Utilization of Nanotechnology to Improve Bone Health in Osteoporosis Exploiting Nigella sativa and Its Active Constituent Thymoquinone
Abstract
:1. Introduction
2. Pathophysiology of Osteoporosis
3. Phytochemistry of N. sativa
4. Pharmacology of N. sativa
5. Protective Mechanisms of N. sativa and Its Active Constituents against Osteoporosis
5.1. Antioxidant Activity of N. sativa in Osteoporosis
5.2. Anti-Inflammatory Activity of N. sativa in Osteoporosis
5.3. Bone Regeneration Activity of N. sativa
6. Palliative Behavior of N. sativa in Osteoporosis
6.1. N. sativa Seed Extract
6.2. N. sativa Oil
6.3. Thymoquinone (TQ)
7. Nanotechnology-Mediated Bone-Specific Delivery of NS and/or TQ in Osteoporosis
Nanotechnology-Mediated Drug Delivery
8. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johnston, C.B.; Dagar, M. Osteoporosis in Older Adults. Med. Clin. N. Am. 2020, 104, 873–884. [Google Scholar] [CrossRef] [PubMed]
- Ensrud, K.E.; Crandall, C.J. Osteoporosis. Ann. Intern. Med. 2017, 167, ITC17–ITC31. [Google Scholar] [CrossRef] [PubMed]
- Klibanski, A.; Adams-Campbell, L.; Bassford, T.; Blair, S.N.; Boden, S.D.; Dickersin, K.; Gifford, D.R.; Glasse, L.; Goldring, S.R.; Hruska, K.; et al. Osteoporosis prevention, diagnosis, and therapy. JAMA 2001, 285, 785–795. [Google Scholar]
- Lane, N.E. Epidemiology, etiology, and diagnosis of osteoporosis. Am. J. Obstet. Gynecol. 2006, 194, S3–S11. [Google Scholar] [CrossRef] [PubMed]
- Rajan, R.; Paul, J.; Kapoor, N.; Cherian, K.E.; Paul, T.V. Postmenopausal osteoporosis—An Indian perspective. Curr. Med. Issues 2021, 18, 98–104. [Google Scholar]
- Ali, B.H.; Blunden, G. Pharmacological and toxicological properties of Nigella sativa. Phytother. Res. 2003, 17, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Shuid, A.N.; Mohamed, N.; Mohamed, I.N.; Othman, F.; Suhaimi, F.; Mohd Ramli, E.S.; Muhammad, N.; Soelaiman, I.N. Nigella sativa: A Potential Antiosteoporotic Agent. Evid. Based Complement. Alternat. Med. 2012, 2012, 696230. [Google Scholar] [CrossRef] [Green Version]
- Darakhshan, S.; Pour, A.B.; Colagar, A.H.; Sisakhtnezhad, S. Thymoquinone and its therapeutic potentials. Pharmacol. Res. 2015, 95–96, 138–158. [Google Scholar] [CrossRef]
- Kooti, W.; Hasanzadeh-Noohi, Z.; Sharafi-Ahvazi, N.; Asadi-Samani, M.; Ashtary-Larky, D. Phytochemistry, pharmacology, and therapeutic uses of black seed (Nigella sativa). Chin. J. Nat. Med. 2016, 14, 732–745. [Google Scholar] [CrossRef]
- Ezirganli, S.; Kazancioglu, H.O.; Ozdemir, H.; Inan, D.S.; Tek, M. The Effects of Nigella Sativa Seed Extract on Bone Healing in an Experimental Model. J. Craniofac. Surg. 2016, 27, 1905–1909. [Google Scholar] [CrossRef]
- Okamoto, K.; Nakashima, T.; Shinohara, M.; Negishi-Koga, T.; Komatsu, N.; Terashima, A.; Sawa, S.; Nitta, T.; Takayanagi, H. Osteoimmunology: The conceptual framework unifying the immune and skeletal systems. Physiol. Rev. 2017, 97, 1295–1349. [Google Scholar] [CrossRef] [PubMed]
- Proff, P.; Römer, P. The molecular mechanism behind bone remodelling: A review. Clin. Oral Investig. 2009, 13, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Clarke, B.L.; Khosla, S. Physiology of Bone Loss. Radiol. Clin. N. Am. 2010, 48, 483–495. [Google Scholar] [CrossRef]
