Effects of Hillslope Trenching on Surface Water Infiltration in Subalpine Forested Catchments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Models
2.4. Comparing Baseline and Trenched Scenarios (Objective 2)
2.4.1. Sensitivity Analysis
2.4.2. Multiple Logistic Regression
3. Results
3.1. Data Collection
3.2. Sensitivity Analysis
3.3. Logistic Regression Models
3.4. Cumulative Infiltration and Runoff
4. Discussion
4.1. Effectiveness of Infiltration Trenches
4.2. Environmental Concerns
4.3. Generalizability, Assumptions, and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Transect | A | B | C | D | E | F | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Site | V (m min−1) | TC (min) | V (m min−1) | TC (min) | V (m min−1) | TC (min) | V (m min−1) | TC (min) | V (m min−1) | TC (min) | V (m min−1) | TC (min) |
1 | 14.6 | 3.0 | 16.5 | 2.4 | 14.6 | 4.3 | 11.0 | 2.2 | 14.6 | 3.8 | 14.6 | 1.0 |
2 | 14.6 | 2.7 | 16.5 | 2.7 | 12.8 | 5.2 | 14.6 | 2.6 | 11.0 | 3.9 | 12.8 | 1.1 |
3 | 12.8 | 3.5 | 16.5 | 2.5 | 14.6 | 3.7 | 12.8 | 4.2 | 11.0 | 3.8 | 12.8 | 1.2 |
4 | 11.0 | 4.7 | 16.5 | 2.6 | 14.6 | 4.5 | 11.0 | 3.9 | 14.6 | 3.8 | 14.6 | 0.8 |
5 | na | na | 14.6 | 3.0 | 11.0 | 6.6 | na | na | 14.6 | 3.6 | 15.5 | 1.3 |
Tot. (min) | 13.9 | 13.3 | 24.4 | 12.9 | 18.9 | 5.5 |
References
- González, H.F.; Porras, J.L.C.; de Gutiérrez, I.B.; LaMoreaux, J.W. (Eds.) Management of Water Resources in Protected Areas; Environmental Earth Sciences; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 978-3-642-16329-6. [Google Scholar]
- Viviroli, D.; Kummu, M.; Meybeck, M.; Kallio, M.; Wada, Y. Increasing Dependence of Lowland Populations on Mountain Water Resources. Nat. Sustain. 2020, 3, 917–928. [Google Scholar] [CrossRef]
- Viviroli, D.; Dürr, H.H.; Messerli, B.; Meybeck, M.; Weingartner, R. Mountains of the World, Water Towers for Humanity: Typology, Mapping, and Global Significance. Water Resour. Res. 2007, 43, W07447. [Google Scholar] [CrossRef] [Green Version]
- CONANP; SEMARNAT; GIZ. Valuation of Ecosystem Services; Comisión Nacional de Áreas Naturales Protegidas; Secretaría de Medio Ambiente y Recursos Naturales; Deutsche Sesellschaft für Internationales Zusammenarbeit; Iztaccíhuatl-Popocatépetl National Park: Mexico City, Mexico, 2017.
- Goeking, S.A.; Tarboton, D.G. Forests and Water Yield: A Synthesis of Disturbance Effects on Streamflow and Snowpack in Western Coniferous Forests. J. For. 2020, 118, 172–192. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Chevesich, P.A.; Neary, D.G.; Scott, D.F.; Benyon, T.R.; International Hydrological Programme; IHP-VIII; Unesco; Regional Office for Sciences for Latin America and the Caribbean. Forest Management and the Impact on Water Resources: A Review of 13 Countries; United Nations Educational, Scientific, and Cultural Organization International Hydrological Programme International Sediment Initiative: Paris, France, 2017; ISBN 978-92-3-100216-8. [Google Scholar]
- Suding, K.; Higgs, E.; Palmer, M.; Callicott, J.B.; Anderson, C.B.; Baker, M.; Gutrich, J.J.; Hondula, K.L.; LaFevor, M.C.; Larson, B.M. Committing to Ecological Restoration. Science 2015, 348, 638–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, H.W.; Hoover, M.D.; Reinhart, K.G. Forests and Water: Effects of Forest Management on Floods, Sedimentation and Water Supply; USDA Forest Serv. Gen. Tech. Rep.: Berkeley, CA, USA, 1976. [Google Scholar]
- Ceci, P. Forests and Water: International Momentum and Action; FAO: Rome, Italy, 2013; ISBN 978-92-5-107418-3.
