Development and Evaluation of a Water Quality Index for the Iraqi Rivers
Abstract
:1. Introduction
- Comparing water quality from different sources, therefore deciding the appropriate use of the water resource concerned.
- Making policy choices more objective and less subjective.
- To define the difference in conditions before and after the implementation of the regulatory policy or legislation.
- To give an integral image of the overall quality of the source to make it easier for non-technical stakeholders to understand.
2. Methodology
2.1. The Case Study River and Data
2.2. Development of the Water Quality Index
- Selection of suitable water quality parameters.
- Weight assignment of the selected parameters.
- Development of the sub-indexes’ functions by the transformation of concentration of parameters into mathematical equations.
- Aggregation of sub-indices to construct the index.
2.2.1. Parameter Selection
The principal Components Analysis
The Modified Delphi Method
2.2.2. Assignment of Weights
2.2.3. Development of the Sub-Indices
2.2.4. Aggregation of Sub-Indices
- Iraq WQI = the Iraqi water quality index, a number between 0 and 100.
- Qi = the quality of the ith parameter, a number between 0 and 100.
- Wi = the unit weight of the ith parameter, a number between 0 and 1, and
- n = number of parameters.
3. Results and Discussion
- Total Dissolved Solids (mg/L): It comprises inorganic salts (Ca+2, Mg+2, K+, Na+, HCO3−1, Cl−, and SO4−2) and some small quantities of organic matter [48]. Higher TDS may be harmful to aquatic life through salinity increase or water composition changes. The main sources of elevated TDS in river water may be from soil erosion, agricultural runoff, household waste pollution, and other human activities [54].
- Total Hardness (mg/L): It is used to describe the dissolved calcium and magnesium effect, to assess water solubility for drinking, domestic, and industrial uses attributed to the presence of HCO3−1, SO4−2, Cl−1, and NO3−1 of Ca and Mg [55].
- Chloride (mg/L): It is the salts of Ca+2, Mg+2, and K+ ions in water. The high chloride content may indicate pollution by industrial waste and domestic sewage [48].
- Dissolved Oxygen (mg/L): It is essential for aquatic life. The decomposition of organic matter, industrial waste, dissolved gases, and agricultural runoff result in a lower DO level. The concentration of DO below 5.0 mg/L adversely affects aquatic life [58].
- Total coliform (TC) (MPN/100 mL): It is ten times more abundant in water than the fecal coliforms. Fecal coliform bacteria are sources of human and animal excreta pollution in water. Excreta-contaminated water contains harmful pathogens and is not safe for use [59].
Validation of the Proposed Iraq WQI
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Katyal, D. Water quality indices used for surface water vulnerability assessment. Int. J. Environ. Sci. 2011, 2. [Google Scholar]
- Abbasi, S.A. Water Quality Indices State-of-the-Art; Pondicherry University, Centre for Pollution Control & Energy Technology: Pondicherry, India, 2002. [Google Scholar]
- Abed, S.A.; Ewaid, S.H.; Al-Ansari, N. Evaluation of water quality in the Tigris river within Baghdad, Iraq using multivariate statistical techniques. J. Phys. Conf. Ser. 2019, 1294, 072025. [Google Scholar] [CrossRef]
- Rehana, S.; Mujumdar, P.P. River water quality response under hypothetical climate change scenarios in Tunga-Bhadra river, India. Hydrol. Process. 2011, 25, 3373–3386. [Google Scholar] [CrossRef] [Green Version]
- Abbas, N.; Wasimi, S.A.; Al-Ansari, N. Impacts of climate change on water resources in Diyala river Basin, Iraq. J. Civ. Eng. Archit. 2016, 10, 1059–1074. [Google Scholar]
