Analysis of the 2014 Wet Extreme in Bulgaria: Anomalies of Temperature, Precipitation and Terrestrial Water Storage
Abstract
:1. Introduction
2. Data Sets and Method
2.1. Grace TWS Data
2.2. Surface Synoptic Data
2.3. ERA5
2.4. Oscillation Indices
2.5. Decomposition Method
3. 2014 Wet Extreme in Bulgaria: Time Series Analysis
3.1. Anomalies of Temperature, Precipitation and TWS in 2014
3.2. Time Series Decomposition: Temperature, Precipitation and TWSA
3.2.1. Long-Term Trends and Variability
3.2.2. Seasonal Cycle Component
3.3. Comparison between ERA5 and SYNOP Temperature and Precipitation
3.4. Cross-Correlations between Climate Oscillation Indices and P, T and TWS
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zscheischler, J.; Westra, S.; Hurk, B.J.; Seneviratne, S.I.; Ward, P.J.; Pitman, A.; AghaKouchak, A.; Bresch, D.N.; Leonard, M.; Wahl, T.; et al. Future climate risk from compound events. Nat. Clim. Chang. 2018, 8, 469–477. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Climate Change 2014–Impacts, Adaptation and Vulnerability: Regional Aspects; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Several Flood Highlight Climate Change Challenge for Insurer and EU. Available online: https://www.euractiv.com/section/climate-environment/news/severe-floods-highlight-climate-change-challenge-for-insurers-and-eu/ (accessed on 10 May 2020).
- Serbia Floods 2014. Available online: http://www.ilo.org/wcmsp5/groups/public/-ed_emp/documents/publication/wcms_397685.pdf (accessed on 10 May 2020).
- Balkan Flood 2014. Available online: http://www.aon.com/czechrepublic/attachments/2014 (accessed on 10 May 2020).
- Plavšić, J.; Blagojević, B.; Todorović, A.; Despotović, J. Long-term behaviour of precipitation at three stations in Serbia. Acta Hydrotech. 2016, 29, 23–36. [Google Scholar]
- Stadtherr, L.; Coumou, D.; Petoukhov, V.; Petri, S.; Rahmstorf, S. Record Balkan floods of 2014 linked to planetary wave resonance. Sci. Adv. 2016, 2, e1501428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Statistical Institute. Flood Events Statistics for the Period 2010–2017. Available online: http://www.nsi.bg/bg/content/2915/ (accessed on 17 July 2020).
- Stoycheva, A.; Markova, B.; Diakova, A.; Popova, M.; Kirilova, A.; Stoev, K.; Slavchev, M.; Tsekov, G.; Balabanova, S.; Koshnicharov, G.; et al. The 2014 floods and their condisions. Bul. J. Meteo Hydros 2015, 20, 73–105. [Google Scholar]
- Baldini, L.M.; McDermott, F.; Foley, A.M.; Baldini, J.U. Spatial variability in the European winter precipitation δ18O-NAO relationship: Implications for reconstructing NAO-mode climate variability in the Holocene. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Gallego, M.; García, J.; Vaquero, J. The NAO signal in daily rainfall series over the Iberian Peninsula. Clim. Res. 2005, 29, 103–109. [Google Scholar] [CrossRef]
- Yiou, P.; Nogaj, M. Extreme climatic events and weather regimes over the North Atlantic: When and where? Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Osborn, T.J. Variability and changes in the North Atlantic Oscillation index. In Hydrological, Socioeconomic and Ecological Impacts of the North Atlantic Oscillation in the Mediterranean Region; Springer: Berlin/Heidelberg, Germany, 2011; pp. 9–22. [Google Scholar]
- Vicente-Serrano, S.M.; López-Moreno, J.I.; Lorenzo-Lacruz, J.; El Kenawy, A.; Azorin-Molina, C.; Morán-Tejeda, E.; Pasho, E.; Zabalza, J.; Beguería, S.; Angulo-Martínez, M. The NAO impact on droughts in the Mediterranean region. In Hydrological, Socioeconomic and Ecological Impacts of the North Atlantic Oscillation in the Mediterranean Region; Springer: Berlin/Heidelberg, Germany, 2011; pp. 23–40. [Google Scholar]
- Frappart, F.; Ramillien, G. Monitoring groundwater storage changes using the Gravity Recovery and Climate Experiment (GRACE) satellite mission: A review. Remote Sens. 2018, 10, 829. [Google Scholar] [CrossRef] [Green Version]
- Eicker, A.; Forootan, E.; Springer, A.; Longuevergne, L.; Kusche, J. Does GRACE see the terrestrial water cycle “intensifying”? J. Geophys. Res. Atmos. 2016, 121, 733–745. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Dobslaw, H.; Stacke, T.; Güntner, A.; Dill, R.; Thomas, M. Validation of terrestrial water storage variations as simulated by different global numerical models with GRACE satellite observations. Hydrol. Earth Syst. Sci. 2017, 21, 821–837. [Google Scholar] [CrossRef] [Green Version]
- Mircheva, B.; Tsekov, M.; Meyer, U.; Guerova, G. Anomalies of hydrological cycle components during the 2007 heat wave in Bulgaria. J. Atmos. -Sol.-Terr. Phys. 2017, 165, 1–9. [Google Scholar] [CrossRef]
- Guerova, G.; Simeonov, T.; Yordanova, N. The Sofia University Atmospheric Data Archive (SUADA). Atmos. Meas. Tech. 2014, 7, 2683–2694. [Google Scholar] [CrossRef] [Green Version]
- Tapley, B.D.; Bettadpur, S.; Ries, J.C.; Thompson, P.F.; Watkins, M.M. GRACE measurements of mass variability in the Earth system. Science 2004, 305, 503–505. [Google Scholar] [CrossRef] [Green Version]
- Gravity Recovery and Experiment. Available online: http://nasa.gov/Grace (accessed on 10 May 2020).