- Keller, A.A.; Fox, J. Giving Credit to Reforestation for Water Quality Benefits. PLoS ONE 2019, 14, e0217756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Page, T.; Chappell, N.A.; Beven, K.J.; Hankin, B.; Kretzschmar, A. Assessing the Significance of Wet-Canopy Evaporation from Forests during Extreme Rainfall Events for Flood Mitigation in Mountainous Regions of the United Kingdom. Hydrol. Process. 2020, 34, 4740–4754. [Google Scholar] [CrossRef]
- Stanchi, S.; Zecca, O.; Hudek, C.; Pintaldi, E.; Viglietti, D.; D’Amico, M.E.; Colombo, N.; Goslino, D.; Letey, M.; Freppaz, M. Effect of Soil Management on Erosion in Mountain Vineyards (N-W Italy). Sustainability 2021, 13, 1991. [Google Scholar] [CrossRef]
- LaFevor, M.; Cissell, J.; Misfeldt, J. Agave Cultivation, Terracing, and Conservation in Mexico. Focus Geogr. 2018, 61, 1–7. [Google Scholar] [CrossRef]
- Subbarao, G.V.; Kishii, M.; Bozal-Leorri, A.; Ortiz-Monasterio, I.; Gao, X.; Ibba, M.I.; Karwat, H.; Gonzalez-Moro, M.B.; Gonzalez-Murua, C.; Yoshihashi, T.; et al. Enlisting Wild Grass Genes to Combat Nitrification in Wheat Farming: A Nature-Based Solution. Proc. Natl. Acad. Sci. USA 2021, 118, e2106595118. [Google Scholar] [CrossRef]
- Preti, F.; Giadrossich, F. Root Reinforcement and Slope Bioengineering Stabilization by Spanish Broom (Spartium Junceum L.). Hydrol. Earth Syst. Sci. 2009, 13, 1713–1726. [Google Scholar] [CrossRef] [Green Version]
- Apollonio, C.; Petroselli, A.; Tauro, F.; Cecconi, M.; Biscarini, C.; Zarotti, C.; Grimaldi, S. Hillslope Erosion Mitigation: An Experimental Proof of a Nature-Based Solution. Sustainability 2021, 13, 6058. [Google Scholar] [CrossRef]
- Seddon, N.; Chausson, A.; Berry, P.; Girardin, C.A.J.; Smith, A.; Turner, B. Understanding the Value and Limits of Nature-Based Solutions to Climate Change and Other Global Challenges. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190120. [Google Scholar] [CrossRef] [Green Version]
- Ellison, D.; Morris, C.E.; Locatelli, B.; Sheil, D.; Cohen, J.; Murdiyarso, D.; Gutierrez, V.; van Noordwijk, M.; Creed, I.F.; Pokorny, J.; et al. Trees, Forests and Water: Cool Insights for a Hot World. Glob. Environ. Chang. 2017, 43, 51–61. [Google Scholar] [CrossRef]
- Locatelli, B.; Homberger, J.-M.; Ochoa-Tocachi, B.; Bonnesoeur, V.; Román, F.; Drenkhan, F.; Buytaert, W. Impactos De Las Zanjas De Infiltración En El Agua Y Los Suelos: ¿Qué Sabemos? Doctoral dissertation, Infraestructura Natural para la Seguridad Hídrica; Forest Trends: Lima, Peru, 2020. [Google Scholar]
- Beckers, B.; Berking, J.; Schütt, B. Ancient Water Harvesting Methods in the Drylands of the Mediterranean and Western Asia. eTopoi. J. Anc. Stud. 2013, 2, 145–164. [Google Scholar]
- LaFevor, M.C. Restoration of Degraded Agricultural Terraces: Rebuilding Landscape Structure and Process. J. Environ. Manag. 2014, 138, 32–42. [Google Scholar] [CrossRef]
- SAG. Realizaciones en la Montaña de la Malinche; SAG (Secretaria de Agricultura y Ganaderia): Ciudad de México, Mexico, 1963.