- Katsimbri, P. The biology of normal bone remodelling. Eur. J. Cancer Care (Engl.) 2017, 26, e12740. [Google Scholar] [CrossRef] [PubMed]
- Brown, C. Osteoporosis: Staying strong: An improved understanding of bone loss can help women reduce their risk of fractures as they age. Nature 2017, 550, S15–S17. [Google Scholar] [CrossRef] [PubMed]
- Armas, L.A.G.; Recker, R.R. Pathophysiology of Osteoporosis. New Mechanistic Insights. Endocrinol. Metab. Clin. N. Am. 2012, 41, 475–486. [Google Scholar] [CrossRef] [PubMed]
- Anthamatten, A.; Parish, A. Clinical Update on Osteoporosis. J. Midwifery Womens Health 2019, 64, 265–275. [Google Scholar] [CrossRef]
- Miyamoto, T.; Suda, T. Differentiation and function of osteoclasts. Keio J. Med. 2003, 52, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, M.F.; Ahmad, F.A.; Ashraf, S.A.; Saad, H.H.; Wahab, S.; Khan, M.I.; Ali, M.; Mohan, S.; Hakeem, K.R.; Athar, M.T. An updated knowledge of Black seed (Nigella sativa Linn.): Review of phytochemical constituents and pharmacological properties. J. Herb. Med. 2021, 25, 100404. [Google Scholar] [CrossRef]
- Greenish, H. Contribution to the chemistry of Nigella sativa. Pharmac. J. Trans. 1880, 10, 909–911. [Google Scholar]
- Norsharina, I.; Maznah, I.; Aied, A.A.; Ghanya, A.N. Thymoquinone rich fraction from Nigella sativa and thymoquinone are toxic towards colon and leukemic carcinoma cell lines. J. Med. Plants Res. 2011, 5, 3359–3366. [Google Scholar]
- Sahak, M.K.A.; Kabir, N.; Abbas, G.; Draman, S.; Hashim, N.H.; Hasan Adli, D.S. The role of Nigella sativa and its active constituents in learning and memory. Evid.-Based Complement. Altern. Med. 2016, 2016, 6075679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yimer, E.M.; Tuem, K.B.; Karim, A.; Ur-Rehman, N.; Anwar, F. Nigella sativa L. (Black Cumin): A Promising Natural Remedy for Wide Range of Illnesses. Evid. Based. Complement. Alternat. Med. 2019, 2019, 1528635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aktas, I.; Mehmet Gur, F. Hepato-protective effects of thymoquinone and beta-aminoisobutyric acid in streptozocin induced diabetic rats. Biotech. Histochem. 2022, 97, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Al Aboud, D.; Baty, R.S.; Alsharif, K.F.; Hassan, K.E.; Zhery, A.S.; Habotta, O.A.; Elmahallawy, E.K.; Amin, H.K.; Abdel Moneim, A.E.; Kassab, R.B. Protective efficacy of thymoquinone or ebselen separately against arsenic-induced hepatotoxicity in rat. Environ. Sci. Pollut. Res. Int. 2021, 28, 6195–6206. [Google Scholar] [CrossRef] [PubMed]
- Hannan, M.; Rahman, M.; Sohag, A.A.; Uddin, M.; Dash, R.; Sikder, M.H.; Timalsina, B.; Munni, Y.A.; Sarker, P.P.; Alam, M.; et al. Black Cumin (Nigella sativa L.): A Comprehensive Review on Phytochemistry, Health Benefits, Molecular Pharmacology, and Safety. Nutrients 2021, 13, 1784. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, H.E.S.; Alaa El-Din, E.A.; El-Shafei, D.A.; Abouhashem, N.S.; Abouhashem, A.A. Protective roles of thymoquinone and vildagliptin in manganese-induced nephrotoxicity in adult albino rats. Environ. Sci. Pollut. Res. Int. 2021, 28, 31174–31184. [Google Scholar] [CrossRef]