- GRACE Follow-On Mission. Available online: http://gracefo.jpl.nasa.gov (accessed on 10 May 2020).
- Flechtner, F.; Morton, P.; Watkins, M.; Webb, F. Status of the GRACE follow-on mission. In Gravity, Geoid and Height Systems; Springer: Berlin/Heidelberg, Germany, 2014; pp. 117–121. [Google Scholar]
- Jäggi, A.; Meyer, U.; Lasser, M.; Jenny, B.; Lopez, T.; Flechtner, F.; Dahle, C.; Förste, C.; Mayer-Gürr, T.; Kvas, A.; et al. International Combination Service for Time-Variable Gravity Fields (COST-G); Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Ogimet Weather Information Service. Available online: http://www.ogimet.com (accessed on 10 May 2020).
- Copernicus Climate Change Service (C3S). Available online: https://climate.copernicus.eu/ (accessed on 10 May 2020).
- Hurrell, J.W. Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science 1995, 269, 676–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donat, M.G.; Leckebusch, G.C.; Pinto, J.G.; Ulbrich, U. Examination of wind storms over Central Europe with respect to circulation weather types and NAO phases. Int. J. Climatol. 2010, 30, 1289–1300. [Google Scholar] [CrossRef] [Green Version]
- North Atlantic Oscillation. Available online: https://crudata.uea.ac.uk/cru/data/nao/ (accessed on 17 July 2020).
- Conte, M.; Giuffrida, A.; Tedesco, S. The Mediterranean oscillation: Impact on precipitation and hydrology in Italy. In Proceedings of the Conference on Climate and Water, Helsinki, Finland, 11–15 September 1989. [Google Scholar]
- Palutikof, J.; Conte, M.; Casimiro Mendes, J.; Goodess, C.; Espirito Santo, F. Climate and climatic change. In Mediterranean Desertification and Land Use; Brandt, C.J., Thomes, J.B., Eds.; John Wiley: New York, NY, USA, 1996; pp. 43–86. [Google Scholar]
- Mediterranean Oscillation Index. Available online: https://crudata.uea.ac.uk/cru/data/moi/ (accessed on 17 July 2020).
- Atlantic Multidecadal Oscillation. Available online: https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/AMO/ (accessed on 17 July 2020).
- Knight, J.R.; Folland, C.K.; Scaife, A.A. Climate impacts of the Atlantic multidecadal oscillation. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Barnston, A.G.; Livezey, R.E. Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Weather. Rev. 1987, 115, 1083–1126. [Google Scholar] [CrossRef]
- Climate Prediction Center-Scandinavia. Available online: http://www.cpc.ncep.noaa.gov/data/teledoc/scand.shtml (accessed on 17 July 2020).