- Cotler, H.; Cuevas, M.L. Adoption of Soil Conservation Practices through Knowledge Governance: The Mexican Experience. J. Soil Sci. Environ. Manag. 2019, 10, 1–11. [Google Scholar] [CrossRef]
- SEMARNAT; CONANP; CONAFOR; PRONATURA; Coca-Cola de México. Informe Anual: Programa Nacional de Reforestación y Cosecha de Agua; Pronatura México: Ciudad de México, Mexico, 2010; p. 149. [Google Scholar]
- Cota, E.; Marín, L.; Balcazar, M. Recargas de Acuíferos Mediante La Construcción de Tinas Ciegas. ProNatura 2011, 3, 12–14. [Google Scholar]
- SEMARNAT. Principales Impactos Del Programa de Empleo Temporal en las Áreas Naturales Protegidas (PET 2007–2012); Comisión Nacional de Areas Naturales Protegidas (CONANP), Secretaria de Medio Ambiente y Recursos Naturales, Mexico (SEMARNAT): Mexico City, Mexico, 2013; p. 66.
- Martos-Rosillo, S.; Durán, A.; Castro, M.; Vélez, J.J.; Martín-Civantos, J.M.; Mateos, L.; Durán, J.J.; Gutiérrez, C.; Hermoza, R.M.; Peña, F. Ancestral Techniques of Water Sowing and Harvesting in Ibero-America: Examples of Hydrogeoethical Systems; Geoethics & Groundwater Management Congress: Porto, Portugal, 2020; p. 7. [Google Scholar]
- Somers, L.D.; McKenzie, J.M.; Zipper, S.C.; Mark, B.G.; Lagos, P.; Baraer, M. Does Hillslope Trenching Enhance Groundwater Recharge and Baseflow in the Peruvian Andes? Hydrol. Process. 2018, 32, 318–331. [Google Scholar] [CrossRef]
- LaFevor, M.C. Conservation Engineering and Agricultural Terracing in Tlaxcala, Mexico. Ph.D. Thesis, The University of Texas at Austin, Austin, TX, USA, 2014. [Google Scholar]
- Mastretta-Yanes, A.; Moreno-Letelier, A.; Piñero, D.; Jorgensen, T.H.; Emerson, B.C. Biodiversity in the Mexican Highlands and the Interaction of Geology, Geography and Climate within the Trans-Mexican Volcanic Belt. J. Biogeogr. 2015, 42, 1586–1600. [Google Scholar] [CrossRef]
- Werner, G. La Desforestacion en el Valcan “La Malinche” y sus Consecuencias en el Desarrollo de los Suelos así como en sus Propiedades Ecológicas. In Proyecto Puebla-Tlaxcala. Comunicaciones; El Proyecto México de la Fundación Alemana para la investigación científica; Gobierno del Estado de Tlaxcala; Universidad Autonoma de Tlaxcala: Puebla, Mexico, 1976; Volume 13, pp. 19–28. [Google Scholar]
- SEMARNAT; CONANP. Programa de Manejo Parque Nacional La Montaña Malinche O Matlalcuéyatl; primera; Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT): Mexico City, Mexico, 2013.
