Accelerated Weathering Increases the Release of Toxic Leachates from Microplastic Particles as Demonstrated through Altered Toxicity to the Green Algae Raphidocelis subcapitata
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Particle Characterisation
2.3. Leaching
2.4. Growth Inhibition Tests
2.5. Chemical Analysis
3. Results
3.1. Particle Size Characteristics
3.2. Toxicity of Leachates
3.3. Elemental Composition of MP Leachates
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cole, M.; Lindeque, P.; Halsband, C.; Galloway, T.S. Microplastics as contaminants in the marine environment: A review. Mar. Pollut. Bull. 2011, 62, 2588–2597. [Google Scholar] [CrossRef] [PubMed]
- Frias, J.; Nash, R. Microplastics: Finding a consensus on the definition. Mar. Pollut. Bull. 2019, 138, 145–147. [Google Scholar] [CrossRef]
- Do Sul, J.A.I.; Costa, M.F. The present and future of microplastic pollution in the marine environment. Environ. Pollut. 2014, 185, 352–364. [Google Scholar] [CrossRef] [PubMed]
- Lambert, S.; Scherer, C.; Wagner, M. Ecotoxicity testing of microplastics: Considering the heterogeneity of physicochemical properties. Integr. Environ. Assess. Manag. 2017, 13, 470–475. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, N.B.; Hüffer, T.; Thompson, R.C.; Hassellöv, M.; Verschoor, A.; Daugaard, A.E.; Rist, S.; Karlsson, T.M.; Brennholt, N.; Cole, M.; et al. Are We Speaking the Same Language? Recommendations for a Definition and Categorization Framework for Plastic Debris. Environ. Sci. Technol. 2019, 53, 1039–1047. [Google Scholar] [CrossRef] [Green Version]
- GESAMP. Sources, Fate and Effects of Microplastics in the Marine Environment–Part Two of a Global Assessment; Kershaw, P.J., Rochman, C.M., Eds.; IMO: London, UK, 2015. [Google Scholar]
- Andrady, A.L. Microplastics in the marine environment. Mar. Pollut. Bull. 2011, 62, 1596–1605. [Google Scholar] [CrossRef]
- Clark, J.R.; Cole, M.; Lindeque, P.; Fileman, E.; Blackford, J.; Lewis, C.; Lenton, T.M.; Galloway, T.S. Marine microplastic debris: A targeted plan for understanding and quantifying interactions with marine life. Front. Ecol. Environ. 2016, 14, 317–324. [Google Scholar] [CrossRef] [Green Version]
- Wright, S.L.; Thompson, R.C.; Galloway, T.S. The physical impacts of microplastics on marine organisms: A review. Environ. Pollut. 2013, 178, 483–492. [Google Scholar] [CrossRef]
- Besseling, E.; Wegner, A.; Foekema, E.M.; Heuvel-Greve, M.J.V.D.; Koelmans, A. Effects of Microplastic on Fitness and PCB Bioaccumulation by the Lugworm Arenicola marina (L.). Environ. Sci. Technol. 2013, 47, 593–600. [Google Scholar] [CrossRef]
- Hahladakis, J.N.; Velis, C.A.; Weber, R.; Iacovidou, E.; Purnell, P. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. J. Hazard. Mater. 2018, 344, 179–199. [Google Scholar] [CrossRef]
- Lithner, D.; Larsson, A.; Dave, G. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Sci. Total. Environ. 2011, 409, 3309–3324. [Google Scholar] [CrossRef]
- Hammer, J.; Kraak, M.H.S.; Parsons, J.R. Plastics in the Marine Environment: The Dark Side of a Modern Gift. In Reviews of Environmental Contamination and Toxicology; Springer: New York, NY, USA, 2012. [Google Scholar] [CrossRef]
- Hermabessiere, L.; Dehaut, A.; Paul-Pont, I.; Lacroix, C.; Jezequel, R.; Soudant, P.; Duflos, G. Occurrence and effects of plastic additives on marine environments and organisms: A review. Chemosphere 2017, 182, 781–793. [Google Scholar] [CrossRef] [Green Version]
