Particle-Bound Mercury Characterization in the Central Italian Herbarium of the Natural History Museum of the University of Florence (Italy)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. PBM Ampling and Analysis
2.3. Mercury Concentration and Health Risk Assessment
3. Results
3.1. Mercury Particles: Dimensions and Chemistry
3.2. Other Elements
4. Discussion
4.1. PBM Pollution in the Central Italian Herbarium
4.2. PBM Composition and Other Elements
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kurt-Karakus, P.B. Determination of heavy metals in indoor dust from Istanbul, Turkey: Estimation of the health risk. Environ. Int. 2012, 50, 47–55. [Google Scholar] [CrossRef]
- Hulin, M.; Simoni, M.; Viegi, G.; Annesi-Maesano, I. Respiratory health and indoor air pollutants based on quantitative exposure assessments. Eur. Respir. J. 2012, 40, 1033–1045. [Google Scholar] [CrossRef] [Green Version]
- Schieweck, A.; Lohrengel, B.; Siwinski, N.; Genning, C.; Salthammer, T. Organic and inorganic pollutants in storage rooms of the lower Saxony state museum Hanover, Germany. Atmos. Environ. 2005, 39, 6098–6108. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E. What are heavy metals? Long-standing controversy over the scientific use of the term ‘heavy metals’–proposal of a comprehensive definition. Toxicol. Environ. Chem. 2018, 100, 6–19. [Google Scholar] [CrossRef]
- Lummas, S.; Ruiz-Jimenez, J.; de Castro, M.D.L.; Colston, B.; Gonzalez-Rodriguez, J.; Chen, B.; Corns, W. Determination of arsenic, mercury and barium in herbarium mount paper using dynamic ultrasound-assisted extraction prior to atomic fluorescence and absorption spectrometry. Anal. Lett. 2011, 44, 1842–1852. [Google Scholar] [CrossRef] [Green Version]
- Marcotte, S.; Estel, L.; Minchin, S.; Leboucher, S.; Le Meur, S. Monitoring of lead, arsenic and mercury in the indoor air and settled dust in the Natural History Museum of Rouen (France). Atmos. Pollut. Res. 2017, 8, 483–489. [Google Scholar] [CrossRef]
- Briggs, D.; Sell, P.D.; Block, M.; I’ons, R.D. Mercury vapour: A health hazard in herbaria. New Phytol. 1983, 94, 453–457. [Google Scholar] [CrossRef]
- Hawks, C.; Makos, K.; Bell, D.; Wambach, P.E.; Burroughs, G.E. An inexpensive method to test for mercury vapor in herbarium cabinets. Taxon 2004, 53, 783–790. [Google Scholar] [CrossRef]
- Oyarzun, R.; Higueras, P.; Esbrí, J.M.; Pizarro, J. Mercury in air and plant specimens in herbaria: A pilot study at the MAF Herbarium in Madrid (Spain). Sci. Total Environ. 2007, 387, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Kataeva, M.; Panichev, N.; van Wyk, A.E. Monitoring mercury in two South African herbaria. Sci. Total Environ. 2009, 407, 1211–1217. [Google Scholar] [CrossRef]
- Fellowes, J.W.; Pattrick, R.A.D.; Green, D.I.; Dent, A.; Lloyd, J.R.; Pearce, C.I. Use of biogenic and abiotic elemental selenium nanospheres to sequester elemental mercury released from mercury contaminated museum specimens. J. Hazard. Mater. 2011, 189, 660–669. [Google Scholar] [CrossRef]
- Webber, W.B.; Ernest, L.J.; Vangapandu, S. Mercury exposures in university herbarium collections. J. Chem. Health 2011, 18, 9–12. [Google Scholar] [CrossRef]
- Havermans, J.; Dekker, R.; Sportel, R. The effect of mercuric chloride treatment as biocide for herbaria on the indoor air quality. Herit. Sci. 2015, 3, 39. [Google Scholar] [CrossRef] [Green Version]
