Biochemical Responses of Medicinal Plant Tussilago farfara L. to Elevated Heavy Metal Concentrations in Soils of Urban Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Location
2.2. Sample Collection and Analysis
2.3. Quality Control and Assurance
2.4. Analysis of Biochemical Parameters
2.5. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Metal Content in Soils
3.2. Heavy Metal Concentrations in Plants
3.3. Analysis of Biochemical Parameters
3.4. Correlation Analysis
4. Conclusions
- Metal accumulation stimulated photosynthetic pigment synthesis in coltsfoot, while the metal content correlated with pigment concentrations. Heavy metals provoked oxidative stress in plants, which is registered by Fe and Mn correlations in plants with Schiff bases, as well as increments in lipid peroxidation products at the oil refinery and metallurgical plants. Phenols and flavonoids functioned as antioxidants and depleted for metal chelation. The heavy metal content of soils and plants was negatively correlated with catalase activity.
- The heavy metal accumulation by plants in Tyumen decreased in the following order: Fe > Zn > Mn > Cu > Pb > Cd. Zn and Mn content in soils correlated with that in plants. The most intense metal accumulation was detected at a metallurgical plant.
- The heavy metal analysis of soils revealed Fe contamination compared to control, as well as Pb pollution at the battery manufacturing plant. Furthermore, Cu, Mn, and Zn concentrations exceeded background levels at all examined sites. The percentage of heavy metals in mobile form decreased in the following order: Mn > Zn > Cu > Fe. The highest heavy metal concentrations in soil occurred at the battery manufacturing and metallurgical plants.
- Coltsfoot vegetation in the polluted urban area and metal accumulation led to complex biochemical reactions. Coltsfoot’s biochemical responses and its ability to accumulate heavy metals limit the plant’s use for medicinal purposes.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rai, P.K.; Lee, S.S.; Zhang, M.; Tsang, Y.F.; Kim, K. Heavy metals in food crops: Health risks, fate, mechanisms and management. Environ. Int. 2019, 125, 365–385. [Google Scholar] [CrossRef] [PubMed]
- Appenroth, K.J. Definition of “Heavy Metals” and their role in biological systems. In Soil Heavy Metals. Soil Biology; Varma, A., Sherameti, I., Eds.; Springer-Verlag: Berlin/Heidelberg, Germany, 2010; pp. 19–29. [Google Scholar] [CrossRef]
- Nagajyoti, P.C.; Lee, K.D.; Sreekanth, T.V.M. Heavy metals, occurrence and toxicity for plants: A review. Env. Chem. Lett. 2010, 8, 199–216. [Google Scholar] [CrossRef]
- Zwolak, A.; Sarzynska, M.; Szpyrka, E.; Stawarczyk, K. Sources of soil pollution by heavy metals and their accumulation in vegetables: A review. Water Air Soil Pollut. 2019, 230, 164. [Google Scholar] [CrossRef] [Green Version]
- Wuana, R.A.; Okieimen, F.E. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol. 2011. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Teng, Y.; Lu, S.; Wang, Y.; Wang, J. Contamination features and health risk of soil heavy metals in China. Sci. Total Environ. 2018, 512–513, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Barsova, N.; Yakimenko, O.; Tolpeshta, I.; Motuzova, G. Current state and dynamics of heavy metal soil pollution in Russian Federation—A review. Environ. Pollut. 2019, 249, 200–207. [Google Scholar] [CrossRef]
