An Integrated Investigation of Atmospheric Gaseous Elemental Mercury Transport and Dispersion Around a Chlor-Alkali Plant in the Ossola Valley (Italian Central Alps)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Determination of GEM in Air
2.3. Lichen Collection and Preparation for Analysis
2.4. Analytical Procedure for the Determination of Hg in Lichens
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- UNEP Minamata Convention on Mercury; United Nations Environment Programme: Geneva, Switzerland, 2017; Available online: http://www.mercuryconvention.org/ (accessed on 17 June 2020).
- Ullrich, S.M.; Tanton, T.W.; Abdrashitova, S.A. Mercury in the aquatic environment: A review of factors affecting methylation. Crit. Rev. Environ. Sci. Technol. 2001, 31, 241–293. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency (EPA). Mercury. 2016. Available online: www.epa.gov/mercury (accessed on 29 January 2016).
- The Original List of Hazardous Air Pollutants. 2016. Available online: http://www.epa.gov/ttn/atw/188polls.html (accessed on 13 March 2013).
- Fu, X.W.; Zhang, H.; Yu, B.; Wang, X.; Lin, C.-J.; Feng, X.B. Observations of atmospheric mercury in China: A critical review. Atmos. Chem. Phys. 2015, 15, 9455–9476. [Google Scholar] [CrossRef] [Green Version]
- Gworek, B.; Dmuchowski, W.; Baczewska-Dąbrowska, A.H. Mercury in the terrestrial environment: A review. Environ. Sci. Eur. 2020, 32, 1–19. [Google Scholar] [CrossRef]
- UNEP Global Mercury Assessment 2013: Sources, Emissions, Releases and Environmental Transport; UNEP Chemical Branch: Geneva, Switzerland, 2013; Available online: https://wedocs.unep.org/20.500.11822/7984 (accessed on 26 April 2017).
- Pacyna, E.; Pacyna, J.; Sundseth, K.; Munthe, J.; Kindbom, K.; Wilson, S.; Steenhuisen, F.; Maxson, P.; Pacyna, E.; Pacyna, J.; et al. Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020. Atmos. Environ. 2010, 44, 2487–2499. [Google Scholar] [CrossRef]
- Kotnik, J.; Horvat, M.; Dizdarevic, T. Current and past mercury distribution in air over the Idrija Hg mine region, Slovenia. Atmos. Environ. 2005, 39, 7570–7579. [Google Scholar] [CrossRef]
- Vaselli, O.; Higueras, P.; Nisi, B.; Esbrí, J.M.; Cabassi, J.; Martínez-Coronado, A.; Tassi, F.; Rappuoli, D. Distribution of gaseous Hg in the Mercury mining district of Mt. Amiata (Central Italy): A geochemical survey prior the reclamation project. Environ. Res. 2013, 125, 179–187. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Liang, H.; Liang, M.; Chen, Y.; Zhou, Y. Mercury emissions flux from various land uses in old mining area, Inner Mongolia, China. J. Geochem. Explor. 2018, 192, 132–141. [Google Scholar] [CrossRef]
- Esbrí, J.M.; Higueras, P.L.; Martínez-Coronado, A.; Naharro, R. 4D dispersion of total gaseous mercury derived from a mining source: Identification of criteria to assess risks related to high concentrations of atmospheric mercury. Atmos. Chem. Phys. 2020, 20, 12995–13010. [Google Scholar] [CrossRef]
- Ferrara, R.; Maserti, B.; Edner, H.; Ragnarson, P.; Svanberg, S.; Wallinder, E. Mercury emissions into the atmosphere from a chlor-alkali complex measured with the lidar technique. Atmos. Environ. Part A Gen. Top. 1992, 26, 1253–1258. [Google Scholar] [CrossRef]
