Snow Water Equivalent Accumulation Patterns from a Trajectory Approach over the U.S. Southern Rocky Mountains
Abstract
:1. Introduction
2. Study Area and Data
3. Methodology
3.1. Station Sub-Classification by Latitude, Elevation and Snow Year
3.2. Derivation of SWE Standard Deviation versus Mean Trajectories
3.3. SWE versus Snow Depth Trajectories
3.4. Accumulation Trajectory Models
3.5. Evaluation of Accumulation Trajectories and Best-Fit Equations
4. Results
4.1. Evaluation of SWE versus Snow Depth Trajectories
4.2. Optimal Accumulation Trajectory Model
4.3. Accumulation Trajectories and Best-Fit Models
5. Discussion
5.1. Applicability of SWE and Snow Depth for Trajectories
5.2. Regression Model and Parameters Applied to SWE Trajectories
5.3. Accumulation Slope Dynamics across the Southern Rocky Mountains
5.4. Other Applications
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Regression Methodology
Snow Year | Linear (Equation (1)) | Linear Excluding SWE < 35 mm | Power Function (Equation (2)) | ||||||
---|---|---|---|---|---|---|---|---|---|
R2 | b | m | R2 | b | m | R2 | α | β | |
1993 | 0.998 | 3.48 | 0.432 | 0.997 | 6.58 | 0.425 | 0.983 | 0.809 | 0.715 |
1995 | 0.980 | 9.26 | 0.459 | 0.991 | 23.43 | 0.393 | 0.959 | 0.680 | 0.753 |
2002 | 0.986 | 7.26 | 0.431 | 0.989 | 9.13 | 0.419 | 0.986 | 1.260 | 0.608 |
2010 | 0.977 | 16.52 | 0.405 | 0.994 | 28.01 | 0.364 | 0.984 | 1.412 | 0.614 |
2011 | 0.987 | 11.23 | 0.495 | 0.997 | 29.90 | 0.435 | 0.995 | 1.086 | 0.702 |
2012 | 0.980 | 8.36 | 0.359 | 0.997 | 14.79 | 0.326 | 0.971 | 1.229 | 0.592 |
2013 | 0.987 | 7.56 | 0.450 | 0.995 | 16.64 | 0.406 | 0.991 | 1.257 | 0.623 |
Appendix B. Inflection Point Identification
Snow Year | Observed Mean SWE [mm] | Modeled | ||
Leading 10-Day | Central 11-Day | Lagging 10-Day | ||
1993 | 629 | 235 | 628 | 526 |
1995 | 411 | 348 | 347 | 342 |
2002 | 262 | 259 | 261 | 256 |
2010 | 343 | 0 | 0 | 1 |
2011 | 445 | 455 | 454 | 445 |
2012 | 317 | 313 | 316 | 316 |
2013 | 295 | 294 | 302 | 297 |
NSE | 0.706 | 0.847 | 0.810 | |
R2 | 0.757 | 0.855 | 0.870 |
Snow Year | Observed Mean SWE [mm] | Modeled | ||
Leading 10-Day | Central 11-Day | Lagging 10-Day | ||
1993 | 629 | 527 | 624 | 526 |
1995 | 411 | 348 | 347 | 342 |
2002 | 262 | 174 | 261 | 253 |
2010 | 343 | 414 | 444 | 391 |
2011 | 445 | 455 | 454 | 445 |
2012 | 317 | 313 | 316 | 316 |
2013 | 295 | 296 | 303 | 296 |
NSE | 0.706 | 0.847 | 0.810 | |
R2 | 0.757 | 0.855 | 0.870 |
Appendix C. Evaluation of Accumulation Slopes
References
- Kearney, M.S.; Harris, B.H.; Hershbein, B.; Jácome, E.; Nantz, G. In times of Drought: Nine Economic Facts about Water in the United States. The Brookings Institution Policy Memo. Hamilt. Proj. 2014. Available online: https://www.brookings.edu/research/in-times-of-drought-nine-economic-facts-about-water-in-the-united-states/ (accessed on 16 August 2021).
