6,17,18,19,20,24,26,28,30,32,38,44,49,51,52] |
Bus | 15 | [1,6,10,18,19,24,26,30,32,38,43,44,49,51,52] |
Metro | 9 | [6,10,17,18,28,30,32,44,49] |
Train | 5 | [17,18,25,28,38] |
Tram | 1 | [18] |
Motorcycle | 2 | [32,51] |
Autorickshaw | 1 | [51] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borghi, F.; Spinazzè, A.; Mandaglio, S.; Fanti, G.; Campagnolo, D.; Rovelli, S.; Keller, M.; Cattaneo, A.; Cavallo, D.M. Estimation of the Inhaled Dose of Pollutants in Different Micro-Environments: A Systematic Review of the Literature. Toxics 2021, 9, 140. https://doi.org/10.3390/toxics9060140
Borghi F, Spinazzè A, Mandaglio S, Fanti G, Campagnolo D, Rovelli S, Keller M, Cattaneo A, Cavallo DM. Estimation of the Inhaled Dose of Pollutants in Different Micro-Environments: A Systematic Review of the Literature. Toxics. 2021; 9(6):140. https://doi.org/10.3390/toxics9060140
Chicago/Turabian StyleBorghi, Francesca, Andrea Spinazzè, Simone Mandaglio, Giacomo Fanti, Davide Campagnolo, Sabrina Rovelli, Marta Keller, Andrea Cattaneo, and Domenico Maria Cavallo. 2021. "Estimation of the Inhaled Dose of Pollutants in Different Micro-Environments: A Systematic Review of the Literature" Toxics 9, no. 6: 140. https://doi.org/10.3390/toxics9060140
APA StyleBorghi, F., Spinazzè, A., Mandaglio, S., Fanti, G., Campagnolo, D., Rovelli, S., Keller, M., Cattaneo, A., & Cavallo, D. M. (2021). Estimation of the Inhaled Dose of Pollutants in Different Micro-Environments: A Systematic Review of the Literature. Toxics, 9(6), 140. https://doi.org/10.3390/toxics9060140