- Esbrí, J.M.; López-Berdonces, M.A.; Fernández-Calderón, S.; Higueras, P.; Díez, S. Atmospheric Mercury Pollution around a Chlor-Alkali Plant in Flix (NE Spain): An Integrated Analysis. Environ. Sci. Pollut. Res. 2015, 22, 4842–4850. [Google Scholar] [CrossRef] [PubMed]
- Guney, M.; Kumisbek, A.; Akimzhanova, Z.; Kismelyeva, S.; Beisova, K.; Zhakiyenova, A.; Inglezakis, V.; Karaca, F. Environmental Partitioning, Spatial Distribution, and Transport of Atmospheric Mercury (Hg) Originating from a Site of Former Chlor-Alkali Plant. Atmosphere 2021, 12, 275. [Google Scholar] [CrossRef]
- Eckley, C.S.; Parsons, M.T.; Mintz, R.; Lapalme, M.; Mazur, M.; Tordon, R.; Elleman, R.; Graydon, J.A.; Blanchard, P.; Louis, V.S. Impact of Closing Canada’s Largest Point-Source of Mercury Emissions on Local Atmospheric Mercury Concentrations. Environ. Sci. Technol. 2013, 47, 10339–10348. [Google Scholar] [CrossRef] [PubMed]
- García, G.F.; Álvarez, H.B.; Echeverría, R.S.; De Alba, S.R.; Rueda, V.M.; Dosantos, E.C.; Cruz, G.V. Spatial and temporal variability of atmospheric mercury concentrations emitted from a coal-fired power plant in Mexico. J. Air Waste Manag. Assoc. 2017, 67, 973–985. [Google Scholar] [CrossRef]
- Gao, J.; Wang, K.; Tong, Y.; Yue, T.; Wang, C.; Zuo, P.; Liu, J. Refined spatio-temporal emission assessment of Hg, As, Cd, Cr and Pb from Chinese coal-fired industrial boilers. Sci. Total Environ. 2021, 757, 143733. [Google Scholar] [CrossRef] [PubMed]
- Lindberg, S.; Bullock, R.; Ebinghaus, R.; Engstrom, D.; Feng, X.; Fitzgerald, W.; Pirrone, N.; Prestbo, E.; Seigneur, C. A syn-thesis of progress and uncertainties in attributing the sources of mercury in deposition. AMBIO J. Hum. Environ. 2007, 36, 19–32. [Google Scholar] [CrossRef]
- Driscoll, C.T.; Mason, R.; Chan, H.M.; Jacob, D.J.; Pirrone, N. Mercury as a Global Pollutant: Sources, Pathways, and Effects. Environ. Sci. Technol. 2013, 47, 4967–4983. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, Q.; Cheng, M.; He, Y.; Chen, L.; Zhang, H.; Cao, H.; Shen, H.; Zhang, W.; Tao, S.; et al. Rice life cycle-based global mercury biotransport and human methylmercury exposure. Nat. Commun. 2019, 10, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Zhao, J.; Zhang, W.; He, L.; Wang, L.; Li, H.; Liu, Q.; Cui, L.; Gao, Y.; Chen, C.; et al. Towards screening the neurotoxicity of chemicals through feces after exposure to methylmercury or inorganic mercury in rats: A combined study using gut microbiome, metabolomics and metallomics. J. Hazard. Mater. 2021, 409, 124923. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.F.; Lowe, M.; Chan, H.M. Mercury exposure, cardiovascular disease, and mortality: A systematic review and dose-response meta-analysis. Environ. Res. 2021, 193, 110538. [Google Scholar] [CrossRef] [PubMed]
- Bernhoft, R.A. Mercury Toxicity and Treatment: A Review of the Literature. J. Environ. Public Health 2012, 2012, 508. [Google Scholar] [CrossRef]
- Marziali, L.; Rosignoli, F.; Drago, A.; Pascariello, S.; Valsecchi, L.; Rossaro, B.; Guzzella, L.; Marziali, L.; Rosignoli, F.; Drago, A.; et al. Toxicity risk assessment of mercury, DDT and arsenic legacy pollution in sediments: A triad approach under low concentration conditions. Sci. Total Environ. 2017, 593, 809–821. [Google Scholar] [CrossRef]
- Marziali, L.; Valsecchi, L. Mercury Bioavailability in Fluvial Sediments Estimated Using Chironomus riparius and Diffusive Gradients in Thin-Films (DGT). Environments 2021, 8, 7. [Google Scholar] [CrossRef]