- He, X.; Pan, M.; Wei, Z.; Wood, E.F.; Sheffield, J. A Global Drought and Flood Catalogue from 1950 to 2016. Bull. Am. Meteorol. Soc. 2020, 101, E508–E535. [Google Scholar] [CrossRef] [Green Version]
- Güneralp, B.; Güneralp, I.; Liu, Y. Changing global patterns of urban exposure to flood and drought hazards. Glob. Environ. Chang. 2015, 31, 217–225. [Google Scholar] [CrossRef]
- Hammond, J.C.; Saavedra, F.A.; Kampf, S.K. Global snow zone maps and trends in snow persistence 2001–2016. Int. J. Clim. 2018, 38, 4369–4383. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Lutz, A.F.; Andrade, M.; Bahl, A.; Biemans, H.; Bolch, T.; Hyde, S.; Brumby, S.; Davies, B.; Elmore, A.C.; et al. Importance and vulnerability of the world’s water towers. Nat. Cell Biol. 2019, 577, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Maupin, M.A.; Kenny, J.F.; Hutson, S.S.; Lovelace, J.K.; Barber, N.L.; Linsey, K.S. Estimated use of water in the United States in 2010. U.S. Geol. Surv. Circ. 2014. [Google Scholar] [CrossRef]
- Piechota, T.C.; Timilsena, J.; Tootle, G.; Hidalgo, H. The western U.S. drought: How bad is it? Eos Trans. Am. Geophys. Union 2004, 85, 301–304. [Google Scholar] [CrossRef]
- Williams, A.P.; Cook, E.R.; Smerdon, J.E.; Cook, B.I.; Abatzoglou, J.T.; Bolles, K.; Baek, S.H.; Badger, A.M.; Livneh, B. Large contribution from anthropogenic warming to an emerging North American megadrought. Science 2020, 368, 314–318. [Google Scholar] [CrossRef]
- Clow, D. Changes in the Timing of Snowmelt and Streamflow in Colorado: A Response to Recent Warming. J. Clim. 2010, 23, 2293–2306. [Google Scholar] [CrossRef]
- Fassnacht, S.R.; Venable, N.B.; McGrath, D.; Patterson, G.G. Sub-Seasonal Snowpack Trends in the Rocky Mountain National Park Area, Colorado, USA. Water 2018, 10, 562. [Google Scholar] [CrossRef] [Green Version]
- Fassnacht, S.; Patterson, G.; Venable, N.; Cherry, M.; Pfohl, A.; Sanow, J.; Tedesche, M. How Do We Define Climate Change? Considering the Temporal Resolution of Niveo-Meteorological Data. Hydrology 2020, 7, 38. [Google Scholar] [CrossRef]
- Thackeray, C.W.; Derksen, C.; Fletcher, C.G.; Hall, A. Snow and Climate: Feedbacks, Drivers, and Indices of Change. Curr. Clim. Chang. Rep. 2019, 5, 322–333. [Google Scholar] [CrossRef]
- Cayan, D.R.; Das, T.; Pierce, D.W.; Barnett, T.P.; Tyree, M.; Gershunov, A. Future dryness in the southwest US and the hydrology of the early 21st century drought. Proc. Natl. Acad. Sci. USA 2010, 107, 21271–21276. [Google Scholar] [CrossRef] [Green Version]
- Apurv, T.; Cai, X. Regional Drought Risk in the Contiguous United States. Geophys. Res. Lett. 2021, 48. [Google Scholar] [CrossRef]
- Bales, R.C.; Molotch, N.P.; Painter, T.H.; Dettinger, M.D.; Rice, R.; Dozier, J. Mountain hydrology of the western United States. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef]
- Blöschl, G. Scaling issues in snow hydrology. Hydrol. Process. 1999, 13, 2149–2175. [Google Scholar] [CrossRef]
- Sturm, M.; Wagner, A.M. Using repeated patterns in snow distribution modeling: An Arctic example. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef] [Green Version]
- Egli, L.; Jonas, T. Hysteretic dynamics of seasonal snow depth distribution in the Swiss Alps. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Meiman, J.R. Snow accumulation related to elevation, aspect, and forest canopy. In Proceedings of the Snow Hydrology, Snow Hydrology Workshop Seminar, Fredericton, NB, Canada, 28–29 February 1968; Canadian National Committee of the International Hydrological Decade: Fredericton, NB, Canada, 1968; pp. 35–47. Available online: https://www.cabdirect.org/cabdirect/abstract/19730606963 (accessed on 16 August 2021).