- Titov, A.F.; Kaznina, N.M.; Talanova, V.V. Tyazhelye Metally i Rasteniya [Heavy Metals and Plants]; Karelsky nauchny centr RAN: Petrozavodsk, Russia, 2014. (In Russian) [Google Scholar]
- Thakur, S.; Singh, L.; Wahid, Z.A.; Siddiqui, M.F.; Atnaw, S.M.; Din, M.F.D. Plant-driven removal of heavy metals from soil: Uptake, translocation, tolerance mechanism, challenges, and future perspectives. Environ. Monit. Asses. 2016, 188, 206. [Google Scholar] [CrossRef]
- DalCorso, G.; Manara, A.; Furini, A. An overview of heavy metal challenge in plants: From roots to shoots. Metallomics 2013, 5, 1117–1132. [Google Scholar] [CrossRef] [PubMed]
- Skugoreva, S.G.; Ashihmina, T.Y.; Fokina, A.I.; Lyalina, E.I. Himicheskie osnovy toksicheskogo dejstvija tjazhjolyh metallov (obzor) [Chemical grounds of toxic effect of heavy metals (review)]. Teor. I Prikl. Jekologija 2016, 1, 4–13. (In Russian) [Google Scholar]
- Cuypers, A.; Smeets, K.; Vangronsveld, J. Heavy metals stress in plants. In Plant Stress Biology; Hirt, H., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2009; pp. 161–178. [Google Scholar] [CrossRef]
- Sytar, O.; Kumar, A.; Latowski, D.; Kuczynska, P.; Strzalka, K.; Prasad, M.N.V. Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiol. Plant. 2013, 35, 985–999. [Google Scholar] [CrossRef]
- Stolfa, I.; Pfeiffer, T.Z.; Spoljaric, D.; Teklic, T.; Loncaric, Z. Heavy metal-induced oxidative stress in plants: Response of the antioxidant system. In Reactive Oxygen Species and Oxidative Damage in Plants under Stress; Gupta, D.K., Palma, J.P., Corpas, F.J., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 127–163. [Google Scholar] [CrossRef]
- Arif, N.; Yadav, V.; Singh, S.; Kushwaha, B.K.; Singh, S.; Tripathi, D.K.; Vishwakarma, K.; Sharma, S.; Dubey, N.K.; Chauhan, D.K. Assessment of antioxidant potential of plants in response to heavy metals. In Plant Responses to Xenobiotics; Singh, A., Prasad, S.M., Singh, R.P., Eds.; Springer nature Singapore Pte Ltd.: Singapore, 2016; pp. 97–125. [Google Scholar] [CrossRef]
- Shikov, A.N.; Pozharitskaya, O.N.; Makarov, V.G.; Wagner, H.; Verpoorte, R.; Heinrich, M. Medicinal plants of the Russian pharmacopeia; their history and applications. J. Ethnopharmacol. 2014, 154, 481–536. [Google Scholar] [CrossRef] [Green Version]
- Jaric, S.; Kostic, O.; Mataruga, Z.; Pavlovic, D.; Pavlovic, M.; Mitrovic, M.; Pavlovic, P. Traditional wound-healing plants used in the Balkan region (Southeast Europe). J. Ethnopharmacol. 2018, 211, 311–328. [Google Scholar] [CrossRef]
- Tobin, G.; Denham, A.; Whitelegg, M. Tussilago farfara, coltsfoot. In Medical Plants; Churchill Livingstone: London, UK, 2011; pp. 317–326. [Google Scholar] [CrossRef]
- Chromchenkova, E.P.; Bokov, D.O.; Bessonov, V.V. Coltsfoot leaves (Tussilago farfara L.)—A promising source of essential amino acids. Sys. Rev. Pharm. 2020, 11, 221–225. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, K.R.; Kim, W.I.; Owens, G.; Kim, K.H. Influence of road proximity on the concentrations of heavy metals in Korean urban agricultural soils and crops. Arch. Environ. Contam. Toxicol. 2016, 72, 260–268. [Google Scholar] [CrossRef]