- Fallon, D.; Peters, M.; Hunt, M.; Koehler, K. Cleaning protocol for mercuric chloride–contaminated herbarium cabinets at the Smithsonian Museum Support Center. In Collection Forum; The Society for the Experimental Analysis of Behavior, Inc.: Marthasville, MO, USA; Department of Psychology, Indiana University: Bloomington, IN, USA, 2016; Volume 30, pp. 51–62. [Google Scholar] [CrossRef] [Green Version]
- Cabassi, J.; Rimondi, V.; Yeqing, Z.; Vacca, A.; Vaselli, O.; Buccianti, A.; Costagliola, P. 100 years of high GEM concentration in the Central Italian Herbarium and Tropical Herbarium Studies Centre (Florence, Italy). J. Environ. Sci. 2020, 87, 377–388. [Google Scholar] [CrossRef] [PubMed]
- Signorini, M.A. La difesa degli erbari dai parassiti: Indagine sulle caratteristiche e la sicurezza d’uso dei principali mezzi di lotta adottati. Mus. Sci. 1984, 1–2, 29–54. [Google Scholar]
- World Health Organization (WHO). Air Quality Guidelines for Europe, 2nd ed.; WHO Regional Publications, European Series; World Health Organization, Regional Office for Europe: Geneva, Switzerland, 2000. [Google Scholar]
- Gustin, M.S.; Biester, H.; Kim, C.S. Investigation of the light-enhanced emission of mercury from naturally enriched substrates. Atmos. Environ. 2002, 36, 3241–3254. [Google Scholar] [CrossRef]
- Scholtz, M.T.; Van Heyst, B.J.; Schroeder, W.H. Modelling of mercury emissions from background soils. Sci. Total Environ. 2003, 304, 185–207. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S.; Holland, H.D.; Turekian, K.K. Composition of the continental crust. In The Crust; Holland, H.D., Turekian, K.K., Eds.; University of Maryland: Maryland, MD, USA, 2003; Volume 3, pp. 1–64. [Google Scholar]
- Schroeder, W.H.; Munthe, J. Atmospheric mercury—An overview. Atmos. Environ. 1998, 29, 809–822. [Google Scholar] [CrossRef]
- Park, J.D.; Zheng, W. Human exposure and health effects of inorganic and elemental mercury. J. Prev. Med. Public Health 2012, 45, 344. [Google Scholar] [CrossRef]
- Lynam, M.M.; Keeler, G.J. Comparison of methods for particulate phase mercury analysis: Sampling and analysis. Anal. Bioanal. Chem. 2002, 374, 1009–1014. [Google Scholar] [CrossRef] [Green Version]
- Selin, E.S. Atmospheric Chemistry, Modeling, and Biogeochemistry of Mercury. In Mercury in the Environment: Pattern and Process; Bank, M.S., Ed.; University of California Press: Berkeley, CA, USA, 2012. [Google Scholar]
- Kim, P.R.; Han, Y.J.; Holsen, T.M.; Yi, S.M. Atmospheric particulate mercury: Concentrations and size distributions. Atmos. Environ. 2012, 61, 94–102. [Google Scholar] [CrossRef]
- Lu, J.Y.; Schroeder, W.H. Sampling and determination of particulate mercury in ambient air: A review. Water Air Soil Pollut. 1999, 112, 279–295. [Google Scholar] [CrossRef]
- Raffaelli, M. Il Museo di Storia Naturale dell'Università di Firenze. Le Collezioni Botaniche; Firenze University Press: Firenze, Italy, 2009. [Google Scholar]
- Thiers, B.M. The World’s Herbaria 2017: A Summary Reported Based on Data from Index Herbariorum; NYBG: Bronx, NY, USA, 2018. [Google Scholar]
- Passerini, N.; Pampanini, R. La conservazione degli erbari e l'efficacia del sublimato (HgCl2) nell’avvelenamento delle piante. Soc. Bot. Ital. 1927, 34, 593–627. [Google Scholar]