- Castro-Govea, R.; Siebe, C. Late Pleistocene–Holocene Stratigraphy and Radiocarbon Dating of La Malinche Volcano, Central Mexico. J. Volcanol. Geotherm. Res. 2007, 162, 20–42. [Google Scholar] [CrossRef]
- Mora, A.; García-Gamboa, M.; Sánchez-Luna, M.S.; Gloria-García, L.; Cervantes-Avilés, P.; Mahlknecht, J. A Review of the Current Environmental Status and Human Health Implications of One of the Most Polluted Rivers of Mexico: The Atoyac River, Puebla. Sci. Total Environ. 2021, 782, 146788. [Google Scholar] [CrossRef]
- Wong González, J.C.; de Villers Ruiz, M.L. Evaluación de Combustibles y Su Disponibilidad En Incendios Forestales: Un Estudio En El Parque Nacional La Malinche. Investig. Geogr. 2007, 62, 87–103. [Google Scholar] [CrossRef]
- Cuautle, M.; Castillo-Guevara, C.; Juárez-Juárez, B.; Pérez-Toledo, G. Ants (Hymenoptera: Formicidae) in a Temperate Ecosystem from La Malinche National Park, Mexico. Fla. Entomol. 2020, 103, 321–328. [Google Scholar] [CrossRef]
- Lauer, W.; Stiehl, E. La Classificación Del Clima En La Región Puebla-Tlaxcala; Fundación Alemana para la Investigación Científica: Mexico City, Mexico, 1973. [Google Scholar]
- Castillo-Rodríguez, M.; López-Blanco, J.; Muñoz-Salinas, E. A Geomorphologic GIS-Multivariate Analysis Approach to Delineate Environmental Units, a Case Study of La Malinche Volcano (Central México). Appl. Geogr. 2010, 30, 629–638. [Google Scholar] [CrossRef]
- Bolaños Suárez, Y.R. Diagnóstico Socioeconómico Del Parque Nacional Malinche Bajo El Criterio de Cuencas Hidrológicas; Universidad Autónoma del Estado de México: Tenancingo, Mexico, 2014. [Google Scholar]
- Castro Pérez, F. La política gubernamental para el manejo del Parque Nacional “La Malinche”: Una visión etnográfica desde el interior de las instituciones ambientalistas. In Proceedings of the the Commons in an Age of Global Transition: Challenges, Risks and Opportutnities, Tenth Biennial Conference of the International Association for the Study of Common Property (IASCP), Oaxaca, Mexico, 9–13 August 2004; p. 27. [Google Scholar]
- Reynolds, W.D.; Elrick, D.E. In Situ Measurement of Field-Saturated Hydraulic Conductivity, Sorptivity, and the α-Parameter using the Guelph Permeameter. Soil Sci. 1985, 140, 292–302. [Google Scholar] [CrossRef]
- Juliá, F.E.; Snyder, V.A.; Vázquez, M.A. Validation of Soil Survey Estimates of Saturated Hydraulic Conductivity in Major Soils of Puerto Rico. Hydrology 2021, 8, 94. [Google Scholar] [CrossRef]
- Ramos-Scharrón, C.E.; LaFevor, M.C. The Role of Unpaved Roads as Active Source Areas of Precipitation Excess in Small Watersheds Drained by Ephemeral Streams in the Northeastern Caribbean. J. Hydrol. 2016, 533, 168–179. [Google Scholar] [CrossRef]
- Kattel, D.B.; Yao, T.; Yang, K.; Tian, L.; Yang, G.; Joswiak, D. Temperature Lapse Rate in Complex Mountain Terrain on the Southern Slope of the Central Himalayas. Theor. Appl. Climatol. 2013, 113, 671–682. [Google Scholar] [CrossRef]
- Dingman, S.L. Physical Hydrology, 2nd ed.; Waveland Press Incorporated: Long Grove, IL, USA, 2002. [Google Scholar]
- Monteith, J.L. Evaporation and Environment. Symp. Soc. Exp. Biol. 1965, 19, 205–234. [Google Scholar] [PubMed]
- Návar, J. Modeling Rainfall Interception Loss Components of Forests. J. Hydrol. 2020, 584, 124449. [Google Scholar] [CrossRef]
- Guevara-Escobar, A.; Gonzalez-Sosa, E.; Ramos-Salinas, M.; Hernandez-Delgado, G.D. Experimental Analysis of Drainage and Water Storage of Litter Layers. Hydrol. Earth Syst. Sci. 2007, 11, 1703–1716. [Google Scholar] [CrossRef] [Green Version]
- Putuhena, W.M.; Cordery, I. Estimation of Interception Capacity of the Forest Floor. J. Hydrol. 1996, 180, 283–299. [Google Scholar] [CrossRef]
- Link, T.E.; Unsworth, M.; Marks, D. The Dynamics of Rainfall Interception by a Seasonal Temperate Rainforest. Agric. For. Meteorol. 2004, 124, 171–191. [Google Scholar] [CrossRef] [Green Version]
- USDA. National Engineering Handbook; Chapter 15—Time of Concentration; Part 630—Hydrology; United States Department of Agriculture (USDA): Washington, DC, USA, 2010.