- Demková, L.; Árvay, J.; Bobuľská, L.; Tomáš, J.; Stanovič, R.; Lošák, T.; Harangozo, L.; Vollmannová, A.; Bystrická, J.; Musilová, J.; et al. Accumulation and environmental risk assessment of heavy metals in soil and plants of four different ecosystems in a former polymetallic ores mining and smelter area. J. Environ. Sci. Health 2017, 52, 479–490. [Google Scholar] [CrossRef]
- Glavac, N.K.; Djogo, S.; Razis, S.; Kreft, S.; Veber, M. Accumulation of heavy metals from soils in medicinal plants. Arh. Hig. Rada. Toksikol. 2017, 68, 236–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vongdala, N.; Tran, H.-D.; Xuan, T.-D.; Teshke, R.; Khanh, T.D. Heavy metal accumulation in water, soil, and plants of municipal solid waste landfill in Vientiane, Laos. Int. J. Environ. Res. Public Health 2019, 16, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shulgin, I.A.; Nichiporovich, A.A. Raschet soderzhaniya pigmentov s pomoshch’yu nomogramm [Calculation of pigments content using nomograms]. In Hlorofill; Nauka i tekhnika: Minsk, Belarus, 1974; pp. 127–136. (In Russian) [Google Scholar]
- Shvedova, A.A.; Polyanskii, N.B. Metod opredeleniya konechnyh produktov perekisnogo okisleniya lipidov v tkanyah—Fluoresciruyushchih shiffovyh osnovanij [Method of Schiff bases determination in tissues]. In Research of Synthetic and Natural Antioxidants in Vitro and in Vivo; Nauka: Moscow, Russia, 1992; pp. 72–73. (In Russian) [Google Scholar]
- General Pharmacopoeial Standard 1.5.3.0008.15. Determination of Tannins in Medicinal Herbal Raw Materials and Herbal Medicine; Ministry of health of the Russian Federation: Moscow, Russia, 2015; p. 4. [Google Scholar]
- Ermakov, A.I.; Arasimovich, V.V.; Yarosh, N.P.; Peruanskiy, Y.V.; Lukovnikova, G.A.; Ikonnikova, M.I. Metody Biohimicheskogo Issledovanija Rastenij [Methods of Plants Biochemical Research]; Agropromizdat: Leningrad, Russia, 1987. (In Russian) [Google Scholar]
- Koroljuk, M.A.; Ivanova, L.I.; Majorova, N.O.; Tokarev, V.E. Metod opredelenija aktivnosti katalazy [Method for catalase activity determination]. Lab. Delo 1988, 1, 16. (In Russian) [Google Scholar]
- SanPiN 1.2.3685-21 “Gigienicheskie Normativy i Trebovanija k Obespecheniju Bezopasnosti i (ili) Bezvrednosti Dlja Cheloveka Faktorov Sredy Obitanija” [Hygienic Norms and Standards for Safety and (or) Absence of Harm of Environmental Factors for Humans]; Glavnyj Gosudarstvennyj Sanitarnyj Vrach Rossijskoj Federacii: Moscow, Russia, 2021.
- Kabata-Pendias, A.; Pendias, H. Trace Elements in Soils and Plants; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Vremennyj Maksimal’no-Dopustimyj Uroven’ (MDU) Soderzhaniya Nekotoryh Himicheskih Elementov i Gossipola v Kormah Dlya Sel’skohozyajstvennyh Zhivotnyh i Kormovyh Dobavkah 123-4/281-8-87 [Maximum Permitted Concentrations of Some Chemical Elements in Forage for Agricultural Animals and Food Additives]; Gosudarstvennyj agropromyshlennyj komitet SSSR, Glavnoe upravlenie veterinarii: Moscow, Russia, 1987.