- Goldstein, J.; Newbury, D.E.; Joy, D.C.; Lyman, C.E.; Echlin, P.; Lifshin, E.; Sawyer, L.; Michael, J.R. Scanning Electron Microscopy and X-Ray Microanalysis, 3rd ed.; Springer: New York, NY, USA, 2003. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- US EPA (Environmental Protection Agency). Exposure Factors Handbook: 2011 Edition; EPA/600/R-09/052F; National Center for Environmental Assessment: Washington, DC, USA, 2011. [Google Scholar]
- US EPA (Environmental Protection Agency). Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites; EPA/540/R-96/018; Office of Solid Waste and Emergency Response: Washington, DC, USA, 2002. [Google Scholar]
- US EPA (Environmental Protection Agency). Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment); EPA/540/R/99/005; Office of Superfund Remediation and Technology Innovation, US Environmental Protection Agency: Washington, DC, USA, 2004. [Google Scholar]
- US EPA (Environmental Protection Agency). Update for Chapter 5 of the Exposure Factors Handbook Soil and Dust Ingestion; EPA/600/R-17/384F; National Center for Environmental Assessment Office of Research and Development US Environmental Protection Agency: Washington, DC, USA, 2017. [Google Scholar]
- RAIS (The Risk Assessment Information System). Condensed Toxicity Summary for Mercury. Available online: https://rais.ornl.gov/tox/profiles/mercury_c_V1.html (accessed on 1 April 2021).
- US EPA (Environmental Protection Agency). Sustainable Futures/P2 Framework Manual, Risk Assessment Division of the Office of Pollution Prevention and Toxics; EPA-748-B12-001; US Environmental Protection Agency (EPA/OPPT): Washington, DC, USA, 2012. [Google Scholar]
- World Health Organization (WHO). Guidance for Identifying Populations at Risk from Mercury Exposure; Mercury Publications: New York, NY, USA, 2016. [Google Scholar]
- European Committee for Standardization (CEN). Workplace Atmospheres-Size Fraction Definitions for Measurement of Airborne Particles; Report No. BS EN 481; CEN, British Standards Institute: London, UK, 1993. [Google Scholar]
- Schleicher, N.J.; Schäfer, J.; Chen, Y.; Blanc, G.; Chen, Y.; Chai, F.; Cen, K.; Norra, S. Atmospheric particulate mercury in the megacity Beijing: Efficiency of mitigation measures and assessment of health effects. Atmos. Environ. 2016, 124, 396–403. [Google Scholar] [CrossRef]
- Brown, J.S.; Gordon, T.; Price, O.; Asgharian, B. Thoracic and respirable particle definitions for human health risk assessment. Part. Fibre Toxicol. 2013, 10, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Hong, Y.S.; Kim, Y.M.; Lee, K.E. Methylmercury exposure and health effects. J. Prev. Med. Public Health 2012, 45, 353. [Google Scholar] [CrossRef] [Green Version]
- US EPA (Environmental Protection Agency). Guidance for Evaluating the Oral Bioavailability of Metals in Soils for Use in Human Health Risk Assessment; United States Environmental Protection Agency, OSWER: Washington, DC, USA, 2007; pp. 7–80. [Google Scholar]
- Rasmussen, P.E.; Subramanian, K.S.; Jessiman, B.J. A multi-element profile of house dust in relation to exterior dust and soils in the city of Ottawa, Canada. Sci. Total Environ. 2001, 267, 125–140. [Google Scholar] [CrossRef]
- Wang, W.; Wu, F.; Zheng, J.; Wong, M.H. Risk assessments of PAHs and Hg exposure via settled house dust and street dust, linking with their correlations in human hair. J. Hazard. Mater. 2013, 263, 627–637. [Google Scholar] [CrossRef]
- Deering, K.; Spiegel, E.; Quaisser, C.; Nowak, D.; Schierl, R.; Bose-O’Reilly, S.; Garí, M. Monitoring of arsenic, mercury and organic pesticides in particulate matter, ambient air and settled dust in natural history collections taking the example of the Museum für Naturkunde, Berlin. Environ. Monit. Assess. 2019, 191, 1–17. [Google Scholar] [CrossRef]