- Elder, K.; Dozier, J.; Michaelsen, J. Snow accumulation and distribution in an Alpine Watershed. Water Resour. Res. 1991, 27, 1541–1552. [Google Scholar] [CrossRef] [Green Version]
- Erxleben, J.; Elder, K.; Davis, R. Comparison of spatial interpolation methods for estimating snow distribution in the Colorado Rocky Mountains. Hydrol. Process. 2002, 16, 3627–3649. [Google Scholar] [CrossRef]
- Meromy, L.; Molotch, N.P.; Link, T.E.; Fassnacht, S.; Rice, R.H. Subgrid variability of snow water equivalent at operational snow stations in the western USA. Hydrol. Process. 2012, 27, 2383–2400. [Google Scholar] [CrossRef]
- McCreight, J.L.; Slater, A.; Marshall, H.P.; Rajagopalan, B. Inference and uncertainty of snow depth spatial distribution at the kilometre scale in the Colorado Rocky Mountains: The effects of sample size, random sampling, predictor quality, and validation procedures. Hydrol. Process. 2012, 28, 933–957. [Google Scholar] [CrossRef]
- Fassnacht, S.R.; Brown, K.S.J.; Blumberg, E.J.; Lopez-Moreno, I.; Covino, T.P.; Kappas, M.; Huang, Y.; Leone, V.; Kashipazha, A.H. Distribution of snow depth variability. Front. Earth Sci. 2018, 12, 683–692. [Google Scholar] [CrossRef]
- Sexstone, G.A.; Fassnacht, S.R. What drives basin scale spatial variability of snowpack properties in northern Colorado? Cryosphere 2014, 8, 329–344. [Google Scholar] [CrossRef] [Green Version]
- Fassnacht, S.R.; Dressler, K.A.; Bales, R.C. Snow water equivalent interpolation for the Colorado River Basin from snow telemetry (SNOTEL) data. Water Resour. Res. 2003, 39. [Google Scholar] [CrossRef] [Green Version]
- Dozier, J.; Bair, E.H.; Davis, R.E. Estimating the spatial distribution of snow water equivalent in the world’s mountains. Wiley Interdiscip. Rev. Water 2016, 3, 461–474. [Google Scholar] [CrossRef]
- Barabási, A.L.; Stanley, H.E. Fractal Concepts in Surface Growth; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Crow, W.T.; Wood, E.F. Multi-scale dynamics of soil moisture variability observed during SGP’97. Geophys. Res. Lett. 1999, 26, 3485–3488. [Google Scholar] [CrossRef]
- Famiglietti, J.; Ryu, D.; Berg, A.; Rodell, M.; Jackson, T.J. Field observations of soil moisture variability across scales. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef] [Green Version]
- Fassnacht, S.R.; Derry, J.E. Defining similar regions of snow in the Colorado River Basin using self-organizing maps. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef]
- Fassnacht, S.R.; Records, R.M. Large snowmelt versus rainfall events in the mountains. J. Geophys. Res. Atmos. 2015, 120, 2375–2381. [Google Scholar] [CrossRef]
- Fassnacht, S.R.; Sexstone, G.A.; Kashipazha, A.H.; Lopez-Moreno, I.; Jasinski, M.F.; Kampf, S.K.; Von Thaden, B.C. Deriving snow-cover depletion curves for different spatial scales from remote sensing and snow telemetry data. Hydrol. Process. 2015, 30, 1708–1717. [Google Scholar] [CrossRef]