- Chaplygin, V.; Minkina, T.; Mandzhieva, S.; Burachevskaya, M.; Sushkova, S.; Poluektov, E.; Antonenko, E.; Kumacheva, V. The effect of technogenic emissions on the heavy metals accumulation by herbaceous plants. Environ. Monit. Assess. 2018, 190, 124. [Google Scholar] [CrossRef]
- Trubina, M.R.; Vorobeichik, E.L. Content of heavy metals in medicinal plants in the area under aerotechnogenous impact of the Middle Urals copper smelter. Rastit. Resur. 2013, 2, 203–222. [Google Scholar]
- Roy, M.; McDonald, L.M. Metal uptake in plants and health risk assessment in metal-contaminated smelter soils. Land Degrad. Dev. 2015, 26, 785–792. [Google Scholar] [CrossRef]
- Brunetti, G.; Soler-Rovira, P.; Farrag, K. Tolerance and accumulation of heavy metals by wild plant species grown in contaminated soils in Apulia region, Southern Italy. Plant Soil 2008, 318, 285–298. [Google Scholar] [CrossRef]
- Galal, T.M.; Shehata, H.S. Bioaccumulation and translocation of heavy metals by Plantago major L. grown in contaminated soils under the effect of traffic pollution. Ecol. Indic. 2015, 48, 244–251. [Google Scholar] [CrossRef]
- Sulaiman, F.R.; Hamzah, H.A. Heavy metals accumulation in suburban roadside plants of a tropical area (Jengka, Malaysia). Ecol. Process. 2018, 7, 28. [Google Scholar] [CrossRef]
- Li, M.S.; Luo, Y.P.; Su, Z.Y. Heavy metal concentrations in soils and plant accumulation in a restored manganese mineland in Guangxi, South China. Environ. Pollut. 2007, 147, 168–175. [Google Scholar] [CrossRef]
- Kopylova, L.V. Accumulation of iron and manganese in leaves of woody plants in technogenic areas of Zabaikalskiy krai. Izv. Samara Sci. Cent. Russ. Acad. Sci. 2010, 12, 709–712. (In Russian) [Google Scholar]
- Maslennikov, P.V.; Chupakhina, G.N.; Skrypnik, L.N.; Feduraev, P.V.; Melnik, A.S. Assessment of the antioxidant potential of plants in urban ecosystems under conditions of anthropogenic pollution of soils. Russ. J. Ecol. 2018, 49, 384–394. [Google Scholar] [CrossRef]
- Stiborova, M.; Ditrichova, M.; Brezinova, A. Effect of heavy metal ions on growth and biochemical characteristics of photosynthesis of barley and maize seedlings. Bilogia Plant. 1987, 29, 453–467. [Google Scholar] [CrossRef]
- Chandra, R.; Bharagava, R.N.; Yadav, S.; Mohan, D. Accumulation and distribution of toxic metals in wheat (Triticum aestivum L.) and Indian mustard (Brassica campestris L.) irrigated with distillery and tannery effluents. J. Hazard. Mater. 2009, 162, 1514–1521. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Korpelainen, H.; Li, C. Physiological and biochemical response to high Mn concentrations in two contrasting Populus cathayna populations. Chemosphere 2007, 68, 686–694. [Google Scholar] [CrossRef]
- Dazy, M.; Masfaraud, J.-F.; Ferard, J.-F. Induction of oxidative stress biomarkers associated with heavy metal stress in Fontinalis antipyretica Hedw. Chemosphere 2009, 75, 297–302. [Google Scholar] [CrossRef]