- Jaradat, Q.M.; Momani, K.A.; Jbarah, A.A.Q.; Massadeh, A. Inorganic analysis of dust fall and office dust in an industrial area of Jordan. Environ. Res. 2004, 96, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Kopperud, R.J.; Ferro, A.R.; Hildemann, L.M. Outdoor versus indoor contributions to indoor particulate matter (PM) determined by mass balance methods. J. Air Waste Manag. Assoc. 2004, 54, 1188–1196. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.N.M.; Latif, M.T.; Mohamad, N.; Wahid, N.B.A.; Dominick, D.; Juahir, H. Source apportionment of particulate matter (PM10) and indoor dust in a university building. Environ. Forensics 2014, 15, 8–16. [Google Scholar] [CrossRef]
- Ciani, F.; Rimondi, V.; Costagliola, P. Atmospheric mercury pollution: The current methodological framework outlined by environmental legislation. Air Qual. Atmos. Health 2021, 1–13. [Google Scholar] [CrossRef]
- Xiu, G.L.; Jin, Q.; Zhang, D.; Shi, S.; Huang, X.; Zhang, W.; Bao, L.; Gao, P.; Chen, B. Characterization of size-fractionated particulate mercury in Shanghai ambient air. Atmos. Environ. 2005, 39, 419–427. [Google Scholar] [CrossRef]
- Duffour, E. Note sur un proceed simplifiè pour l’empoisonnement des plantes d’herbier à l’aide de la dissolution alcoolique de Richlorure de Mercure. Bull. Soc. Bot. Fr. 1863, 10, 686. [Google Scholar] [CrossRef]
- Welfringer, B.; Zagury, G.J. Evaluation of two in vitro protocols for determination of mercury bioaccessibility: Influence of mercury fractionation and soil properties. J. Environ. Qual. 2009, 38, 2237–2244. [Google Scholar] [CrossRef]
- Bacci, M.; Picollo, M.; Trumpy, G.; Tsukada, M.; Kunzelman, D. Non-invasive identification of white pigments on 20th-century oil paintings by using fiber optic reflectance spectroscopy. J. Am. Inst. Conserv. 2007, 46, 27–37. [Google Scholar] [CrossRef]
- Harroun, S.G.; Bergman, J.; Jablonski, E.; Brosseau, C.L. Surface-enhanced Raman spectroscopy analysis of house paint and wallpaper samples from an 18th century historic property. Analyst 2011, 136, 3453–3460. [Google Scholar] [CrossRef]
- Hofmann, C.; Hartl, A.; Ahn, K.; Faerber, I.; Henniges, U.; Potthast, A. Studies on the Conservation of Verdigris on Paper. Int. J. Preserv. Libr. Arch. Mater. 2015, 36, 147–182. [Google Scholar] [CrossRef]
- Zwoździak, A.; Sówka, I.; Krupińska, B.; Zwoździak, J.; Nych, A. Infiltration or indoor sources as determinants of the elemental composition of particulate matter inside a school in Wrocław, Poland. Build. Environ. 2013, 66, 173–180. [Google Scholar] [CrossRef]
- Rodríguez-Urrego, D.; Rodríguez-Urrego, L. Air quality during the COVID-19: PM2.5 analysis in the 50 most polluted capital cities in the world. Environ. Pollut. 2020, 266, 115042. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Kong, S.; Chen, N.; Yan, Y.; Liu, D.; Zhu, B.; Xu, K.; Cao, W.; Ding, Q.; Lan, B.; et al. Significant changes in the chemical compositions and sources of PM2.5 in Wuhan since the city lockdown as COVID-19. Sci. Total Environ. 2020, 739, 140000. [Google Scholar] [CrossRef] [PubMed]
- Agency For Toxic Substances and Disease Registry (ATSDR). Lead Toxicity. 2017. Available online: https://www.atsdr.cdc.gov/csem/lead/docs/CSEM-Lead_toxicity_508.pdf (accessed on 1 February 2021).