- Cleveland, R.B.; Cleveland, W.S.; Terpenning, I. STL: A seasonal-trend decomposition procedure based on loess. J. Off. Stat. 1990, 6, 3. [Google Scholar]
- Humphrey, V.; Gudmundsson, L.; Seneviratne, S.I. Assessing global water storage variability from GRACE: Trends, seasonal cycle, subseasonal anomalies and extremes. Surv. Geophys. 2016, 37, 357–395. [Google Scholar] [CrossRef] [Green Version]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Wilcoxon, F.; Katti, S.; Wilcox, R.A. Critical values and probability levels for the Wilcoxon rank sum test and the Wilcoxon signed rank test. Sel. Tables Math. Stat. 1970, 1, 171–259. [Google Scholar]
- Hollander, M.; Wolfe, D.A.; Chicken, E. Nonparametric Statistical Methods; John Wiley & Sons: New York, NY, USA, 1973. [Google Scholar]
- Frappart, F.; Ramillien, G.; Ronchail, J. Changes in terrestrial water storage versus rainfall and discharges in the Amazon basin. Int. J. Climatol. 2013, 33, 3029–3046. [Google Scholar] [CrossRef] [Green Version]
- de Paiva, R.C.D.; Buarque, D.C.; Collischonn, W.; Bonnet, M.P.; Frappart, F.; Calmant, S.; Mendes, C.A.B. Large-scale hydrologic and hydrodynamic modeling of the Amazon River basin. Water Resour. Res. 2013, 49, 1226–1243. [Google Scholar] [CrossRef] [Green Version]
- Papa, F.; Güntner, A.; Frappart, F.; Prigent, C.; Rossow, W.B. Variations of surface water extent and water storage in large river basins: A comparison of different global data sources. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- Rodell, M.; Beaudoing, H.K.; L’Ecuyer, T.; Olson, W.S.; Famiglietti, J.S.; Houser, P.R.; Adler, R.; Bosilovich, M.G.; Clayson, C.A.; Chambers, D.; et al. The observed state of the water cycle in the early twenty-first century. J. Clim. 2015, 28, 8289–8318. [Google Scholar] [CrossRef]
- Andersen, O.B.; Seneviratne, S.I.; Hinderer, J.; Viterb, P. GRACE-derived terrestrial water storage depletion associated with the 2003 European heat wave. Geophys. Res. Lett. 2005, 32, L18405. [Google Scholar] [CrossRef]
- Thomas, B.F.; Famiglietti, J.S.; Landerer, F.W.; Wiese, D.N.; Molotch, N.P.; Argus, D.F. GRACE groundwater drought index: Evaluation of California Central Valley groundwater drought. Remote. Sens. Environ. 2017, 198, 384–392. [Google Scholar] [CrossRef]
- Boergens, E.; Güntner, A.; Dobslaw, H.; Dahle, C. Quantifying the Central European Droughts in 2018 and 2019 with GRACE-Follow-On. Geophys. Res. Lett. 2020, 47, e2020GL087285. [Google Scholar] [CrossRef]
- European Wet and Dry Conditions. Available online: https://climate.copernicus.eu/european-wet-and-dry-conditions (accessed on 17 July 2020).
- ESOTC. Available online: https://climate.copernicus.eu/ESOTC/2019/european-wet-and-dry-conditions (accessed on 17 July 2020).
- Reager, J.; Gardner, A.; Famiglietti, J.; Wiese, D.; Eicker, A.; Lo, M.H. A decade of sea level rise slowed by climate-driven hydrology. Science 2016, 351, 699–703. [Google Scholar] [CrossRef] [Green Version]
- Jäggi, A.; Weigelt, M.; Flechtner, F.; Güntner, A.; Mayer-Gürr, T.; Martinis, S.; Bruinsma, S.; Flury, J.; Bourgogne, S.; Steffen, H.; et al. European Gravity Service for Improved Emergency Management (EGSIEM)—from concept to implementation. Geophys. J. Int. 2019, 218, 1572–1590. [Google Scholar] [CrossRef]
Data | Lags in Month | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
−6 | −5 | −4 | −3 | −2 | −1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | |
T∼P | NS | NS | NS | −0.11 | −0.19 | −0.26 | −0.33 | −0.36 | −0.38 | −0.40 | −0.39 | −0.38 | −0.36 |