- Pirselova, B.; Kuna, R.; Libantova, J.; Moravcikova, J.; Matusikova, I. Biochemical and physiological comparison of heavy metal-triggered defense responses in the monocot maize and dicot soybean roots. Mol. Biol. Rep. 2011, 38, 3437–3446. [Google Scholar] [CrossRef]
- Juknys, R.; Vitkauskaitem, G.; Racaite, M.; Vencloviene, J. The impacts of heavy metals on oxidative stress and growth of spring barley. Centr. Eur. J. Biol. 2012, 7, 299–306. [Google Scholar] [CrossRef] [Green Version]
- Hassanein, R.A.; Hashem, H.A.; El-Deep, M.H.; Shouman, A. Soil contamination with heavy metals and its effect on growth, yield and physiological responses of vegetable crop plants (turnip and lettuce). J. Stress Physiol. Biochem. 2013, 4, 145–162. [Google Scholar]
- Kapoor, D.; Rattan, A.; Bhardwaj, R.; Kaur, S.; Manoj, A.G. Antioxidative defense responses and activation of phenolic compounds in Brassica juncea plants exposed to cadmium stress. Int. J. Green Pharm. 2016, 10, 228–234. [Google Scholar] [CrossRef]
- Kolesnichenko, V.V.; Kolesnichenko, A.V. Izuchenie vlijanija vysokoj koncentracii kadmija na funkcionirovanie antioksidantnyh sistem jetiolirovannyh prorostkov pshenicy raznoj dliny [Research ofcadmium high concentration effect on antioxidant systems of wheat seedlings of various length]. J. Stress Physiol. Biochem. 2011, 7, 212–221. (In Russian) [Google Scholar]
- Naumenko, O.A.; Sablina, E.V.; Kabysheva, M.I.; Kosteneckaja, E.A. Issledovanie mehanizma povrezhdajushhego dejstvija izbytochnyh koncentracij kadmija na sostojanie antioksidantnyh fermentov kress-salata [Research of damaging effect of high cadmium concentration on antioxidative enzymes of watercress]. Vestn. OGU 2013, 159, 205–207. (In Russian) [Google Scholar]
- Mishra, S.; Srivastava, S.; Tripathi, R.D.; Govindarajan, R.; Kuriakose, S.V.; Prasad, M.N.V. Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiol. Biochem. 2006, 44, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Xiaoguang, Z.; Shihua, P.U.; Jianping, C. The influence of heavy metal available forms of Cu, Pb on catalase activity. In Proceedings of the 2011 International Symposium on Water Resource and Environmental Protection, Xi’an, China, 20–22 May 2011; IEEE: Xi’an, China, 2011; pp. 317–326. [Google Scholar] [CrossRef]
- Nadgorska-Socha, A.; Kafel, A.; Kandziora-Ciupa, M.; Gospodarek, J.; Zawisza-Raszka, A. Accumulation of heavy metals and antioxidative responses in Vicia faba plants grown on monometallic contaminated soil. Environ. Sci. Pollut. Res. 2013, 20, 1124–1134. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, R.H.; Khanlarian, M.; Ghorbanli, M. Effect of lead on germination, growth and activity of catalase and peroxidase enzyme in root and shoot of two cultivars of Brassica napus L. J. Biol. Sci. 2007, 7, 592–598. [Google Scholar] [CrossRef] [Green Version]
No. | Name | Location |
---|---|---|
1 | Control | Outside the city at 10 km distance from anthropogenic sources |
2 | Federal Highway Tyumen-Omsk | 30 km from Tyumen, distance from the road no more than 30 m |