- Poff, N.L.; Brown, C.M.; Grantham, T.E.; Matthews, J.H.; Palmer, M.A.; Spence, C.M.; Wilby, R.L.; Haasnoot, M.; Mendoza, G.F.; Dominique, K.C.; et al. Sustainable water management under future uncertainty with eco-engineering decision scaling. Nat. Clim. Chang. 2016, 6, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Al-Ansari, N.; Ali, A.; Knutsson, S. Present conditions and future challenges of water resources problems in Iraq. J. Water Resour. Prot. 2014, 6, 1066–1098. [Google Scholar] [CrossRef] [Green Version]
- Al-Ansari, N.; Ali, A.; Knutsson, S. Iraq water resources planning: Perspectives and prognoses. In Proceedings of the International Conference on Civil & Construction Engineering, Baghdad, Iraq, 26–27 January 2015. [Google Scholar]
- Issa, I.E.; Al-Ansari, N.; Sherwany, G.; Knutsson, S. Expected future of water resources within Tigris-Euphrates rivers basin, Iraq. J. Water Resour. Prot. 2014, 6, 421–432. [Google Scholar] [CrossRef] [Green Version]
- Al-Ansari, N. Management of water resources in Iraq: Perspectives and prognoses. Engineering 2013, 5, 667–684. [Google Scholar] [CrossRef] [Green Version]
- Ewaid, S.H. Irrigation water quality of Al-Gharraf Canal, south of Iraq. J. Phys. Conf. Ser. 2018, 1003, 012006. [Google Scholar] [CrossRef] [Green Version]
- Gitau, M.W.; Chen, J.; Zhao, M.A. Water quality indices as tools for decision making and management. Water Resour. Manag. 2016, 30, 2591–2610. [Google Scholar] [CrossRef]
- Ewaid, S.H.; Abed, S.A.; Al-Ansari, N. Crop water requirements and irrigation schedules for some major crops in Southern Iraq. Water 2019, 11, 756. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Abbasi, T.; Abbasi, S.A. Water quality indices. Environ. Earth Sci. 2014, 71, 4625–4628. [Google Scholar] [CrossRef]
- Sun, W.; Xia, C.; Xu, M.; Guo, J.; Sun, G. Application of modified water quality indices as indicators to assess the spatial and temporal trends of water quality in the Dongjiang river. Ecol. Indic. 2016, 66, 306–312. [Google Scholar] [CrossRef]
- Kachroud, M.; Trolard, F.; Kefi, M.; Jebari, S.; Bourrié, G. Water quality indices: Challenges and application limits in the literature. Water 2019, 11, 361. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, M.; Singal, S.K. Use of principal component analysis for parameter selection for development of a novel water quality index: A case study of river Ganga India. Ecol. Indic. 2019, 96, 430–436. [Google Scholar] [CrossRef]
- Tyagi, S.; Sharma, B.; Singh, P.; Dobhal, R. Water quality assessment in terms of water quality index. Am. J. Water Resour. 2013, 1, 34–38. [Google Scholar]
- Brown, R.M.; McClelland, N.I.; Deininger, R.A.; O’Connor, M.F. A water quality index—Crashing the psychological barrier. In Indicators of Environmental Quality; Springer: Boston, MA, USA, 1972; pp. 173–182. [Google Scholar]
- Steinhart, C.E.; Schierow, L.-J.; Sonzogni, W.C. An environmental quality index for The Great Lakes 1. JAWRA J. Am. Water Resour. Assoc. 1982, 18, 1025–1031. [Google Scholar] [CrossRef]
- Vindo, J.; Satish, D.; Sapana, G. Assessment of water quality index of industrial area surface water samples. Int. J. ChemTech Res. 2013, 5, 278–283. [Google Scholar]
- Sutadian, A.D.; Muttil, N.; Yilmaz, A.G.; Perera, B.J.C. Development of river water quality indices—A review. Environ. Monit. Assess. 2016, 188, 58. [Google Scholar] [CrossRef] [Green Version]
- Ismail, A.H.; Abed, B.S.; Abdul-Qader, S. Application of multivariate statistical techniques in the surface water quality assessment of Tigris river at Baghdad stretch, Iraq. J. Univ. Babylon 2014, 22, 450–462. [Google Scholar]
- Al Obaidy, A.H.; Abid, H.S.; Maulood, B.K. Application of water quality index for assessment of Dokan lake ecosystem, Kurdistan region, Iraq. J. Water Resour. Prot. 2010, 2010, 2715. [Google Scholar]