- Guzzella, L.M.; Novati, S.; Casatta, N.; Roscioli, C.G.; Valsecchi, L.; Binelli, A.; Parolini, M.; Solcà, N.; Bettinetti, R.; Manca, M.; et al. Spatial and temporal trends of target organic and inorganic micropollutants in Lake Maggiore and Lake Lugano (Italian-Swiss water bodies): Contamination in sediments and biota. Hydrobiologia 2018, 824, 271–290. [Google Scholar] [CrossRef]
- Marziali, L.; Guzzella, L.; Salerno, F.; Marchetto, A.; Valsecchi, L.; Tasselli, S.; Roscioli, C.; Schiavon, A. Twenty-year sediment contamination trends in some tributaries of Lake Maggiore (Northern Italy): Relation with anthropogenic factors. Environ. Sci. Pollut. Res. 2021, 1–16. [Google Scholar] [CrossRef]
- Pannu, R.; Siciliano, S.; O’Driscoll, N.J. Quantifying the effects of soil temperature, moisture and sterilization on elemental mercury formation in boreal soils. Environ. Pollut. 2014, 193, 138–146. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Air Quality Guidelines for Europe; WHO Regional Office for Europe: Copenhagen, Denmark, 2000. [Google Scholar]
- International Programme on Chemical Safety (IPCS). Concise International Chemical Assessment Document 50: Elemental Mercury and Inorganic Mercury Compounds: Human Health Aspects; WHO: Geneva, Switzerland, 2003; Available online: http://www.who.int/ipcs/publica-tions/cicad/en/cicad50.pdf (accessed on 1 December 2015).
- U.S. Environmental Protection Agency (US-EPA). Total Risk Integrated Methodology (TRIM)—General Information; Office of Air and Radiation, U.S. Environmental Protection Agency: Washington, DC, USA, 2007. Available online: http://www.epa.gov/ttn/fera/trim_gen.html (accessed on 22 February 2008).
- Agency for Toxic Substances and Disease Registry (ATSDR). Minimal Risk Levels for Hazardous Substances. 2015. Available online: http://www.atsdr.cdc.gov/mrls/ (accessed on 13 January 2021).
- Lian, M.; Shang, L.; Duan, Z.; Li, Y.; Zhao, G.; Zhu, S.; Qiu, G.; Meng, B.; Sommar, J.; Feng, X.; et al. Lidar mapping of atmospheric atomic mercury in the Wanshan area, China. Environ. Pollut. 2018, 240, 353–358. [Google Scholar] [CrossRef]
- Munthe, J.; Wängberg, I.; Pirrone, N.; Iverfeldt, Å.; Ferrara, R.; Ebinghaus, R.; Feng, X.; Gårdfeldt, K.; Keeler, G.; Lanzillotta, E.; et al. Intercomparison of methods for sampling and analysis of atmospheric mercury species. Atmos. Environ. 2001, 35, 3007–3017. [Google Scholar] [CrossRef]
- Esbrí, J.M.; Martínez-Coronado, A.; Higueras, P.L. Temporal variations in gaseous elemental mercury concentrations at a contaminated site: Main factors affecting nocturnal maxima in daily cycles. Atmos. Environ. 2016, 125, 8–14. [Google Scholar] [CrossRef]
- Bargagli, R. Moss and lichen biomonitoring of atmospheric mercury: A review. Sci. Total Environ. 2016, 572, 216–231. [Google Scholar] [CrossRef] [PubMed]
- Abas, A. A systematic review on biomonitoring using lichen as the biological indicator: A decade of practices, progress and challenges. Ecol. Indic. 2021, 121, 107197. [Google Scholar] [CrossRef]
- Horvat, M.; Jeran, Z.; Špirič, Z.; Jaćimović, R.; Miklavčič, V. Mercury and other elements in lichens near the INA Naftaplin gas treatment plant, Molve, Croatia. J. Environ. Monit. 2000, 2, 139–144. [Google Scholar] [CrossRef]