- Fassnacht, S.R.; Lopez-Moreno, I.; Ma, C.; Weber, A.N.; Pfohl, A.K.D.; Kampf, S.K.; Kappas, M. Spatio-temporal snowmelt variability across the headwaters of the Southern Rocky Mountains. Front. Earth Sci. 2017, 11, 505–514. [Google Scholar] [CrossRef]
- Ma, C.; Fassnacht, S.; Kampf, S. How Temperature Sensor Change Affects Warming Trends and Modeling: An Evaluation across the State of Colorado. Water Resour. Res. 2019, 55, 9748–9764. [Google Scholar] [CrossRef]
- von Thaden, B.C. Spatial Accumulation Patterns of Snow Water Equivalent in the Southern Rocky Mountains. Master’s Thesis, Colorado State University, Fort Collins, CO, USA, 2016. [Google Scholar]
- Löwe, H.; Egli, L.; Bartlett, S.; Guala, M.; Manes, C. On the evolution of the snow surface during snowfall. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef] [Green Version]
- Pomeroy, J.; Essery, R.; Toth, B. Implications of spatial distributions of snow mass and melt rate for snow-cover depletion: Observations in a subarctic mountain catchment. Ann. Glaciol. 2004, 38, 195–201. [Google Scholar] [CrossRef] [Green Version]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKinney, W. Data Structures for Statistical Computing in Python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010; pp. 51–56. [Google Scholar]
- Fassnacht, S.R.; Patterson, G.G. Niveograph Interpolation to Estimate Peak Accumulation at Two Mountain Sites. Cold and Mountain Region Hydrological Systems under Climate Change: Towards Improved Projections. In Proceedings of the Symposium H02, IAHS-IAPSO-IASPEI Assembly, Gothenburg, Sweden, 22–26 July 2013; IAHS: Oxfordshire, UK, 2013; Volume 360, pp. 59–64. [Google Scholar]
- Räisänen, J. Warmer climate: Less or more snow? Clim. Dyn. 2007, 30, 307–319. [Google Scholar] [CrossRef]
- Guest, C.; Shearer, H.; McKean, M.; Reiner, R. America. Track 5 on This Is Spinal Tap; Polydor: London, UK, 1984. [Google Scholar]
- Mudryk, L.R.; Kushner, P.J.; Derksen, C. Interpreting observed northern hemisphere snow trends with large ensembles of climate simulations. Clim. Dyn. 2013, 43, 345–359. [Google Scholar] [CrossRef]
- Steffen, W.; Richardson, K.; Rockström, J.; Schellnhuber, H.J.; Dube, O.P.; Dutreuil, S.; Lenton, T.M.; Lubchenco, J. The emergence and evolution of Earth System Science. Nat. Rev. Earth Environ. 2020, 1, 54–63. [Google Scholar] [CrossRef] [Green Version]
- Montanari, A.; Young, G.; Savenije, H.; Hughes, D.; Wagener, T.; Ren, L.; Koutsoyiannis, D.; Cudennec, C.; Toth, E.; Grimaldi, S.; et al. “Panta Rhei—Everything Flows”: Change in hydrology and society—The IAHS Scientific Decade 2013–2022. Hydrol. Sci. J. 2013, 58, 1256–1275. [Google Scholar] [CrossRef]