- Al-Shujairi, S.O.H. Develop and apply water quality index to evaluate water quality of Tigris and Euphrates rivers in Iraq. Inter. J. Mod. Eng. Res. 2013, 3, 2119–2126. [Google Scholar]
- Ewaid, S.H.; Abed, S.A. Water quality index for Al-Gharraf river, southern Iraq. Egypt. J. Aquat. Res. 2017, 43, 117–122. [Google Scholar] [CrossRef]
- Kumar, D.; Alappat, B.J. NSF-water quality index: Does it represent the experts’ opinion? Pract. Period. Hazard. Toxic Radioact. Waste Manag. 2009, 13, 75–79. [Google Scholar] [CrossRef]
- Cude, C.G. Oregon water quality index a tool for evaluating water quality management effectiveness 1. JAWRA J. Am. Water Resour. Assoc. 2001, 37, 125–137. [Google Scholar] [CrossRef]
- Mahapatra, S.S.; Sahu, M.; Patel, R.K.; Panda, B.N. Prediction of water quality using principal component analysis. Water Qual. Expo. Health 2012, 4, 93–104. [Google Scholar] [CrossRef]
- Azhar, S.C.; Aris, A.Z.; Yusoff, M.K.; Ramli, M.F.; Juahir, H. Classification of river water quality using multivariate analysis. Procedia Environ. Sci. 2015, 30, 79–84. [Google Scholar] [CrossRef] [Green Version]
- Garcia, C.A.B.; Garcia, H.L.; Mendonca, M.C.S.; da Silva, A.F.; Alves, J.d.P.H.; da Costa, S.S.L.; Araujo, R.G.O.; Silva, I.S. Assessment of water quality using principal component analysis: A case study of the açude da Macela-Sergipe-Brazil. Water Resour. 2017, 7, 8. [Google Scholar]
- Chu, K.; Liu, W.; She, Y.; Hua, Z.; Tan, M.; Liu, X.; Gu, L.; Jia, Y. Modified principal component analysis for identifying key environmental indicators and application to a large-scale tidal flat reclamation. Water 2018, 10, 69. [Google Scholar] [CrossRef] [Green Version]
- Zeinalzadeh, K.; Rezaei, E. Determining spatial and temporal changes of surface water quality using principal component analysis. J. Hydrol. Reg. Stud. 2017, 13, 1–10. [Google Scholar] [CrossRef]
- Sahoo, M.M.; Patra, K.C.; Khatua, K.K. Inference of water quality index using ANFIA and PCA. Aquat. Procedia 2015, 4, 1099–1106. [Google Scholar] [CrossRef]
- De Carvalho, B.E.; Marques, R.C.; Netto, O.C. Delphi technique as a consultation method in regulatory impact assessment (RIA)—The Portuguese water sector. Water Policy 2017, 19, 423–439. [Google Scholar] [CrossRef]
- Saha, P.D. Water quality characteristics of different industrial wastewater by Delphi water quality index method. Inter. J. Environ. Eng. 2014, 6, 1–14. [Google Scholar] [CrossRef]
- Al-Ansari, N.; Knutsson, S. Toward prudent management of water resources in Iraq. J. Adv. Sci. Eng. Res. 2011, 2011, 53–67. [Google Scholar]
- Christen, E. Managing Salinity in Iraq’s Agriculture: Current State, Causes, and Impacts; International Center for Agricultural Research in the Dry Areas (ICARDA): Beirut, Lebanon, 2019. [Google Scholar]
- Al-Bahrani, H.S. Water quality deterioration of the Euphrates river before entering Iraqi lands. WIT Trans. Ecol. Environ. 2014, 182, 3–14. [Google Scholar]
- Ewaid, S.H.; Abed, S.A.; Kadhum, S.A. Predicting the Tigris river water quality within Baghdad, Iraq by using water quality index and regression analysis. Environ. Technol. Innov. 2018, 11, 390–398. [Google Scholar] [CrossRef]
- Rice, A.; Baird, E.W.; Eaton, R.B. Apha 2017 Standard Methods for Examination of Water and Wastewater; American Public Health Association; American Water Works Association; Water Environment Federation: Washington, DC, USA, 2017. [Google Scholar]
- Al-Sharqi, J.; Baghdad Water Authority, Baghdad, Iraq. Personal communication, 2020.
- IBM Corp. IBM SPSS Statistics for Windows, Version 25.0; IBM Corp.: Armonk, NY, USA, 2017. [Google Scholar]
- Microsoft Corporation. Microsoft Excel. 2018. Available online: https://office.microsoft.com/excel (accessed on 27 April 2020).