- Pianosi, F.; Beven, K.; Freer, J.; Hall, J.W.; Rougier, J.; Stephenson, D.B.; Wagener, T. Sensitivity Analysis of Environmental Models: A Systematic Review with Practical Workflow. Environ. Model. Softw. 2016, 79, 214–232. [Google Scholar] [CrossRef]
- LaFevor, M.C.; Ponette-González, A.G.; Larson, R.; Mungai, L.M. Spatial Targeting of Agricultural Support Measures: Indicator-Based Assessment of Coverages and Leakages. Land 2021, 10, 740. [Google Scholar] [CrossRef]
- Lozano-Trejo, S.; Aquino, J.O.; Pérez-León, M.I.; Castañeda-Hidalgo, E.; Díaz-Zorrilla, G.O.; Santiago-Martínez, G.M. Infiltración y escurrimiento de agua en suelos de una cuenca en el sur de México. Rev. Terra Latinoam. 2020, 38, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Price, K.; Jackson, C.R.; Parker, A.J. Variation of Surficial Soil Hydraulic Properties across Land Uses in the Southern Blue Ridge Mountains, North Carolina, USA. J. Hydrol. 2010, 383, 256–268. [Google Scholar] [CrossRef]
- Robichaud, P.R. Fire Effects on Infiltration Rates after Prescribed Fire in Northern Rocky Mountain Forests, USA. J. Hydrol. 2000, 231–232, 220–229. [Google Scholar] [CrossRef]
- Sosa-Pérez, G.; MacDonald, L.H. Effects of Closed Roads, Traffic, and Road Decommissioning on Infiltration and Sediment Production: A Comparative Study Using Rainfall Simulations. Catena 2017, 159, 93–105. [Google Scholar] [CrossRef]
- CLICOM. CLImate COMputing Database. Available online: http://clicom-mex.cicese.mx/ (accessed on 14 August 2021).
- Kelliher, F.M.; Leuning, R.; Schulze, E.D. Evaporation and Canopy Characteristics of Coniferous Forests and Grasslands. Oecologia 1993, 95, 153–163. [Google Scholar] [CrossRef]
- Yihdego, Y.; Webb, J.A. Comparison of Evaporation Rate on Open Water Bodies: Energy Balance Estimate versus Measured Pan. J. Water Clim. Chang. 2017, 9, 101–111. [Google Scholar] [CrossRef]
- Croke, J.; Hairsine, P.; Fogarty, P. Runoff Generation and Re-Distribution in Logged Eucalyptus Forests, South-Eastern Australia. J. Hydrol. 1999, 216, 56–77. [Google Scholar] [CrossRef]
- Jencso, K.G.; McGlynn, B.L. Hierarchical Controls on Runoff Generation: Topographically Driven Hydrologic Connectivity, Geology, and Vegetation. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef] [Green Version]
- Farrick, K.K.; Branfireun, B.A. Soil Water Storage, Rainfall and Runoff Relationships in a Tropical Dry Forest Catchment. Water Resour. Res. 2014, 50, 9236–9250. [Google Scholar] [CrossRef]
