Rutin-Functionalized Multi-Walled Carbon Nanotubes: Molecular Docking, Physicochemistry and Cytotoxicity in Fibroblasts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Functionalization of CNTs
2.3. Molecular Docking
2.4. Scanning Electron Microscopy (SEM)
2.5. Thermal Analysis
2.6. Fourier Transform Infrared Spectroscopy (FTIR)
2.7. Cytotoxicity Assay
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124. [Google Scholar] [CrossRef]
- Morais, R.P.; Novais, G.B.; Sangenito, L.S.; Santos, A.L.S.; Priefer, R.; Morsink, M.; Mendonça, M.C.; Souto, E.B.; Severino, P.; Cardoso, J.C. Naringenin-Functionalized Multi-Walled Carbon Nanotubes: A Potential Approach for Site-Specific Remote-Controlled Anticancer Delivery for the Treatment of Lung Cancer Cells. Int. J. Mol. Sci. 2020, 21, 4557. [Google Scholar] [CrossRef]
- Henna, T.K.; Raphey, V.R.; Sankar, R.; Ameena Shirin, V.K.; Gangadharappa, H.V.; Pramod, K. Carbon nanostructures: The drug and the delivery system for brain disorders. Int. J. Pharm. 2020, 587, 119701. [Google Scholar] [CrossRef]
- Al-Qattan, M.N.; Deb, P.K.; Tekade, R.K. Molecular dynamics simulation strategies for designing carbon-nanotube-based targeted drug delivery. Drug Discov. Today 2018, 23, 235–250. [Google Scholar] [CrossRef]
- Kamminga, T.; Slagman, S.J.; Martins Dos Santos, V.A.P.; Bijlsma, J.J.E.; Schaap, P.J. Risk-Based Bioengineering Strategies for Reliable Bacterial Vaccine Production. Trends Biotechnol. 2019, 37, 805–816. [Google Scholar] [CrossRef] [Green Version]
- Golubewa, L.; Kulahava, T.; Kunitskaya, Y.; Bulai, P.; Shuba, M.; Karpicz, R. Enhancement of single-walled carbon nanotube accumulation in glioma cells exposed to low-strength electric field: Promising approach in cancer nanotherapy. Biochem. Biophys. Res. Commun. 2020, 529, 647–651. [Google Scholar] [CrossRef] [PubMed]
- Iancu, C.; Mocan, L. Advances in cancer therapy through the use of carbon nanotube-mediated targeted hyperthermia. Int. J. Nanomed. 2011, 6, 1675–1684. [Google Scholar] [CrossRef] [Green Version]
- Kandemir, F.M.; Caglayan, C.; Aksu, E.H.; Yildirim, S.; Kucukler, S.; Gur, C.; Eser, G. Protective effect of rutin on mercuric chloride-induced reproductive damage in male rats. Andrologia 2020, 52, e13524. [Google Scholar] [CrossRef]
- Patel, K.; Patel, D.K. The beneficial role of rutin, a naturally occurring flavonoid in health promotion and disease prevention: A systematic review and update. Bioact. Food Diet. Interv. Arthritis Relat. Inflamm. Dis. 2019, 457–479. [Google Scholar] [CrossRef]
- Çelik, H.; Kandemir, F.M.; Caglayan, C.; Özdemir, S.; Çomaklı, S.; Kucukler, S.; Yardım, A. Neuroprotective effect of rutin against colistin-induced oxidative stress, inflammation and apoptosis in rat brain associated with the CREB/BDNF expressions. Mol. Biol. Rep. 2020, 47, 2023–2034. [Google Scholar] [CrossRef] [PubMed]
- Budzynska, B.; Faggio, C.; Kruk-Slomka, M.; Samec, D.; Nabavi, S.F.; Sureda, A.; Devi, K.P.; Nabavi, S.M. Rutin as neuroprotective agent: From bench to bedside. Curr. Med. Chem. 2019, 26, 5152–5164. [Google Scholar] [CrossRef] [PubMed]
- Tian, R.; Long, X.; Yang, Z.; Lu, N.; Peng, Y.Y. Formation of a bovine serum albumin diligand complex with rutin and single-walled carbon nanotubes for the reduction of cytotoxicity. Biophys. Chem. 2020, 256, 106268. [Google Scholar] [CrossRef] [PubMed]
- Remanan, M.K.; Zhu, F. Encapsulation of rutin using quinoa and maize starch nanoparticles. Food Chem. 2021, 353, 128534. [Google Scholar] [CrossRef] [PubMed]
- Ekaette, I.; Saldaña, M.D.A. Ultrasound-assisted modification of rutin to nanocrystals and its application in barley starch pyrodextrinization. Food Chem. 2021, 344, 128626. [Google Scholar] [CrossRef]