- Tiji, S.; Rokni, Y.; Benayad, O.; Laaraj, N.; Asehraou, A.; Mimouni, M. Chemical Composition Related to Antimicrobial Activity of Moroccan Nigella sativa L. Extracts and Isolated Fractions. Evid.-Based. Complement. Alternat. Med. 2021, 2021, 8308050. [Google Scholar] [CrossRef]
- Cremers, S.; Drake, M.T.; Ebetino, F.H.; Bilezikian, J.P.; Russell, R.G.G. Pharmacology of bisphosphonates. Br. J. Clin. Pharmacol. 2019, 85, 1052–1062. [Google Scholar] [CrossRef]
- Aboubakr, M.; Elshafae, S.M.; Abdelhiee, E.Y.; Fadl, S.E.; Soliman, A.; Abdelkader, A.; Abdel-Daim, M.M.; Bayoumi, K.A.; Baty, R.S.; Elgendy, E.; et al. Antioxidant and Anti-Inflammatory Potential of Thymoquinone and Lycopene Mitigate the Chlorpyrifos-Induced Toxic Neuropathy. Pharmaceuticals 2021, 14, 940. [Google Scholar] [CrossRef]
- Ozdal Zincir, O.; Ozdal, U.; Unlü, O.; Demirci, M.; Katiboglu, A.B.; Egil, E.; Altan Sallı, G. Synergistic effect of thymoquinone and nystatin in the treatment of oral candidiasis: An in vitro study. Odontology 2022, 110, 330–337. [Google Scholar] [CrossRef] [PubMed]
- Al-Hayali, M.; Garces, A.; Stocks, M.; Collins, H.; Bradshaw, T.D. Concurrent Reactive Oxygen Species Generation and Aneuploidy Induction Contribute to Thymoquinone Anticancer Activity. Molecules 2021, 26, 5136. [Google Scholar] [CrossRef] [PubMed]
- Raut, P.K.; Lee, H.S.; Joo, S.H.; Chun, K.S. Thymoquinone induces oxidative stress-mediated apoptosis through downregulation of Jak2/STAT3 signaling pathway in human melanoma cells. Food Chem. Toxicol. 2021, 157, 112604. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Wang, F.; Wu, H.; Chen, X.; Zhang, Y.; Lin, J.; Cai, Y.; Xiang, J.; He, N.; Hu, Z.; et al. Thymoquinone Suppresses the Proliferation, Migration and Invasiveness through Regulating ROS, Autophagic Flux and miR-877-5p in Human Bladder Carcinoma Cells. Int. J. Biol. Sci. 2021, 17, 3456–3475. [Google Scholar] [CrossRef] [PubMed]
- Ozbolat, G.; Alizade, A. Investigation of the protective effect of thymoquinone of U87 cells induced by beta-amyloid. Bratisl. Lek. Listy 2021, 122, 748–752. [Google Scholar] [CrossRef] [PubMed]
- Elibol, B.; Beker, M.; Terzioglu-Usak, S.; Dalli, T.; Kilic, U. Thymoquinone administration ameliorates Alzheimer’s disease-like phenotype by promoting cell survival in the hippocampus of amyloid beta 1-42 infused rat model. Phytomedicine 2020, 79, 153324. [Google Scholar] [CrossRef]
- Alhibshi, A.H.; Odawara, A.; Suzuki, I. Neuroprotective efficacy of thymoquinone against amyloid beta-induced neurotoxicity in human induced pluripotent stem cell-derived cholinergic neurons. Biochem. Biophys. Rep. 2019, 17, 122–126. [Google Scholar] [CrossRef]
- Dong, J.; Zhang, X.; Wang, S.; Xu, C.; Gao, M.; Liu, S.; Li, X.; Cheng, N.; Han, Y.; Wang, X.; et al. Thymoquinone Prevents Dopaminergic Neurodegeneration by Attenuating Oxidative Stress Via the Nrf2/ARE Pathway. Front. Pharmacol. 2021, 11, 615598. [Google Scholar] [CrossRef]
- Uddin, M.N.; Hoq, M.I.; Jahan, I.; Siddiqui, S.A.; Clinton, C.D.; Ibrahim, M.; Islam, M.S.; Jakaria, M. The mechanistic role of thymoquinone in Parkinson’s disease: Focus on neuroprotection in pre-clinical studies. Curr. Mol. Pharmacol. 2021, 14, 1083–1092. [Google Scholar] [CrossRef]