- Turner, A. Heavy metals, metalloids and other hazardous elements in marine plastic litter. Mar. Pollut. Bull. 2016, 111, 136–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakashima, E.; Isobe, A.; Kako, S.; Itai, T.; Takahashi, S. Quantification of Toxic Metals Derived from Macroplastic Litter on Ookushi Beach, Japan. Environ. Sci. Technol. 2012, 46, 10099–10105. [Google Scholar] [CrossRef]
- Dimitrakakis, E.; Janz, A.; Bilitewski, B.; Gidarakos, E. Determination of heavy metals and halogens in plastics from electric and electronic waste. Waste Manag. 2009, 29, 2700–2706. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Zhang, L.; Huang, Q.; Yang, Y.; Nie, Z.; Cheng, J.; Yang, J.; Wang, Y.; Chai, M. Contamination and risk of heavy metals in soils and sediments from a typical plastic waste recycling area in North China. Ecotoxicol. Environ. Saf. 2015, 122, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Ernst, T. Quantification of heavy metals for the recycling of waste plastics from electrotechnical applications. Talanta 2000, 53, 347–357. [Google Scholar] [CrossRef]
- Singh, N.; Turner, A. Trace metals in antifouling paint particles and their heterogeneous contamination of coastal sediments. Mar. Pollut. Bull. 2009, 58, 559–564. [Google Scholar] [CrossRef]
- Rochman, C.M.; Hoh, E.; Kurobe, T.; Teh, S.J. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Sci. Rep. 2013, 3, 3263. [Google Scholar] [CrossRef]
- Bhattacharya, P.; Lin, S.; Turner, J.P.; Ke, P.C. Physical Adsorption of Charged Plastic Nanoparticles Affects Algal Photosynthesis. J. Phys. Chem. C 2010, 114, 16556–16561. [Google Scholar] [CrossRef]
- Pannetier, P.; Morin, B.; Le Bihanic, F.; Dubreil, L.; Clérandeau, C.; Chouvellon, F.; Van Arkel, K.; Danion, M.; Cachot, J. Environmental samples of microplastics induce significant toxic effects in fish larvae. Environ. Int. 2020, 134, 105047. [Google Scholar] [CrossRef]
- Murphy, F.; Quinn, B. The effects of microplastic on freshwater Hydra attenuata feeding, morphology & reproduction. Environ. Pollut. 2018, 234, 487–494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cole, M.; Lindeque, P.; Fileman, E.; Halsband, C.; Goodhead, R.; Moger, J.; Galloway, T.S. Microplastic Ingestion by Zooplankton. Environ. Sci. Technol. 2013, 47, 6646–6655. [Google Scholar] [CrossRef]
- Von Moos, N.; Burkhardt-Holm, P.; Köhler, A. Uptake and Effects of Microplastics on Cells and Tissue of the Blue Mussel Mytilus edulis L. after an Experimental Exposure. Environ. Sci. Technol. 2012, 46, 11327–11335. [Google Scholar] [CrossRef] [PubMed]
- De Ruijter, V.N.; Redondo-Hasselerharm, P.E.; Gouin, T.; Koelmans, A.A. Quality Criteria for Microplastic Effect Studies in the Context of Risk Assessment: A Critical Review. Environ. Sci. Technol. 2020, 54, 11692–11705. [Google Scholar] [CrossRef] [PubMed]
- Burns, E.E.; Boxall, A.B. Microplastics in the aquatic environment: Evidence for or against adverse impacts and major knowledge gaps. Environ. Toxicol. Chem. 2018, 37, 2776–2796. [Google Scholar] [CrossRef] [Green Version]
- Koelmans, A.A.; Besseling, E.; Foekema, E.; Kooi, M.; Mintenig, S.; Ossendorp, B.C.; Redondo-Hasselerharm, P.E.; Verschoor, A.; Van Wezel, A.P.; Scheffer, M. Risks of Plastic Debris: Unravelling Fact, Opinion, Perception, and Belief. Environ. Sci. Technol. 2017, 51, 11513–11519. [Google Scholar] [CrossRef]