- Wu, H.; Su, M.; Jin, H.; Li, X.; Wang, P.; Chen, J.; Chen, J. Rutin-Loaded Silver Nanoparticles With Antithrombotic Function. Front. Bioeng. Biotechnol. 2020, 8, 598977. [Google Scholar] [CrossRef] [PubMed]
- Reis, I.A.; Santos, S.B.; Pereira, F.D.; Sobral, C.R.; Freire, M.G.; Freitas, L.S.; Soares, C.M.; Lima, Á.S. Extraction and recovery of rutin from acerola waste using alcohol-salt-based aqueous two-phase systems. Sep. Sci. Technol. 2014, 49, 656–663. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rezende, A.A.; Santos, R.S.; Andrade, L.N.; Amaral, R.G.; Pereira, M.M.; Bani, C.; Chen, M.; Priefer, R.; da Silva, C.F.; de Albuquerque Júnior, R.L.C.; et al. Anti-Tumor Efficiency of Perillylalcohol/β-Cyclodextrin Inclusion Complexes in a Sarcoma S180-Induced Mice Model. Pharmaceutics 2021, 13, 245. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [Green Version]
- Rocha, L.K.; Favaro, L.I.; Rios, A.C.; Silva, E.C.; Silva, W.F.; Stigliani, T.P.; Guilger, M.; Lima, R.; Oliveira, J.M., Jr.; Aranha, N. Sericin from Bombyx mori cocoons. Part I: Extraction and physicochemical-biological characterization for biopharmaceutical applications. Process. Biochem. 2017, 61, 163–177. [Google Scholar] [CrossRef]
- Fatin, M.F.; Ruslinda, A.R.; Norhafizah, S.; Farehanim, M.A.; Arshad, M.K.M.; Ayub, R.; Hashim, U. Oxidation functionalization of multiwalled carbon nanotube by mild acid sonication. In Proceedings of the 2014 IEEE Conference on Biomedical Engineering and Sciences (IECBES), Kuala Lumpur, Malaysia, 8–10 December 2014; pp. 686–689. [Google Scholar]
- Kathi, J.; Rhee, K.-Y.; Lee, J.H. Effect of chemical functionalization of multi-walled carbon nanotubes with 3-aminopropyltriethoxysilane on mechanical and morphological properties of epoxy nanocomposites. Compos. Part A Appl. Sci. Manuf. 2009, 40, 800–809. [Google Scholar] [CrossRef]
- Clancy, K.F.A.; Hardy, J.G. Gene Delivery with Organic Electronic Biomaterials. Curr. Pharm. Des. 2017, 23, 3614–3625. [Google Scholar] [CrossRef] [Green Version]
- Hirano, A.; Kameda, T.; Wada, M.; Tanaka, T.; Kataura, H. Carbon Nanotubes Facilitate Oxidation of Cysteine Residues of Proteins. J. Phys. Chem. Lett. 2017, 8, 5216–5221. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.M.; Karthivashan, G.; Gani, S.A.; Fakurazi, S.; Hussein, M.Z. In vitro drug release characteristic and cytotoxic activity of silibinin-loaded single walled carbon nanotubes functionalized with biocompatible polymers. Chem. Cent. J. 2016, 10, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dehghani, M.H.; Niasar, Z.S.; Mehrnia, M.R.; Shayeghi, M.; Al-Ghouti, M.A.; Heibati, B.; McKay, G.; Yetilmezsoy, K. Optimizing the removal of organophosphorus pesticide malathion from water using multi-walled carbon nanotubes. Chem. Eng. J. 2017, 310, 22–32. [Google Scholar] [CrossRef]
- Cooper, I.R.; Illsley, M.; Korobeinyk, A.V.; Whitby, R.L. Bacteriophage-nanocomposites: An easy and reproducible method for the construction, handling, storage and transport of conjugates for deployment of bacteriophages active against Pseudomonas aeruginosa. J. Microbiol. Methods 2015, 111, 111–118. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, X.; Zhang, Q.; Wang, L.; Li, Y.; Li, Y. Characterization and Evaluation of the Solubility and Oral Bioavailability of Rutin-Ethanolate Solvate. AAPS PharmSciTech 2020, 21, 241. [Google Scholar] [CrossRef] [PubMed]
- Nandana, C.N.; Christeena, M.; Bharathi, D. Synthesis and characterization of chitosan/silver nanocomposite using rutin for antibacterial, antioxidant and photocatalytic applications. J. Clust. Sci. 2021, 1–11. [Google Scholar] [CrossRef]