- Sensen, M.; Richardson, D.H.S. Mercury levels in lichens from different host trees around a chlor-alkali plant in New Brunswick, Canada. Sci. Total Environ. 2002, 293, 31–45. [Google Scholar] [CrossRef]
- Grangeon, S.; Guédron, S.; Asta, J.; Sarret, G.; Charlet, L. Lichen and soil as indicators of an atmospheric mercury contamination in the vicinity of a chlor-alkali plant (Grenoble, France). Ecol. Indic. 2012, 13, 178–183. [Google Scholar] [CrossRef]
- Trüe, A.; Panichev, N.A.; Okonkwo, J.; Forbes, P. Determination of the mercury content of lichens and comparison to at-mospheric mercury levels in the South African Highveld region. Clean Air J. 2012, 21, 19–25. [Google Scholar] [CrossRef]
- Ercisli, S.; Turan, M.; Çiçek, A.; Yazici, K.; Gürbüz, H.; Aslan, A. Evaluation of lichens as bio-indicators of metal pollution. J. Elem. 2012, 18, 353–369. [Google Scholar] [CrossRef]
- Paoli, L.; Munzi, S.; Guttova, A.; Senko, D.; Sardella, G.; Loppi, S. Lichens are suitable indicators of the biological effects of atmospheric pollutants around a municipal solid incinerator (S Italy). Ecol. Indic. 2015, 52, 3. [Google Scholar] [CrossRef]
- Panichev, N.; Mokgalaka, N.; Panicheva, S. Assessment of air pollution by mercury in South African provinces using lichens Parmelia caperata as biondicators. Environ. Geochem. Health 2019, 41, 2239–2250. [Google Scholar] [CrossRef]
- Klapstein, S.J.; Walker, A.K.; Saunders, C.H.; Cameron, R.P.; Murimboh, J.D.; O’Driscoll, N.J. Spatial distribution of mercury and other potentially toxic elements using epiphytic lichens in Nova Scotia. Chemosphere 2020, 241, 125064. [Google Scholar] [CrossRef] [PubMed]
- Garty, J. Biomonitoring atmospheric heavy metals with lichens: Theory and application. Crit. Rev. Plant Sci. 2001, 20, 309–371. [Google Scholar] [CrossRef]
- Rola, K. Insight into the pattern of heavy-metal accumulation in lichen thalli. J. Trace Elem. Med. Biol. 2020, 61, 126512. [Google Scholar] [CrossRef]
- Sholupov, S.; Pogarev, S.; Ryzhov, V.; Mashyanov, N.; Stroganov, A. Zeeman atomic absorption spectrometer RA-915+ for direct determination of mercury in air and complex matrix samples. Fuel Process. Technol. 2004, 85, 473–485. [Google Scholar] [CrossRef]
- Sholupov, S.; Ganeyev, A. Zeeman atomic absorption spectrometry using high frequency modulated light polarization. Spectrochim. Acta Part B At. Spectrosc. 1995, 50, 1227–1236. [Google Scholar] [CrossRef]
- Karakaş, Y.S.; Tuncel, S.G. Comparison of accumulation capacities of two lichen species analyzed by instrumental neutron activation analysis. J. Radioanal. Nucl. Chem. 2004, 259, 113–118. [Google Scholar] [CrossRef]
- Stamenković, S.; Cvijan, M. Determination of Airpolution Zones in Knjaževac (South Eastern Serbia) by using Epiphytic Lichens. Biotechnol. Biotechnol. Equip. 2010, 24, 278–283. [Google Scholar] [CrossRef] [Green Version]
- Núñez-Zapata, J.; Divakar, P.K.; Del-Prado, R.; Cubas, P.; Hawksworth, D.L.; Crespo, A. Conundrums in species concepts: The discovery of a new cryptic species segregated from Parmelina tiliacea (Ascomycota: Parmeliaceae). Lichenologist 2011, 43, 603–616. [Google Scholar] [CrossRef] [Green Version]
- U.S. Environmental Protection Agency (US-EPA). Method 7473—Mercury in Solids and Solutions by Thermal Decom-Position, Amalgamation, and Atomic Absorption Spectrophotometry; Revision 0; U.S. Environmental Protection Agency: Washington, DC, USA, 1998.