- GraphPad. GraphPad Prism Version 7.00 for Windows, GraphPad Software, La Jolla California USA. 2018. Available online: www.graphpad.com (accessed on 27 April 2020).
- Smith, D.G. A better water quality indexing system for rivers and streams. Water Res. 1990, 24, 1237–1244. [Google Scholar] [CrossRef]
- Dinius, S.H. Design of an index of water quality 1. JAWRA J. Am. Water Resour. Assoc. 1987, 23, 833–843. [Google Scholar] [CrossRef]
- Rabee, A.M.; Abdul-Kareem, B.M.; Al-Dhamin, A.S. Seasonal variations of some ecological parameters in Tigris river water at Baghdad Region, Iraq. J. Water Resour. Prot. 2011, 3, 262. [Google Scholar] [CrossRef] [Green Version]
- COQS. Iraqi Standard of Drinking Water No. 417; Second modification; Central Organization for Quality Control and Standardization; Council of Ministers: Baghdad, Iraq, 2009. [Google Scholar]
- WHO. Guidelines for drinking-water quality. In WHO Chronicle, 4th ed.; WHO: Geneva, Switzerland, 2011; Volume 38, pp. 104–108. [Google Scholar]
- Tian, H.; Yu, G.A.; Tong, L.; Li, R.; Huang, H.Q.; Bridhikitti, A.; Prabamroong, T. Water quality of the Mun river in Thailand—Spatiotemporal variations and potential causes. Int. J. Environ. Res. Public Health 2019, 16, 3906. [Google Scholar] [CrossRef] [Green Version]
- Mahdi, B.A.; Fawzi, N.A.-M. Iraq’s inland water quality and their impact on the North-Western Arabian Gulf. Marsh Bull. 2014, 9, 1–22. [Google Scholar]
- Al-Fatlawi, A.; Al-Jassani, M.; Al-Rifaie, J. Pollution assessment of Euphrates river in three governances of Iraq. In MATEC Web of Conferences; EDP Sciences: Les Ullis, France, 2018; p. 05022. [Google Scholar]
- Alobaidy, A.H.M.J.; Maulood, B.K.; Kadhem, A.J. Evaluating raw and treated water quality of Tigris river within Baghdad by index analysis. J. Water Resour. Prot. 2010, 2, 629. [Google Scholar] [CrossRef] [Green Version]
- Alam, M.J.B.; Islam, M.R.; Muyen, Z.; Mamun, M.; Islam, S. Water quality parameters along rivers. Int. J. Environ. Sci. Technol. 2007, 4, 159–167. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, A.A.M. Prediction of dissolved oxygen in Surma river by biochemical oxygen demand and chemical oxygen demand using the artificial neural networks (ANNs). J. King Saud Univ. Eng. Sci. 2017, 29, 151–158. [Google Scholar] [CrossRef] [Green Version]
- Prakirake, C.; Chaiprasert, P.; Tripetchkul, S. Development of specific water quality index for water supply in Thailand. Songklanakarin J. Sci. Technol. 2009, 31, 91–104. [Google Scholar]
- Kannel, P.R.; Lee, S.; Lee, Y.S.; Kanel, S.R.; Khan, S.P. Application of water quality indices and dissolved oxygen as indicators for river water classification and urban impact assessment. Environ. Monit. Assess. 2007, 132, 93–110. [Google Scholar] [CrossRef]
- Sharma, D.; Kansal, A. Water quality analysis of river Yamuna using water quality index in the national capital territory, India (2000–2009). Appl. Water Sci. 2011, 1, 147–157. [Google Scholar] [CrossRef] [Green Version]