- Steffen, W.; Rockström, J.; Richardson, K.; Lenton, T.M.; Folke, C.; Liverman, D.; Summerhayes, C.P.; Barnosky, A.D.; Cornell, S.E.; Crucifix, M.; et al. Trajectories of the Earth System in the Anthropocene. Proc. Natl. Acad. Sci. USA 2018, 115, 8252–8259. [Google Scholar] [CrossRef] [Green Version]
- Kotzé, L.J.; Kim, R.E. Earth system law: The juridical dimensions of earth system governance. Earth Syst. Gov. 2019, 1, 100003. [Google Scholar] [CrossRef]
Snow Year | Linear | Linear Truncated at 35 mm | Power |
---|---|---|---|
1993 (AA) | 0.998 | 0.997 | 0.983 |
1995 (AA) | 0.980 | 0.991 | 0.959 |
2002 (BA) | 0.986 | 0.989 | 0.986 |
2010 (AVG) | 0.977 | 0.994 | 0.984 |
2011 (AA) | 0.987 | 0.997 | 0.995 |
2012 (BA) | 0.980 | 0.997 | 0.971 |
2013 (BA) | 0.987 | 0.995 | 0.991 |
average | 0.985 | 0.994 | 0.981 |
Slope Difference Threshold | Indicator Position | NSE | R2 |
---|---|---|---|
0.3 | leading 10-day | 0.71 | 0.76 |
central 10-day | 0.85 | 0.86 | |
lagging 10-day | 0.81 | 0.87 | |
0.5 | leading 10-day | −1.97 | 0.01 |
central 10-day | −0.31 | 0.55 | |
lagging 10-day | −0.42 | 0.44 |
Group | Sub-Set | Slope | Mean R2 | AA | AVG | BA | |||
---|---|---|---|---|---|---|---|---|---|
Max. | Mean | Min. | Std. Dev. | ||||||
summary | full domain | 0.59 | 0.40 | 0.26 | 0.062 | 0.98 | 0.37 | 0.39 | 0.33 |
latitude-based | North | 0.47 | 0.39 | 0.29 | 0.042 | 0.99 | 0.36 | 0.37 | 0.33 |
South | 0.50 | 0.37 | 0.23 | 0.077 | 0.97 | 0.37 | 0.37 | 0.33 | |
latitude and elevation-based | north-high | 0.49 | 0.39 | 0.28 | 0.053 | 0.98 | 0.34 | 0.37 | 0.34 |
north-low | 0.47 | 0.38 | 0.26 | 0.049 | 0.99 | 0.36 | 0.36 | 0.28 | |
south-high | 0.57 | 0.37 | 0.23 | 0.083 | 0.97 | 0.39 | 0.34 | 0.29 | |
south-low | 0.52 | 0.36 | 0.12 | 0.097 | 0.95 | 0.35 | 0.36 | 0.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schrock, I.J.Y.; Fassnacht, S.R.; Collados-Lara, A.-J.; Sanford, W.E.; Pfohl, A.K.D.; Morán-Tejeda, E. Snow Water Equivalent Accumulation Patterns from a Trajectory Approach over the U.S. Southern Rocky Mountains. Hydrology 2021, 8, 124. https://doi.org/10.3390/hydrology8030124
Schrock IJY, Fassnacht SR, Collados-Lara A-J, Sanford WE, Pfohl AKD, Morán-Tejeda E. Snow Water Equivalent Accumulation Patterns from a Trajectory Approach over the U.S. Southern Rocky Mountains. Hydrology. 2021; 8(3):124. https://doi.org/10.3390/hydrology8030124
Chicago/Turabian StyleSchrock, Isaac J. Y., Steven R. Fassnacht, Antonio-Juan Collados-Lara, William E. Sanford, Anna K. D. Pfohl, and Enrique Morán-Tejeda. 2021. "Snow Water Equivalent Accumulation Patterns from a Trajectory Approach over the U.S. Southern Rocky Mountains" Hydrology 8, no. 3: 124. https://doi.org/10.3390/hydrology8030124
APA StyleSchrock, I. J. Y., Fassnacht, S. R., Collados-Lara, A. -J., Sanford, W. E., Pfohl, A. K. D., & Morán-Tejeda, E. (2021). Snow Water Equivalent Accumulation Patterns from a Trajectory Approach over the U.S. Southern Rocky Mountains. Hydrology, 8(3), 124. https://doi.org/10.3390/hydrology8030124