- Andrady, A.L. The plastic in microplastics: A review. Mar. Pollut. Bull. 2017, 119, 12–22. [Google Scholar] [CrossRef]
- Rabek, J.F. Photostabilization of Polymers: Principles and Application; Elsevier Science Publishers Ltd.: Amsterdam, The Netherlands, 1990. [Google Scholar] [CrossRef]
- Wypych, G. Principles of Uv Degradation. In PVC Degradation and Stabilization; ChemTec Publishing: Toronto, ON, Canada, 2015; pp. 167–203. [Google Scholar] [CrossRef]
- Bejgarn, S.; MacLeod, M.; Bogdal, C.; Breitholtz, M. Toxicity of leachate from weathering plastics: An exploratory screening study with Nitocra spinipes. Chemosphere 2015, 132, 114–119. [Google Scholar] [CrossRef] [Green Version]
- Luo, H.; Li, Y.; Zhao, Y.; Xiang, Y.; He, D.; Pan, X. Effects of accelerated aging on characteristics, leaching, and toxicity of commercial lead chromate pigmented microplastics. Environ. Pollut. 2020, 257, 113475. [Google Scholar] [CrossRef]
- Bråte, I.L.N.; Blázquez, M.; Brooks, S.J.; Thomas, K.V. Weathering impacts the uptake of polyethylene microparticles from toothpaste in Mediterranean mussels (M. galloprovincialis). Sci. Total Environ. 2018, 626, 1310–1318. [Google Scholar] [CrossRef] [PubMed]
- Rummel, C.D.; Escher, B.I.; Sandblom, O.; Plassmann, M.M.; Arp, H.P.H.; MacLeod, M.; Jahnke, A. Effects of Leachates from UV-Weathered Microplastic in Cell-Based Bioassays. Environ. Sci. Technol. 2019, 53, 9214–9223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suhrhoff, T.J.; Scholz-Böttcher, B.M. Qualitative impact of salinity, UV radiation and turbulence on leaching of organic plastic additives from four common plastics—A lab experiment. Mar. Pollut. Bull. 2016, 102, 84–94. [Google Scholar] [CrossRef]
- Horton, A.A.; Walton, A.; Spurgeon, D.J.; Lahive, E.; Svendsen, C. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci. Total. Environ. 2017, 586, 127–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambert, S.; Wagner, M. Freshwater Microplastics: Emerging Environmental Contaminants? Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Reid, A.J.; Carlson, A.K.; Creed, I.F.; Eliason, E.J.; Gell, P.A.; Johnson, P.T.J.; Kidd, K.A.; MacCormack, T.J.; Olden, J.D.; Ormerod, S.J.; et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 2019, 94, 849–873. [Google Scholar] [CrossRef] [Green Version]
- Yebra, D.M.; Kiil, S.; Dam-Johansen, K. Antifouling technology—Past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog. Org. Coat. 2004, 50, 75–104. [Google Scholar] [CrossRef]
- Al-Malack, M.H. Migration of lead from unplasticized polyvinyl chloride pipes. J. Hazard. Mater. 2001, 82, 263–274. [Google Scholar] [CrossRef]
- Wik, A.; Dave, G. Environmental labeling of car tires—Toxicity to Daphnia magna can be used as a screening method. Chemosphere 2005, 58, 645–651. [Google Scholar] [CrossRef]
- Simon, M.; Vianello, A.; Shashoua, Y.; Vollertsen, J. Accelerated weathering affects the chemical and physical properties of marine antifouling paint microplastics and their identification by ATR-FTIR spectroscopy. Chemosphere 2021, 274, 129749. [Google Scholar] [CrossRef] [PubMed]
- International Organization for Standardization [ISO 8692:2004]. Water Quality-Fresh Water Algal Growth Inhibition Test with Unicellular Green Algae; International Organization for Standardization: Geneva, Switzerland, 2004. [Google Scholar]