- Moyel, M.S.; Hussain, N.A. Water quality assessment of the Shatt al-Arab river, Southern Iraq. J. Coast. Life Med. 2015, 3, 459–465. [Google Scholar]
- Moyel, M.S. Assessment of water quality of the Shatt Al-Arab river, using multivariate statistical technique. Mesop. Env. J. 2015, 1, 39–46. [Google Scholar]
- Al-Saad, H.T.; Alhello, A.A.; Al-Kazaeh, D.K.; Al-Hello, M.A.; Hassan, W.F.; Mahdi, S. Analysis of water quality using physico-chemical parameters in the Shatt Al-Arab Estuary, Iraq. Int. J. Mar. Sci. 2015, 5. [Google Scholar] [CrossRef]
- Al-Rekabi, H.; Al-Ghanimy, D.B.G. Determine the validity of the Euphrates river (Middle Euphrates) for drinking purpose using a water quality index (CCME WQI). Mesop. Environ. J. 2015, 2, 1–11. [Google Scholar]
- Hassan, F.M.; Al-Jibouri, K.D.W.; Hakman, A.A. Water quality assessment of Diyala river in Diyala province, Iraq. Mesop. Environ. J. 2017, 4, 52–61. [Google Scholar]
- Abbas, A.A.A.; Hassan, F.M. Water quality assessment of Euphrates river in Qadisiyah province (Diwaniyah river), Iraq. Iraqi J. Agric. Sci. 2018, 48. [Google Scholar]
- Gatea, M.H. Study of water quality changes of Shatt Al-Arab river, south of Iraq. J. Univ. Babylon Eng. Sci. 2018, 26, 228–241. [Google Scholar]
- Rahi, K.A.; Halihan, T. Changes in the salinity of the Euphrates river system in Iraq. Reg. Environ. Chang. 2010, 10, 27–35. [Google Scholar] [CrossRef]
- Abdullah, A.D.; Karim, U.F.; Masih, I.; Popescu, I.; Van der Zaag, P. Anthropogenic and tidal influences on salinity levels of the Shatt al-Arab River, Basra, Iraq. Inter. J. River Basin Manag. 2016, 14, 357–366. [Google Scholar] [CrossRef]
- Rahi, K.A.; Halihan, T. Salinity evolution of the Tigris river. Reg. Environ. Change 2018, 18, 2117–2127. [Google Scholar] [CrossRef]
- Rahi, K.A. Salinity management in the Shatt Al-Arab river. Int. J. Eng. Technol. 2018, 7, 128–133. [Google Scholar] [CrossRef]
Parameters | Minimum | Maximum | Mean | Std. Deviation | Variance |
---|---|---|---|---|---|
T | 10.00 | 33.00 | 21.90 | 6.07 | 36.93 |
Cl− | 31.00 | 103.00 | 67.27 | 14.99 | 224.74 |
Tur | 21.00 | 350.00 | 63.83 | 57.86 | 3347.40 |
Alk | 116.00 | 178.00 | 152.95 | 14.22 | 202.35 |
TH | 234.00 | 439.00 | 312.02 | 41.15 | 1693.17 |
Ca | 57.00 | 116.00 | 75.87 | 11.39 | 129.86 |
Mg | 21.00 | 39.00 | 30.10 | 4.20 | 17.62 |
EC | 582.00 | 1196.00 | 833.18 | 130.94 | 17,146.03 |
SO4 | 65.00 | 314.00 | 198.58 | 53.25 | 2835.79 |
TS | 365.00 | 802.00 | 560.51 | 88.67 | 7862.92 |
SS | 26.00 | 520.00 | 90.53 | 78.08 | 6097.07 |
pH | 7.60 | 8.25 | 7.91 | 0.130 | 0.02 |
Fe | 0.21 | 7.04 | 1.51 | 1.05 | 1.11 |
F | 0.02 | 0.23 | 0.11 | 0.04 | 0.002 |
Al | 0.01 | 0.04 | 0.01 | 0.01 | 0.00 |
NO2 | 0.001 | 0.03 | 0.01 | 0.01 | 0.00 |
NO3 | 0.03 | 1.90 | 0.83 | 0.35 | 0.13 |
NH3 | 0.01 | 0.70 | 0.14 | 0.15 | 0.02 |