- Cotler-Avalos, H.; Cram, S.; Martínez Trinidad, S.; Bunge, V. Evaluación de prácticas de conservación de suelos forestales en México: Caso de las zanjas trinchera. Investig. Geogr. Bol. Del Inst. De Geogr. 2015, 2015, 6–18. [Google Scholar] [CrossRef] [Green Version]
- Wilken, G.C. Good Farmers: Traditional Agricultural Resource Management in Mexico and Central America; University of California Press: Berkeley, CA, USA, 1987; ISBN 0-520-05277-3. [Google Scholar]
- Mastrocicco, M.; Colombani, N.; Salemi, E.; Boz, B.; Gumiero, B. Managed Aquifer Recharge via Infiltration Ditches in Short Rotation Afforested Areas. Ecohydrology 2016, 9, 167–178. [Google Scholar] [CrossRef]
- Ramos-Scharrón, C.E.; LaFevor, M.C. Effects of Forest Roads on Runoff Initiation in Low-Order Ephemeral Streams. Water Resour. Res. 2018, 54, 8613–8631. [Google Scholar] [CrossRef]
- Cotler, H.; Merino, L.; Martinez-Trinidad, S. Forest Soil Management: A Mexican Experience. Open J. Soil Sci. 2020, 10, 374. [Google Scholar] [CrossRef]
- Cotler, H.; Cram, S.; Martinez-Trinidad, S.; Quintanar, E. Forest Soil Conservation in Central Mexico: An Interdisciplinary Assessment. Catena 2013, 104, 280–287. [Google Scholar] [CrossRef]
- Miyata, S.; Gomi, T.; Sidle, R.C.; Hiraoka, M.; Onda, Y.; Yamamoto, K.; Nonoda, T. Assessing Spatially Distributed Infiltration Capacity to Evaluate Storm Runoff in Forested Catchments: Implications for Hydrological Connectivity. Sci. Total Environ. 2019, 669, 148–159. [Google Scholar] [CrossRef]
- Baiamonte, G. Simplified Interception/Evaporation Model. Hydrology 2021, 8, 99. [Google Scholar] [CrossRef]
- Levia, D.F.; Carlyle-Moses, D.; Tanaka, T. (Eds.) Forest Hydrology and Biogeochemistry: Synthesis of Past Research and Future Directions; Ecological Studies; Springer Science & Business Media: Dordrecht, The Netherlands, 2011; Volume 216, ISBN 978-94-007-1362-8. [Google Scholar]
- Zheng, C.; Jia, L. Global Canopy Rainfall Interception Loss Derived from Satellite Earth Observations. Ecohydrology 2020, 13, e2186. [Google Scholar] [CrossRef] [Green Version]
- Aalto, J.; Riihimäki, H.; Meineri, E.; Hylander, K.; Luoto, M. Revealing Topoclimatic Heterogeneity Using Meteorological Station Data. Int. J. Climatol. 2017, 37, 544–556. [Google Scholar] [CrossRef]
- Ponette-González, A.G.; Brauman, K.A.; Marín-Spiotta, E.; Farley, K.A.; Weathers, K.C.; Young, K.R.; Curran, L.M. Managing Water Services in Tropical Regions: From Land Cover Proxies to Hydrologic Fluxes. Ambio 2015, 44, 367–375. [Google Scholar] [CrossRef] [Green Version]
Forest Catchments | Trenches | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dimensions | Permeameter Results | Dimensions | Permeameter Results | ||||||