- Ardah, M.T.; Merghani, M.M.; Haque, M.E. Thymoquinone prevents neurodegeneration against MPTP in vivo and modulates α-synuclein aggregation in vitro. Neurochem. Int. 2019, 128, 115–126. [Google Scholar] [CrossRef]
- Landucci, E.; Mazzantini, C.; Buonvicino, D.; Pellegrini-Giampietro, D.E.; Bergonzi, M.C. Neuroprotective Effects of Thymoquinone by the Modulation of ER Stress and Apoptotic Pathway in In Vitro Model of Excitotoxicity. Molecules 2021, 26, 1592. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Zaher, A.O.; Farghaly, H.S.M.; Farrag, M.M.Y.; Abdel-Rahman, M.S.; Abdel-Wahab, B.A. A potential mechanism for the ameliorative effect of thymoquinone on pentylenetetrazole-induced kindling and cognitive impairments in mice. Biomed. Pharmacother. 2017, 88, 553–561. [Google Scholar] [CrossRef] [PubMed]
- Samad, N.; Manzoor, N.; Muneer, Z.; Bhatti, S.A.; Imran, I. Reserpine-induced altered neuro-behavioral, biochemical and histopathological assessments prevent by enhanced antioxidant defence system of thymoquinone in mice. Metab. Brain Dis. 2021, 36, 2535–2552. [Google Scholar] [CrossRef] [PubMed]
- Fahmy, H.M.; Khardrawy, Y.A.; Abd-El Daim, T.M.; Elfeky, A.S.; Abd Rabo, A.A.; Mustafa, A.B.; Mostafa, I.T. Thymoquinone-encapsulated chitosan nanoparticles coated with polysorbate 80 as a novel treatment agent in a reserpine-induced depression animal model. Physiol. Behav. 2020, 222, 112934. [Google Scholar] [CrossRef] [PubMed]
- Altan, M.F.; Kanter, M.; Donmez, S.; Kartal, M.E.; Buyukbas, S. Combination therapy of Nigella sativa and human parathyroid hormone on bone mass, biomechanical behavior and structure in streptozotocin-induced diabetic rats. Acta Histochem. 2007, 109, 304–314. [Google Scholar] [CrossRef]
- Altan, M.F. Effects of Nigella sativa and human parathyroid hormone on bone mass and strength in diabetic rats. Biol. Trace Elem. Res. 2007, 116, 321–328. [Google Scholar] [CrossRef]
- Tavakkoli, A.; Mahdian, V.; Razavi, B.M.; Hosseinzadeh, H. Review on Clinical Trials of Black Seed (Nigella sativa) and Its Active Constituent, Thymoquinone. J. Pharmacopunct. 2017, 20, 179–193. [Google Scholar]
- Ahmad, S.S.; Ahmed, F.; Ali, R.; Ghoneim, M.M.; Alshehri, S.; Najmi, A.K.; Ahmad, S.; Ahmad, M.Z.; Ahmad, J.; Khan, M.A. Immunology of osteoporosis: Relevance of inflammatory targets for the development of novel interventions. Immunotherapy 2022, 14, 815–831. [Google Scholar] [CrossRef]
- Devareddy, L.; Khalil, D.A.; Smith, B.J.; Lucas, E.A.; Soung, D.Y.; Marlow, D.D.; Arjmandi, B.H. Soy moderately improves microstructural properties without affecting bone mass in an ovariectomized rat model of osteoporosis. Bone 2006, 38, 686–693. [Google Scholar] [CrossRef]
- Devareddy, L.; Hooshmand, S.; Collins, J.K.; Lucas, E.A.; Chai, S.C.; Arjmandi, B.H. Blueberry prevents bone loss in ovariectomized rat model of postmenopausal osteoporosis. J. Nutr. Biochem. 2008, 19, 694–699. [Google Scholar] [CrossRef]