- Lokken, J.A.; Finstad, G.L.; Dunlap, K.L.; Duffy, L.K. Mercury in lichens and reindeer hair from Alaska: 2005–2007 pilot survey. Polar Rec. 2009, 45, 368–374. [Google Scholar] [CrossRef]
- Bennett, J.P.; Wetmore, C.M. Geothermal elements in lichens of Yellowstone National Park, USA. Environ. Exp. Bot. 1999, 42, 191–200. [Google Scholar] [CrossRef]
- Lodenius, M. Regional distribution of mercury in Hypogymnia physodes in Finland. Ambio 1981, 10, 183–184. [Google Scholar]
- Bargagli, R.; Monaci, F.; Borghini, F.; Bravi, F.; Agnorelli, C. Mosses and lichens as biomonitors of trace metals. A comparison study on Hypnum cupressiforme and Parmelia caperata in a former mining district in Italy. Environ. Pollut. 2002, 116, 279–287. [Google Scholar] [CrossRef]
- Damiani, V.; Thomas, R.L. Mercury in the sediments of the Pallanza Basin. Nat. Cell Biol. 1974, 251, 696–697. [Google Scholar] [CrossRef]
- Guilizzoni, P.; Levine, S.N.; Manca, M.; Marchetto, A.; Lami, A.; Ambrosetti, W.; Brauer, A.; Gerli, S.; Carrara, E.; Rolla, A.; et al. Ecological effects of multiple stressors on a deep lake (Lago Maggiore, Italy) integrating neo and palaeolimnological approaches. J. Limnol. 2012, 71, 1–22. [Google Scholar] [CrossRef]
- Vignati, D.A.; Bettinetti, R.; Boggero, A.; Valsecchi, S. Testing the Use of Standardized Laboratory Tests to Infer Hg Bioaccumulation in Indigenous Benthic Organisms of Lake Maggiore (NW Italy). Appl. Sci. 2020, 10, 1970. [Google Scholar] [CrossRef] [Green Version]
- Nieboer, E.; Richardson, D.H.S. Lichens as monitors of atmospheric deposition. In Atmospheric Pollutants in Natural Waters; Eisenreich, S.J., Ed.; Ann Arbor Science Publishers Inc.: Ann Arbor, MI, USA, 1981; pp. 339–388. [Google Scholar]
- Reis, M.A.; Alves, L.C.; Freitas, M.C.; Van Os, B.; Wolterbeek, H.T. Lichens (Parmelia sulcata) time response model to envi-ronmental elemental availability. Sci. Total Environ. 1999, 232, 105–115. [Google Scholar] [CrossRef]
- Walther, D.; Ramelow, G.; Beck, J.; Young, J.; Callahan, J.; Maroon, M. Temporal changes in metal levels of the lichens Parmotrema praesorediosum and Ramalina stenospora, Southwest Louisiana. Water Air Soil Pollut. 1990, 53, 189–200. [Google Scholar] [CrossRef]
- Acquavita, A.; Biasiol, S.; Lizzi, D.; Mattassi, G.; Pasquon, M.; Skert, N.; Marchiol, L. Gaseous Elemental Mercury Level and Distribution in a Heavily Contaminated Site: The Ex-chlor Alkali Plant in Torviscosa (Northern Italy). Water Air Soil Pollut. 2017, 228, 62. [Google Scholar] [CrossRef]
- Bargagli, R.; Iosco, F.P.; Leonzio, C. Monitoraggio Di Elementi in Tracce Mediante Licheni Epifiti. Inquinamento 1985, 2, 33–37. (In Italian) [Google Scholar]