- Saha, S.; Mishra, A. A facile preparation of rutin nanoparticles and its effects on controlled growth and morphology of calcium oxalate crystals. J. Cryst. Growth 2020, 540, 125635. [Google Scholar] [CrossRef]
- Ponti, J.; Broggi, F.; Mariani, V.; De Marzi, L.; Colognato, R.; Marmorato, P.; Gioria, S.; Gilliland, D.; Pascual Garcìa, C.; Meschini, S. Morphological transformation induced by multiwall carbon nanotubes on Balb/3T3 cell model as an in vitro end point of carcinogenic potential. Nanotoxicology 2013, 7, 221–233. [Google Scholar] [CrossRef]
- Sohaebuddin, S.K.; Thevenot, P.T.; Baker, D.; Eaton, J.W.; Tang, L. Nanomaterial cytotoxicity is composition, size, and cell type dependent. Part. Fibre Toxicol. 2010, 7, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Affinity (kcal/mol) | Type of Interaction | From | To | Distance (Å) | Angle DHA | Angle HAY |
---|---|---|---|---|---|---|
−8.5 | Hydrogen Bond | CNT_HP_AA | Rutin | 2.83 | 146.8 | 105.2 |
2.39 | 113.6 | 96.0 | ||||
2.42 | 99.2 | 99.1 | ||||
2.80 | 125.4 | 105.4 | ||||
2.70 | 157.8 | 108.9 | ||||
2.76 | 101.2 | 108.6 | ||||
Rutin | CNT_HP_AA | 2.22 | 158.9 | 93.5 | ||
2.46 | 126.7 | 99.6 | ||||
1.96 | 105.3 | 111.6 | ||||
CNT_HP_AA | Rutin | 2.57 | 146.6 | 99.5 | ||
3.00 | 114.3 | 97.3 |
Sample | Events | Tonset (°C) | Tendset (°C) | ∆H (J) |
---|---|---|---|---|
CNT | 1 | 35.80 | 475.90 | −4.12 |
CNT_HP_AA | 1 | 24.69 | 93.51 | −0.22 |
2 | 138.59 | 453.18 | −1.41 | |
CNT_RUT | 1 | 25.58 | 144.69 | −0.12 |
2 | 145.80 | 177.68 | 0.05 | |
3 | 177.70 | 194.79 | −0.01 | |
CNT_RUT_HP_AA | 1 | 32.39 | 154.77 | −0.34 |
2 | 174.96 | 187.49 | −0.03 | |
RUTIN | 1 | 56.05 | 150.39 | −0.30 |
2 | 175.68 | 191.85 | −0.01 |
Sample | ∆m1 (%) 30–170 °C | ∆m2 (%) 170–240 °C | ∆m3 (%) 240–340 °C | ∆m4 (%) 340–800 °C |
---|---|---|---|---|
CNT | 0 | 0 | 0 | 0 |
CNT_HP_AA | 0.78 | 2.08 | 4.63 | 8.55 |
CNT_RUT | 0.58 | 2.92 | 17.97 | 18 |
CNT_RUT_HP_AA | 1.32 | 5.48 | 11.79 | 28.65 |
RUTIN | 6.58 | 7.52 | 7.73 | 36.63 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neto, C.M.S.; Lima, F.C.; Morais, R.P.; de Andrade, L.R.M.; de Lima, R.; Chaud, M.V.; Pereira, M.M.; de Albuquerque Júnior, R.L.C.; Cardoso, J.C.; Zielińska, A.; et al. Rutin-Functionalized Multi-Walled Carbon Nanotubes: Molecular Docking, Physicochemistry and Cytotoxicity in Fibroblasts. Toxics 2021, 9, 173. https://doi.org/10.3390/toxics9080173
Neto CMS, Lima FC, Morais RP, de Andrade LRM, de Lima R, Chaud MV, Pereira MM, de Albuquerque Júnior RLC, Cardoso JC, Zielińska A, et al. Rutin-Functionalized Multi-Walled Carbon Nanotubes: Molecular Docking, Physicochemistry and Cytotoxicity in Fibroblasts. Toxics. 2021; 9(8):173. https://doi.org/10.3390/toxics9080173
Chicago/Turabian StyleNeto, Conrado M. S., Felipe C. Lima, Renata P. Morais, Lucas R. M. de Andrade, Renata de Lima, Marco V. Chaud, Matheus M. Pereira, Ricardo L. C. de Albuquerque Júnior, Juliana C. Cardoso, Aleksandra Zielińska, and et al. 2021. "Rutin-Functionalized Multi-Walled Carbon Nanotubes: Molecular Docking, Physicochemistry and Cytotoxicity in Fibroblasts" Toxics 9, no. 8: 173. https://doi.org/10.3390/toxics9080173
APA StyleNeto, C. M. S., Lima, F. C., Morais, R. P., de Andrade, L. R. M., de Lima, R., Chaud, M. V., Pereira, M. M., de Albuquerque Júnior, R. L. C., Cardoso, J. C., Zielińska, A., Souto, E. B., Lima, Á. S., & Severino, P. (2021). Rutin-Functionalized Multi-Walled Carbon Nanotubes: Molecular Docking, Physicochemistry and Cytotoxicity in Fibroblasts. Toxics, 9(8), 173. https://doi.org/10.3390/toxics9080173