- He, C.C.; Hui, R.R.; Tezuka, Y.; Kadota, S.; Li, J.X. Osteoprotective effect of extract from Achyranthes bidentata in ovariectomized rats. J. Ethnopharmacol. 2010, 127, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Shuid, A.N.; Ping, L.L.; Muhammad, N.; Mohamed, N.; Soelaiman, I.N. The effects of Labisia pumila var. alata on bone markers and bone calcium in a rat model of post-menopausal osteoporosis. J. Ethnopharmacol. 2011, 133, 538–542. [Google Scholar] [CrossRef] [PubMed]
- Valizadeh, N.A.; Zakeri, H.R.; Shafiee, A.; Sarkheil, P.; Heshmat, R.A.; Larijani, B. The effect of Nigella sativa extract on biochemical bone markers in osteopenic postmenopausal women. Iran. J. Endocrinol. Metab. 2009, 10, 571–580. [Google Scholar]
- Okazaki, R. Diabetes Mellitus and bone metabolism. Clin. Calcium 2011, 21, 669–675. [Google Scholar] [PubMed]
- Pater, A.; Odrowaz-Sypniewska, G. Alterations of bone metabolism in children and adolescents with diabetes mellitus type 1. Pediatr. Endocrinol. Diabetes Metab. 2011, 17, 158–161. [Google Scholar]
- Shady, A.M.; Nooh, H.Z. Effect of black seed (Nigella sativa) on compact bone of streptozotocin induced diabetic rats. Egypt. J. Histol. 2010, 33, 168–177. [Google Scholar] [CrossRef]
- Tahraoui, A.; El-Hilaly, J.; Israili, Z.H.; Lyoussi, B. Ethnopharmacological survey of plants used in the traditional treatment of hypertension and diabetes in south-eastern Morocco (Errachidia province). J. Ethnopharmacol. 2007, 110, 105–117. [Google Scholar] [CrossRef]
- Abdelmeguid, N.E.; Fakhoury, R.; Kamal, S.M.; Al Wafai, R.J. Effects of Nigella sativa and thymoquinone on biochemical and subcellular changes in pancreatic β-cells of streptozotocin-induced diabetic rats. J. Diabetes. 2010, 2, 256–266. [Google Scholar] [CrossRef]
- Kanter, M.; Meral, I.; Yener, Z.; Ozbek, H.; Demir, H. Partial regeneration/proliferation of the beta-cells in the islets of Langerhans by Nigella sativa L. in streptozotocin-induced diabetic rats. Tohoku J. Exp. Med. 2003, 201, 213–219. [Google Scholar] [CrossRef] [Green Version]
- Kanter, M.; Coskun, O.; Korkmaz, A.; Oter, S. Effects of Nigella sativa on oxidative stress and beta-cell damage in streptozotocin-induced diabetic rats. Anat. Rec. Part A Discov. Mol. Cell Evol. Biol. 2004, 279, 685–691. [Google Scholar] [CrossRef]
- Rchid, H.; Chevassus, H.; Nmila, R.; Guiral, C.; Petit, P.; Chokairi, M.; Sauvaire, Y. Nigella sativa seed extracts enhance glucose-induced insulin release from rat-isolated Langerhans islets. Fundam. Clin. Pharmacol. 2004, 18, 525–529. [Google Scholar] [CrossRef] [PubMed]
- Hawsawi, Z.A.; Ali, B.A.; Bamosa, A.O. Effect of Nigella sativa (Black Seed) and thymoquinone on blood glucose in albino rats. Ann. Saudi Med. 2001, 21, 242–244. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, N.S.; Khalid, B.A.; Luke, D.A.; Ima Nirwana, S. Tocotrienol offers better protection than tocopherol from free radical-induced damage of rat bone. Clin. Exp. Pharmacol. Physiol. 2005, 32, 761–770. [Google Scholar] [CrossRef] [PubMed]
- Gutteridge, J.M.; Rowley, D.A.; Halliwell, B. Superoxide-dependent formation of hydroxyl radicals and lipid peroxidation in the presence of iron salts. Detection of ‘catalytic’ iron and anti-oxidant activity in extracellular fluids. Biochem. J. 1982, 206, 605–609. [Google Scholar] [CrossRef] [Green Version]