- Hartmann, N.I.B.; von der Kammer, F.; Hofmann, T.; Baalousha, M.; Ottofuelling, S.; Baun, A. Algal testing of titanium dioxide nanoparticles—Testing considerations, inhibitory effects and modification of cadmium bioavailability. Toxicology 2010, 269, 190–197. [Google Scholar] [CrossRef]
- Arensberg, P.; Hemmingsen, V.H.; Nyholm, N. A miniscale algal toxicity test. Chemosphere 1995, 30, 2103–2115. [Google Scholar] [CrossRef]
- Mayer, P.; Cuhel, R.; Nyholm, N. A simple in vitro fluorescence method for biomass measurements in algal growth inhibition tests. Water Res. 1997, 31, 2525–2531. [Google Scholar] [CrossRef]
- Ritz, C.; Baty, F.; Streibig, J.C.; Gerhard, D. Dose-Response Analysis Using R. PLoS ONE 2015, 10, e0146021. [Google Scholar] [CrossRef] [Green Version]
- Mizuno, K.; Hirukawa, H.; Kawasaki, O.; Noguchi, H.; Suzuki, O. Development of non-lead stabilized PVC compounds for insulated wires and cables. Furukawa Rev. 1999, 18, 111–118. [Google Scholar]
- Turner, A.; Rice, L. Toxicity of tire wear particle leachate to the marine macroalga, Ulva lactuca. Environ. Pollut. 2010, 158, 3650–3654. [Google Scholar] [CrossRef] [PubMed]
- Turner, A.; Pollock, H.; Brown, M.T. Accumulation of Cu and Zn from antifouling paint particles by the marine macroalga, Ulva lactuca. Environ. Pollut. 2009, 157, 2314–2319. [Google Scholar] [CrossRef]
- Blinova, I. Use of freshwater algae and duckweeds for phytotoxicity testing. Environ. Toxicol. 2004, 19, 425–428. [Google Scholar] [CrossRef]
- Holmes, L.; Turner, A. Leaching of hydrophobic Cu and Zn from discarded marine antifouling paint residues: Evidence for transchelation of metal pyrithiones. Environ. Pollut. 2009, 157, 3440–3444. [Google Scholar] [CrossRef]
- Bao, V.W.; Leung, K.M.; Kwok, K.W.; Zhang, A.Q.; Lui, G.C. Synergistic toxic effects of zinc pyrithione and copper to three marine species: Implications on setting appropriate water quality criteria. Mar. Pollut. Bull. 2008, 57, 616–623. [Google Scholar] [CrossRef]
- Jung, S.; Bae, J.; Kang, S.; Son, J.; Jeon, J.; Lee, H.; Sidharthan, M.; Ryu, S.; Shin, H. Acute toxicity of organic antifouling biocides to phytoplankton Nitzschia pungens and zooplankton Artemia larvae. Mar. Pollut. Bull. 2017, 124, 811–818. [Google Scholar] [CrossRef]
- Madsen, T.; Samsoe-Petersen, L.; Gustavson, K.; Rasmussen, D. Environmental Project Ecotoxicological Assessment of Antifouling Biocides and Nonbiocidal Antifouling Paints. Environ. Proj. 2000, 531, 112. [Google Scholar] [CrossRef]
- Capolupo, M.; Sørensen, L.; Jayasena, K.D.R.; Booth, A.M.; Fabbri, E. Chemical composition and ecotoxicity of plastic and car tire rubber leachates to aquatic organisms. Water Res. 2020, 169, 115270. [Google Scholar] [CrossRef] [PubMed]
- Gualtieri, M.; Andrioletti, M.; Vismara, C.; Milani, M.; Camatini, M. Toxicity of tire debris leachates. Environ. Int. 2005, 31, 723–730. [Google Scholar] [CrossRef] [PubMed]
- Wik, A.; Nilsson, E.; Källqvist, T.; Tobiesen, A.; Dave, G. Toxicity assessment of sequential leachates of tire powder using a battery of toxicity tests and toxicity identification evaluations. Chemosphere 2009, 77, 922–927. [Google Scholar] [CrossRef]