Width | Slope | Ksat | Sorptivity | Width | Height | Ksat | Sorptivity | ||
Transect | Site | (m) | (m m−1) | (mm hr−1) | (mm hr−1/2) | (m) | (m) | (mm hr−1) | (mm hr−1/2) |
A | 1 | 44.0 | 0.12 | 7.0 | 7.4 | 0.37 | 0.35 | 31.3 | 3.47 |
2 | 39.5 | 0.01 | 51.5 | 4.0 | 0.39 | 0.38 | 35.8 | 0.98 | |
3 | 44.3 | 0.09 | 2.6 | 9.2 | 0.43 | 0.41 | 51.6 | 7.20 | |
4 | 51.6 | 0.07 | 49.4 | 7.6 | 0.41 | 0.40 | 15.8 | 5.74 | |
B | 1 | 38.9 | 0.14 | 54.0 | 9.1 | 0.42 | 0.38 | 42.5 | 1.50 |
2 | 44.5 | 0.14 | 62.6 | 2.5 | 0.50 | 0.45 | 13.9 | 9.6 | |
3 | 41.4 | 0.14 | 52.4 | 6.4 | 0.45 | 0.39 | 5.4 | 13.7 | |
4 | 43.4 | 0.14 | 62.4 | 4.9 | 0.39 | 0.37 | 76.0 | 3.0 | |
5 | 44.6 | 0.12 | 51.6 | 7.2 | 0.45 | 0.43 | 2.5 | 7.0 | |
C | 1 | 62.2 | 0.11 | 54.1 | 10.0 | 0.45 | 0.43 | 4.8 | 7.8 |
2 | 67.2 | 0.09 | 85.2 | 7.7 | 0.43 | 0.41 | 71.5 | 1.4 | |
3 | 54.8 | 0.10 | 65.7 | 9.3 | 0.38 | 0.38 | 7.1 | 9.6 | |
4 | 66.2 | 0.10 | 49.8 | 11.4 | 0.42 | 0.40 | 53.9 | 8.0 | |
5 | 72.6 | 0.07 | 74.1 | 8.3 | 0.52 | 0.49 | 6.9 | 6.1 | |
D | 1 | 24.5 | 0.07 | 51.7 | 8.4 | 0.39 | 0.32 | 40.7 | 9.9 |
2 | 38.0 | 0.10 | 40.5 | 7.9 | 0.37 | 0.35 | 61.2 | 6.8 | |
3 | 53.9 | 0.09 | 20.2 | 4.7 | 0.39 | 0.34 | 51.6 | 5.8 | |
4 | 42.8 | 0.07 | 35.8 | 7.6 | 0.38 | 0.34 | 114.8 | 7.2 | |
E | 1 | 55.3 | 0.09 | 7.3 | 11.3 | 0.57 | 0.56 | 96.3 | 7.0 |
2 | 43.2 | 0.06 | 33.8 | 7.8 | 0.62 | 0.57 | 7.3 | 11.3 | |
3 | 41.5 | 0.06 | 53.8 | 5.3 | 0.58 | 0.49 | 3.0 | 12.5 | |
4 | 56.1 | 0.09 | 78.2 | 1.8 | 0.56 | 0.52 | 17.9 | 3.1 | |
5 | 52.9 | 0.12 | 66.9 | 9.2 | 0.61 | 0.58 | 29.1 | 4.2 | |
F | 1 | 14.4 | 0.12 | 71.5 | 1.4 | 0.67 | 0.58 | 40.8 | 10.8 |
2 | 14.7 | 0.09 | 33.7 | 6.5 | 0.66 | 0.61 | 5.3 | 13.0 | |
3 | 15.3 | 0.08 | 93.8 | 0.5 | 0.72 | 0.67 | 9.6 | 11.8 | |
4 | 12.3 | 0.12 | 22.4 | 4.0 | 0.75 | 0.67 | 92.2 | 10.7 | |
5 | 20.1 | 0.13 | 44.3 | 8.0 | 0.73 | 0.68 | 33.6 | 2.6 | |
Mean | 49.15 | 6.75 | Mean | 36.51 | 7.19 | ||||
SD | 23.01 | 2.87 | SD | 31.03 | 3.66 |
Infiltration (% Total Precipitation) | Runoff (% Total Precipitation) | ||||||
---|---|---|---|---|---|---|---|
Sensitivity Variable (Mean) | Range | Baseline | Trenched | Difference | Baseline | Trenched | Difference |
Unperturbed (all at means) | 55.9 | 57.1 | 1.2 | 0.0 | 0.00 | 0.0 | |
Infiltration capacity of forest | 93.8 | 55.9 | 57.1 | 1.2 | 0.0 | 0.00 | 0.0 |
(49.15 mm hr−1) | 2.6 | 27.4 | 30.5 | 3.1 | 29.6 | 27.7 | −1.9 |
Infiltration capacity of trench | 114.8 | 55.9 | 57.1 | 1.2 | 0.00 | 0.0 | 0.0 |
(36.43 mm hr−1) | 2.5 | 55.9 | 56.6 | 0.7 | 0.00 | 0.5 | 0.5 |
Interception storage | 3.5 | 53.3 | 54.5 | 1.2 | 0.00 | 0.0 | 0.0 |