- Rimondi, V.; Benesperi, R.; Beutel, M.W.; Chiarantini, L.; Costagliola, P.; Lattanzi, P.; Medas, D.; Morelli, G. Monitoring of Airborne Mercury: Comparison of Different Techniques in the Monte Amiata District, Southern Tuscany, Italy. Int. J. Environ. Res. Public Health 2020, 17, 2353. [Google Scholar] [CrossRef] [Green Version]
- Mowat, S.T.; Louis, V.L.; Graydon, J.A.; Lehnherr, I. Influence of forest canopies on the deposition of methylmercury to bo-real ecosystem watersheds. Environ. Sci. Technol. 2011, 45, 5178–5185. [Google Scholar] [CrossRef] [PubMed]
- Rea, A.W.; Lindberg, S.E.; Keeler, G.J. Dry deposition and foliar leaching of mercury and selected trace elements in decidu-ous forest throughfall. Atmos. Environ. 2001, 35, 3453–3462. [Google Scholar] [CrossRef]
Sites | Coordinates a | Total Hg (ng g−1) b | km c | Elevation (m a.s.l.) |
---|---|---|---|---|
Trontano | 46°07′06.79′′ N 08°19′07.39′′ E | 142 ± 20 | 10.0 | 270 |
Villadossola | 46°04′28.08′′ N 08°16′02.83′′ E | 142 ± 5 | 7.5 | 255 |
Cardezza | 46°03′38.40′′ N 08°17′18.23′′ E | 159 ± 7 | 6.0 | 420 |
Pieve Vergonte 1 | 46°00′23.72′′ N 08°16′14.76′′ E | 474 ± 13 | 0.3 | 232 |
Pieve Vergonte 2 | 46°00′43.08′′ N 08°16′50.23′′ E | 261 ± 4 | 0.7 | 220 |
Bosco Tenso | 45°59′38.59′′ N 08°19′57.47′′ E | 624 ± 13 | 4.5 | 210 |
Country | Mean ± SD (ng g−1) | References |
---|---|---|
USA, Alaska | 43 ± 4.3 | [55] |
USA, Yellowstone Park | 140 ± 50 | [56] |
Slovenia | 110 ± 10 | [39] |
Finland | 223 ± 76 | [57] |
France, Grenoble | 70 ± 7.0 | [41] |
Italy, Tuscany | 170 ± 80 | [58] |
South Africa, Limpopo | 60 ± 8.0 | [45] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fantozzi, L.; Guerrieri, N.; Manca, G.; Orrù, A.; Marziali, L. An Integrated Investigation of Atmospheric Gaseous Elemental Mercury Transport and Dispersion Around a Chlor-Alkali Plant in the Ossola Valley (Italian Central Alps). Toxics 2021, 9, 172. https://doi.org/10.3390/toxics9070172
Fantozzi L, Guerrieri N, Manca G, Orrù A, Marziali L. An Integrated Investigation of Atmospheric Gaseous Elemental Mercury Transport and Dispersion Around a Chlor-Alkali Plant in the Ossola Valley (Italian Central Alps). Toxics. 2021; 9(7):172. https://doi.org/10.3390/toxics9070172
Chicago/Turabian StyleFantozzi, Laura, Nicoletta Guerrieri, Giovanni Manca, Arianna Orrù, and Laura Marziali. 2021. "An Integrated Investigation of Atmospheric Gaseous Elemental Mercury Transport and Dispersion Around a Chlor-Alkali Plant in the Ossola Valley (Italian Central Alps)" Toxics 9, no. 7: 172. https://doi.org/10.3390/toxics9070172
APA StyleFantozzi, L., Guerrieri, N., Manca, G., Orrù, A., & Marziali, L. (2021). An Integrated Investigation of Atmospheric Gaseous Elemental Mercury Transport and Dispersion Around a Chlor-Alkali Plant in the Ossola Valley (Italian Central Alps). Toxics, 9(7), 172. https://doi.org/10.3390/toxics9070172