- Morf, L.S.; Tremp, J.; Gloor, R.; Schuppisser, F.; Stengele, M.; Taverna, R. Metals, non-metals and PCB in electrical and electronic waste–Actual levels in Switzerland. Waste Manag. 2007, 27, 1306–1316. [Google Scholar] [CrossRef] [PubMed]
- OECD-Organization-for-Economic-Cooperation-and-Development. Draft Guidance Document on Aquatic and Sediment toxicological testing of nanomaterials. In Proceedings of the 2nd WNT Commenting Round, Paris, France, 2019; pp. 1–73. [Google Scholar]
Concentration (% of Concentrated Leachate) | |||||||
---|---|---|---|---|---|---|---|
TP | TP | Paint Mix | Paint Mix | Zinc Paint | Zinc Paint | PVC | PVC |
Non- Weathered | UV- Weathered | Non- Weathered | UV- Weathered | Non- Weathered | UV- Weathered | Non- Weathered | UV- Weathered |
100 | 20 | 10 | 1 | 5 | 3.33 | 100 | 6.67 |
50 | 10 | 5 | 0.5 | 3.33 | 2.22 | 50 | 3.33 |
25 | 5 | 2.5 | 0.25 | 2.22 | 1.48 | 25 | 1.66 |
12.5 | 2.5 | 1.25 | 0.125 | 1.48 | 0.99 | 12.5 | 0.83 |
6.25 | 1.25 | 0.63 | 0.063 | 0.99 | 0.66 | 6.25 | 0.42 |
3.1 | 0.63 | 0.44 | 0.21 | ||||
0.1 |
EC10 | EC20 | EC50 | ||
---|---|---|---|---|
Non-weathered | TP | 1.7 (1.3–2.1) | 2.5 (2.1–2.9) | 4.7 (4.3–5.1) |
Paint mix | 2.2 (1.8–2.6) | 2.7 (2.3–3.1) | 3.9 (3.3–4.4) | |
Zinc paint | 1.9 (1.8–2.0) | 2.1 (2.0–2.2) | 2.5 (2.3–2.6) | |
PVC | 8.8 (3.9–13.7) | 13.5 (8.3–18.8) | 28.5 (22.7–34.3) | |
UV-weathered | TP | 0.4 (0.3–0.5) | 0.6 (0.5–0.7) | 1.2 (1.1–1.3) |
Paint mix | 0.21 (0.18–0.24) | 0.24 (0.22–0.27) | 0.3 (0.26–0.37) | |
Zinc paint | 0.47 (0.41–0.52) | 0.54 (0.50–0.58) | 0.7 (0.66–0.73) | |
PVC | 0.21 (0.15–0.27) | 0.31 (0.25–0.38) | 0.6 (0.54–0.68) | |
Zn ion (µg L−1) | 30 (15–43) | 40 (27–57) | 80 (66–95) | |
Cu ion (µg L−1) | 17 (15–19) | 21 (19–23) | 32 (22–41) |
Concentration (µg L−1) | |||||||
---|---|---|---|---|---|---|---|
Cd | Cr | Cu | Pb | Zn | Total Metal | ||
Non- weathered | TP | ND | ND | ND | ND | 1841 | 1841 |
Paint mix | ND | ND | 78 | 0.48 | 2775 | 2854 | |
Zn paint | ND | ND | 13 | 0.48 | 956 | 970 | |
PVC | ND | ND | 2.5 | 113 | 80 | 195 | |
UV- weathered | TP | ND | 2.18 | 13 | 1.88 | 7187 | 7204 |
Paint mix | ND | ND | 2339 | 3.41 | 23,864 | 26,207 | |
Zn paint | 1.8 | ND | 3.1 | 1.02 | 7253 | 7259 | |
PVC | 1.4 | ND | 7.6 | 6630 | 52 | 6691 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simon, M.; Hartmann, N.B.; Vollertsen, J. Accelerated Weathering Increases the Release of Toxic Leachates from Microplastic Particles as Demonstrated through Altered Toxicity to the Green Algae Raphidocelis subcapitata. Toxics 2021, 9, 185. https://doi.org/10.3390/toxics9080185
Simon M, Hartmann NB, Vollertsen J. Accelerated Weathering Increases the Release of Toxic Leachates from Microplastic Particles as Demonstrated through Altered Toxicity to the Green Algae Raphidocelis subcapitata. Toxics. 2021; 9(8):185. https://doi.org/10.3390/toxics9080185
Chicago/Turabian StyleSimon, Márta, Nanna B. Hartmann, and Jes Vollertsen. 2021. "Accelerated Weathering Increases the Release of Toxic Leachates from Microplastic Particles as Demonstrated through Altered Toxicity to the Green Algae Raphidocelis subcapitata" Toxics 9, no. 8: 185. https://doi.org/10.3390/toxics9080185
APA StyleSimon, M., Hartmann, N. B., & Vollertsen, J. (2021). Accelerated Weathering Increases the Release of Toxic Leachates from Microplastic Particles as Demonstrated through Altered Toxicity to the Green Algae Raphidocelis subcapitata. Toxics, 9(8), 185. https://doi.org/10.3390/toxics9080185