(3 mm) | 2.5 | 59.2 | 60.3 | 1.2 | 0.00 | 0.0 | 0.0 |
Trench width | 0.75 | 55.9 | 57.7 | 1.8 | 0.00 | 0.0 | 0.0 |
(0.50 m) | 0.37 | 55.9 | 56.8 | 0.9 | 0.00 | 0.0 | 0.0 |
Depth of trenches | 0.68 | 55.9 | 57.1 | 1.2 | 0.00 | 0.00 | 0.00 |
(0.46 m) | 0.32 | 55.9 | 57.1 | 1.2 | 0.00 | 0.00 | 0.00 |
Forest width | 72.6 | 94.8 | 95.9 | 1.2 | 0.00 | 0.00 | 0.00 |
(42.86 m) | 12.3 | 16.0 | 17.2 | 1.2 | 0.00 | 0.00 | 0.00 |
Potential Evap. (interception) | +10% | 55.2 | 56.4 | 1.2 | 0.00 | 0.00 | 0.00 |
(4.08 mm day−1) | −10% | 56.9 | 58.1 | 1.2 | 0.00 | 0.00 | 0.00 |
Potential Evap. (trench pond) | +10% | 55.9 | 57.1 | 1.2 | 0.00 | 0.00 | 0.00 |
(2.74 mm day−1) | −10% | 55.9 | 57.1 | 1.2 | 0.00 | 0.00 | 0.00 |
Forest Runoff | Trench Overtopping | |||||
---|---|---|---|---|---|---|
Term | Estimate | SE | p | Estimate | SE | p |
Inf. cap. forest (mm hr−1) | −1.0 | 0.1 | <0.001 | −0.5 | 0.1 | <0.001 |
Precipitation (mm hr−1) | 1.2 | 0.1 | <0.001 | 0.7 | 0.1 | <0.001 |
Inf. cap. trench (mm hr−1) | −0.1 | 0.0 | <0.001 | −0.1 | 0.0 | 0.01 |
Forest width (m) | 0.1 | 0.0 | <0.001 | 0.2 | 0.0 | <0.001 |
Trench width (cm) | 0.2 | 0.0 | <0.001 | −0.1 | 0.0 | 0.23 |
Evap. ponding (mm day−1) | −3.3 | 1.0 | 0.09 | −4.6 | 1.7 | 0.21 |
Evap. forest (mm day−1) | −0.5 | 0.2 | 0.04 | −0.1 | 0.3 | 0.80 |
Pseudo Rsquare (U) (McFadden) | 0.9 | <0.001 | 0.9 | <0.001 |
Cumulative Infiltration (% of Total Precipitation) | ||||
---|---|---|---|---|
Type | Stage | No Trenches (Baseline) | Trenches (T) | Difference |
Infiltration | Initial | 56.6 | 57.9 | 1.3 |
Runoff/on (baseline) | Subsequent | 2.2 | 2.1 | −0.1 |
and overtopping/run-on (T) | ||||
Infiltration (total) | Final | 58.8 | 60.0 | 1.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
LaFevor, M.C.; Ramos-Scharrón, C.E. Effects of Hillslope Trenching on Surface Water Infiltration in Subalpine Forested Catchments. Hydrology 2021, 8, 147. https://doi.org/10.3390/hydrology8040147
LaFevor MC, Ramos-Scharrón CE. Effects of Hillslope Trenching on Surface Water Infiltration in Subalpine Forested Catchments. Hydrology. 2021; 8(4):147. https://doi.org/10.3390/hydrology8040147
Chicago/Turabian StyleLaFevor, Matthew C., and Carlos E. Ramos-Scharrón. 2021. "Effects of Hillslope Trenching on Surface Water Infiltration in Subalpine Forested Catchments" Hydrology 8, no. 4: 147. https://doi.org/10.3390/hydrology8040147
APA StyleLaFevor, M. C., & Ramos-Scharrón, C. E. (2021). Effects of Hillslope Trenching on Surface Water Infiltration in Subalpine Forested Catchments. Hydrology, 8(4), 147. https://doi.org/10.3390/hydrology8040147