SiO2 | 0.60 | 7.20 | 4.40 | 1.20 | 1.43 |
PO4 | 0.01 | 0.95 | 0.05 | 0.09 | 0.01 |
DO | 5.00 | 8.30 | 6.58 | 1.08 | 1.17 |
BOD | 0.80 | 4.30 | 2.23 | 1.21 | 1.47 |
COD | 1.30 | 6.40 | 3.34 | 1.84 | 3.40 |
Na | 63.00 | 81.00 | 70.90 | 5.65 | 31.96 |
TDS | 113.00 | 740.00 | 469.97 | 113.28 | 12,831.58 |
Parameters | Principal Components | |||
---|---|---|---|---|
1 | 2 | 3 | ||
EC | 0.969 | |||
TS | 0.966 | |||
TH | 0.96 | |||
Cl− | 0.931 | |||
Ca | 0.884 | |||
SO4 | 0.87 | |||
Mg | 0.84 | |||
TDS | 0.715 | 0.643 | ||
Na | 0.629 | |||
BOD | 0.613 | 0.541 | ||
COD | 0.612 | 0.543 | ||
SS | -0.949- | |||
Tur | -0.904- | |||
Alk | -0.773- | |||
T | 0.592 | |||
DO | -0.524- | |||
Eigenvalue | 8.341 | 3.680 | 1.082 | |
% of variance | 52.129 | 22.998 | 6.760 | |
% Cumulative | 52.129 | 75.127 | 81.888 | |
KMO and Bartlett’s Test | ||||
Kaiser–Meyer–Olkin Measure of Sampling Adequacy. | 0.769 | |||
Bartlett’s Test of Sphericity | Approx. Chi-Square | 3140.577 | ||
df | 120 | |||
Sig. | 0.000 |
Very Good 90–100 | Good 70–90 | Acceptable 50–70 | Bad 20–50 | Very Bad 0–20 | Equation | R2 | Weight | |
---|---|---|---|---|---|---|---|---|
TDS | 50–100 | 200–300 | 500–1000 | 2000–3000 | 3500–4000 | Y = −0.0191X + 84.587 | 0.9455 | 0.2 |
TH | 50–200 | 300–400 | 500–600 | 650–700 | 750–800 | Y = −0.1186X + 113.68 | 0.9664 | 0.15 |
TC | 0–1000 | 2000–2500 | 3000–5000 | 6000–8000 | 12,000–15,000 | Y = −0.0057X + 86.231 | 0.9251 | 0.2 |
DO | 10–9 | 8–7 | 6–5 | 4–3 | 2–1 | Y = 10X | 1 | 0.2 |
COD | 0–0.5 | 1–2 | 4–6 | 8–10 | 12–14 | Y = −5.8862X + 88.846 | 0.9685 | 0.1 |
Cl− | 50–150 | 200–300 | 400–500 | 550–650 | 700–800 | Y = −0.12X + 106.58 | 0.9961 | 0.15 |
Seasons | Parameters | ||||||
---|---|---|---|---|---|---|---|
TH | Cl | DO | COD | TDS | TC | Iraq WQI | |
Spring | 295 | 66 | 7.2 | 1.6 | 416 | 1100 | 76.5 |
Summer | 384 | 57 | 6 | 3 | 451 | 1200 | 69.4 |
Autmn | 328 | 73 | 6.2 | 5.4 | 573 | 900 | 74.8 |
Winter | 341 | 72 | 6.82 | 3.28 | 520 | 800 | 72.3 |
Average | 337 | 67 | 6.555 | 3.32 | 490 | 1000 | 73.25 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ewaid, S.H.; Abed, S.A.; Al-Ansari, N.; Salih, R.M. Development and Evaluation of a Water Quality Index for the Iraqi Rivers. Hydrology 2020, 7, 67. https://doi.org/10.3390/hydrology7030067
Ewaid SH, Abed SA, Al-Ansari N, Salih RM. Development and Evaluation of a Water Quality Index for the Iraqi Rivers. Hydrology. 2020; 7(3):67. https://doi.org/10.3390/hydrology7030067
Chicago/Turabian StyleEwaid, Salam Hussein, Salwan Ali Abed, Nadhir Al-Ansari, and Riyadh M. Salih. 2020. "Development and Evaluation of a Water Quality Index for the Iraqi Rivers" Hydrology 7, no. 3: 67. https://doi.org/10.3390/hydrology7030067
APA StyleEwaid, S. H., Abed, S. A., Al-Ansari, N., & Salih, R. M. (2020). Development and Evaluation of a Water Quality Index for the Iraqi Rivers. Hydrology, 7(3), 67. https://doi.org/10.3390/hydrology7030067