3 | Engine-building plant (EBP) | 200 m from the plant |
4 | Oil refinery (OR) | 200 m from Antipinsky Oil refinery |
5 | Battery Manufacturing plant (BMP) | 200 m from the plant |
6 | UMMC (Ural Mining and Metallurgical Company) | 200 m south of the enterprise |
pH | Humus. % | K2O. mg kg−1 | N(NH4+). mg kg−1 | N(NO3−). mg kg−1 | P2O5. mg kg−1 | |
---|---|---|---|---|---|---|
Control | 6.8 ± 0.2 | 0.57 ± 0.06 | 313 ± 47 | 33 ± 15 | 26 ± 11 | 91 ± 18 |
Highway | 6.6 ± 0.2 | 0.64 ± 0.06 | 85 ± 12 | 42 ± 19 | 16 ± 9 | 95 ± 19 |
EBP | 7.8 ± 0.2 | 0.46 ± 0.04 | 409 ± 61 | 34 ± 16 | 13 ± 7 | 32 ± 6 |
OR | 7.9 ± 0.2 | 0.58 ± 0.06 | 331 ± 50 | 37 ± 17 | 15 ± 8 | 135 ± 27 |
BMP | 8.1 ± 0.2 | 1.53 ± 0.10 | 194 ± 29 | 23 ± 11 | 23 ± 12 | 17 ± 6 |
UMMC | 8.3 ± 0.2 | 0.86 ± 0.08 | 52 ± 10 | 16 ± 6 | 20 ± 11 | 138 ± 28 |
Cu | Fe | Mn | Pb | Cd | Zn | |
---|---|---|---|---|---|---|
Control | 0.58 ± 0.15 5.93 ± 0.29 | 207 ± 9.68 28,500 ± 830 | 59.7 ± 6.03 171 ± 2.35 | 4.30 ± 2.19 7.34 ± 3.57 | 0.08 ± 0.03 0.33 ± 0.17 | 1.16 ± 0.05 16.5 ± 0.22 |
Highway | 0.55 ± 0.20 3.69 ± 0.95 | 172 ± 13.5 25,700 ± 1100 | 71.0 ± 0.92 390 ± 7.72 | 4.35 ± 1.83 7.23 ± 3.73 | 0.13 ± 0.04 0.33 ± 0.16 | 3.62 ± 0.10 15.6 ± 0.51 |
EBP | 0.50 ± 0.14 9.77 ± 0.46 | 67.8 ± 5.65 44,000 ± 1000 | 105 ± 1.56 276 ± 7.34 | 5.19 ± 1.76 8.14 ± 3.63 | 0.16 ± 0.08 0.34 ± 0.17 | 4.48 ± 0.16 28.0 ± 0.50 |
OR | 0.72 ± 0.20 6.67 ± 0.33 | 102 ± 7.21 43,700 ± 1300 | 68.4 ± 0.88 282 ± 10.3 | 1.51 ± 0.87 7.29 ± 3.60 | 0.13 ± 0.03 0.33 ± 0.17 | 2.44 ± 0.16 19.2 ± 0.58 |
BMP | 0.49 ± 0.09 16.6 ± 0.93 | 49.3 ± 7.45 95,000 ± 2300 | 96.5 ± 0.52 448 ± 12.0 | 34.9 ± 3.20 54.6 ± 3.70 | 0.13 ± 0.06 0.34 ± 0.17 | 3.20 ± 0.08 45.5 ± 1.32 |
UMMC | 0.61 ± 0.20 10.8 ± 0.46 | 180 ± 5.02 53,500 ± 1200 | 110 ± 1.06 435 ± 10.6 | 4.89 ± 3.37 7.61 ± 3.73 | 0.14 ± 0.02 0.33 ± 0.17 | 7.28 ± 0.06 36.7 ± 2.19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petukhov, A.; Kremleva, T.; Petukhova, G.; Khritokhin, N. Biochemical Responses of Medicinal Plant Tussilago farfara L. to Elevated Heavy Metal Concentrations in Soils of Urban Areas. Toxics 2021, 9, 171. https://doi.org/10.3390/toxics9070171
Petukhov A, Kremleva T, Petukhova G, Khritokhin N. Biochemical Responses of Medicinal Plant Tussilago farfara L. to Elevated Heavy Metal Concentrations in Soils of Urban Areas. Toxics. 2021; 9(7):171. https://doi.org/10.3390/toxics9070171
Chicago/Turabian StylePetukhov, Alexander, Tatyana Kremleva, Galina Petukhova, and Nikolay Khritokhin. 2021. "Biochemical Responses of Medicinal Plant Tussilago farfara L. to Elevated Heavy Metal Concentrations in Soils of Urban Areas" Toxics 9, no. 7: 171. https://doi.org/10.3390/toxics9070171
APA StylePetukhov, A., Kremleva, T., Petukhova, G., & Khritokhin, N. (2021). Biochemical Responses of Medicinal Plant Tussilago farfara L. to Elevated Heavy Metal Concentrations in Soils of Urban Areas. Toxics, 9(7), 171. https://doi.org/10.3390/toxics9070171