Sampling Site | Sample Name | Dust Type | Location |
---|---|---|---|
Webb Hall | W-OD | old | Above the top shelf of the closet surrounding the Webb Hall |
W-AD | almost-new | On the surface of a sample pack inside a cabinet of the Webb Hall | |
W-ND | new | On the shelf of a cabinet hosting herbaria samples of the Webb Hall | |
W-W | wood | Wooden pieces of a cabinet of the Webb Hall | |
W-P | paint | Paint fragments scraped off the wall of the Webb Hall | |
Botanical library | B-OD | old | On the upper frame of a cabinet in the Botanical library |
B-AD | almost-new | Inside a closet of the Botanical library | |
B-ND | new | On the support surface of a cabinet in the Botanical library | |
B-P | paint | Paint fragments scraped off the wall of the Botanical library | |
Geomineralogy library | G-OD | old | On the upper frame of a cabinet in the Geomineralogy library |
G-AD | almost-new | On a book shelf on the upper balcony in the Geomineralogy library | |
G-ND | new | On a study table in the Geomineralogy library | |
G-P | paint | Paint fragments scraped off the wall of the Geomineralogy library |
2018 | 2020 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Sample | ECD (μm) | ECD (μm) | ||||||||
Hg-Particles n. | Min | Max | Average | SD | Hg-Particles n. | Min | Max | Average | SD | |
W-OD | 30 | 0.15 | 4.82 | 0.80 | 1.01 | 2 | 0.83 | 1.10 | 0.95 | - |
W-AD | 62 | 0.15 | 1.68 | 0.59 | 0.34 | 167 | 0.29 | 5.90 | 0.90 | 0.80 |
W-ND | 6 | 0.15 | 0.66 | 0.26 | 0.20 | 55 | 0.20 | 6.25 | 0.57 | 0.93 |
W-W | n.a. | n.a. | n.a. | n.a. | - | - | - | - | - | - |
W-P | n.a. | n.a. | n.a. | n.a. | - | - | - | - | - | - |
B-OD | 4 | 0.83 | 1.91 | 1.11 | 0.52 | 2 | 0.51 | 2.78 | 1.65 | - |
B-AD | 12 | 0.42 | 1.44 | 0.73 | 0.36 | - | - | - | - | - |
B-ND | - | - | - | - | - | - | - | - | - | - |
B-P | n.a. | n.a. | n.a. | n.a. | - | - | - | - | - | - |
G-OD | - | - | - | - | - | - | - | - | - | - |
G-AD | - | - | - | - | - | - | - | - | - | - |
G-ND | 1 | 0.51 | 0.51 | 0.51 | - | - | - | - | - | - |
G-P | n.a. | n.a. | n.a. | n.a. | - | - | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciani, F.; Chiarantini, L.; Costagliola, P.; Rimondi, V. Particle-Bound Mercury Characterization in the Central Italian Herbarium of the Natural History Museum of the University of Florence (Italy). Toxics 2021, 9, 141. https://doi.org/10.3390/toxics9060141
Ciani F, Chiarantini L, Costagliola P, Rimondi V. Particle-Bound Mercury Characterization in the Central Italian Herbarium of the Natural History Museum of the University of Florence (Italy). Toxics. 2021; 9(6):141. https://doi.org/10.3390/toxics9060141
Chicago/Turabian StyleCiani, Francesco, Laura Chiarantini, Pilario Costagliola, and Valentina Rimondi. 2021. "Particle-Bound Mercury Characterization in the Central Italian Herbarium of the Natural History Museum of the University of Florence (Italy)" Toxics 9, no. 6: 141. https://doi.org/10.3390/toxics9060141
APA StyleCiani, F., Chiarantini, L., Costagliola, P., & Rimondi, V. (2021). Particle-Bound Mercury Characterization in the Central Italian Herbarium of the Natural History Museum of the University of Florence (Italy). Toxics, 9(6), 141. https://doi.org/10.3390/toxics9060141