T∼ CSR | −0.37 | −0.42 | −0.46 | −0.50 | −0.52 | −0.53 | −0.53 | −0.48 | −0.42 | −0.36 | −0.30 | NS | NS |
T∼ GFZ | −0.34 | −0.40 | −0.46 | −0.51 | −0.55 | −0.57 | −0.58 | −0.54 | −0.50 | −0.43 | −0.37 | −0.30 | −025 |
T∼ JPL | −0.33 | −0.40 | −0.46 | −0.52 | −0.57 | −0.61 | −0.63 | −0.61 | −0.57 | −0.53 | −0.48 | −0.43 | −0.37 |
P∼ CSR | 0.62 | 0.64 | 0.65 | 0.63 | 0.59 | 0.54 | 0.46 | 0.32 | 0.19 | NS | NS | −0.15 | −0.22 |
P∼ GFZ | 0.49 | 0.50 | 0.50 | 0.49 | 0.46 | 0.41 | 0.35 | 0.27 | NS | NS | NS | −0.23 | −0.29 |
P∼ JPL | 0.60 | 0.62 | 0.62 | 0.61 | 0.58 | 0.53 | 0.47 | 0.35 | 0.24 | 0.13 | NS | NS | NS |
Data | Lags in Month | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
−6 | −5 | −4 | −3 | −2 | −1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | |
T∼P | 0.11 | NS | NS | NS | NS | NS | −0.34 | −0.37 | −0.37 | −0.37 | −0.34 | −0.31 | −0.27 |
T∼ CSR | −0.33 | −0.39 | −0.44 | −0.49 | −0.52 | −0.53 | −0.52 | −0.45 | −0.37 | −0.28 | NS | NS | NS |
T∼ GFZ | −0.28 | −0.36 | −0.43 | −0.49 | −0.53 | −0.55 | −0.56 | −0.51 | −0.44 | −0.37 | −0.30 | NS | NS |
T∼ JPL | −0.21 | −0.29 | −0.38 | −0.45 | −0.52 | −0.56 | −0.59 | −0.55 | −0.50 | −0.43 | −0.37 | −0.30 | NS |
P∼ CSR | 0.57 | 0.60 | 0.62 | 0.61 | 0.58 | 0.53 | 0.46 | 0.31 | 0.17 | NS | NS | −0.23 | −0.25 |
P∼ GFZ | 0.44 | 0.46 | 0.47 | 0.44 | 0.39 | 0.33 | 0.26 | NS | NS | NS | NS | −0.25 | −0.31 |
P∼ JPL | 0.53 | 0.56 | 0.58 | 0.58 | 0.56 | 0.52 | 0.48 | 0.35 | 0.23 | NS | NS | NS | NS |
Data | Lags in Month | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
−6 | −5 | −4 | −3 | −2 | −1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | |
MOI∼T | NS | NS | NS | NS | NS | NS | NS | −0.19 | −0.19 | NS | NS | NS | NS |
MOI∼P | NS | NS | NS | NS | NS | NS | 0.25 | NS | NS | 0.13 | NS | NS | NS |
MOI∼CSR | 0.26 | NS | NS | 0.20 | 0.19 | 0.26 | NS | 0.16 | NS | NS | 0.10 | NS | NS |
MOI∼GFZ | NS | NS | NS | 0.19 | NS | 0.24 | NS | NS | NS | NS | NS | NS | NS |
MOI∼JPL | 0.23 | NS | 0.25 | 0.27 | 0.24 | 0.31 | 0.17 | 0.19 | 0.19 | 0.17 | 0.19 | NS | NS |
Data | Lags in Month | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
−6 | −5 | −4 | −3 | −2 | −1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | |
NAO∼T | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS |
NAO∼P | NS | 0.24 | NS | NS | NS | NS | −0.21 | NS | NS | NS | NS | NS | NS |
NAO∼CSR | NS | NS | NS | −0.17 | −0.21 | −0.27 | NS | NS | NS | NS | NS | NS | NS |
NAO∼GFZ | NS | NS | −0.20 | NS | NS | −0.20 | NS | NS | NS | NS | NS | NS | NS |
NAO∼JPL | NS | −0.15 | −0.18 | −0.18 | −0.19 | −0.25 | NS | NS | NS | NS | NS | NS | NS |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mircheva, B.; Tsekov, M.; Meyer, U.; Guerova, G. Analysis of the 2014 Wet Extreme in Bulgaria: Anomalies of Temperature, Precipitation and Terrestrial Water Storage. Hydrology 2020, 7, 66. https://doi.org/10.3390/hydrology7030066
Mircheva B, Tsekov M, Meyer U, Guerova G. Analysis of the 2014 Wet Extreme in Bulgaria: Anomalies of Temperature, Precipitation and Terrestrial Water Storage. Hydrology. 2020; 7(3):66. https://doi.org/10.3390/hydrology7030066
Chicago/Turabian StyleMircheva, Biliana, Milen Tsekov, Ulrich Meyer, and Guergana Guerova. 2020. "Analysis of the 2014 Wet Extreme in Bulgaria: Anomalies of Temperature, Precipitation and Terrestrial Water Storage" Hydrology 7, no. 3: 66. https://doi.org/10.3390/hydrology7030066
APA StyleMircheva, B., Tsekov, M., Meyer, U., & Guerova, G. (2020). Analysis of the 2014 Wet Extreme in Bulgaria: Anomalies of Temperature, Precipitation and Terrestrial Water Storage. Hydrology, 7(3), 66. https://doi.org/10.3390/hydrology7030066