- Ebina, Y.; Okada, S.; Hamazaki, S.; Toda, Y.; Midorikawa, O. Impairment of bone formation with aluminum and ferric nitrilotriacetate complexes. Calcif. Tissue Int. 1991, 48, 28–36. [Google Scholar] [CrossRef]
- Takeuchi, K.; Okada, S.; Yukihiro, S.; Inoue, H. The inhibitory effects of aluminum and iron on bone formation-in vivo and in vitro study. Pathophysiology 1997, 4, 161–168. [Google Scholar] [CrossRef]
- Garrett, I.R.; Boyce, B.F.; Oreffo, R.O.; Bonewald, L.; Poser, J.; Mundy, G.R. Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. J. Clin. Investig. 1990, 85, 632–639. [Google Scholar] [CrossRef]
- Baldwin, A.S. Control of oncogenesis and cancer therapy resistance by the transcription factor NF-kappaB. J. Clin. Investig. 2001, 107, 241–246. [Google Scholar] [CrossRef]
- Nader, M.A.; el-Agamy, D.S.; Suddek, G.M. Protective effects of propolis and thymoquinone on development of atherosclerosis in cholesterol-fed rabbits. Arch. Pharm. Res. 2010, 33, 637–643. [Google Scholar] [CrossRef]
- Basu, S.; Michaelsson, K.; Olofsson, H.; Johansson, S.; Melhus, H. Association between oxidative stress and bone mineral density. Biochem. Biophys. Res. Commun. 2001, 288, 275–279. [Google Scholar] [CrossRef]
- Khan, N.; Sultana, S. Inhibition of two stage renal carcinogenesis, oxidative damage and hyperproliferative response by Nigella sativa. Eur. J. Cancer. Prev. 2005, 14, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.Y.; Akter, Z.; Mei, Z.; Zheng, M.; Tania, M.; Khan, M.A. Thymoquinone in autoimmune diseases: Therapeutic potential and molecular mechanisms. Biomed. Pharmacother. 2021, 134, 111157. [Google Scholar] [CrossRef] [PubMed]
- Mitra, D.; Elvins, D.M.; Speden, D.J.; Collins, A.J. The prevalence of vertebral fractures in mild ankylosing spondylitis and their relationship to bone mineral density. Rheumatology 2000, 39, 85–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yun, A.J.; Lee, P.Y. Maldaptation of the link between inflammation and bone turnover may be a key determinant of osteoporosis. Med. Hypotheses 2004, 63, 532–537. [Google Scholar] [CrossRef]
- Haugeberg, G.; Lodder, M.C.; Lems, W.F.; Uhlig, T.; Orstavik, R.E.; Dijkmans, B.A.; Kvien, T.K.; Woolf, A.D. Hand cortical bone mass and its associations with radiographic joint damage and fractures in 50–70 year old female patients with rheumatoid arthritis: Cross sectional Oslo-Truro-Amsterdam (OSTRA) collaborative study. Ann. Rheum. Dis. 2004, 63, 1331–1334. [Google Scholar] [CrossRef]
- Bultink, I.E.; Lems, W.F.; Kostense, P.J.; Dijkmans, B.A.; Voskuyl, A.E. Prevalence of and risk factors for low bone mineral density and vertebral fractures in patients with systemic lupus erythematosus. Arthritis Rheum. 2005, 52, 2044–2050. [Google Scholar] [CrossRef]
- Mikuls, T.R.; Saag, K.G.; Curtis, J.; Bridges, S.L., Jr.; Alarcon, G.S.; Westfall, A.O.; Lim, S.S.; Smith, E.A.; Jonas, B.L.; Moreland, L.W. CLEAR Investigators. Prevalence of osteoporosis and osteopenia among African Americans with early rheumatoid arthritis: The impact of ethnic-specific normative data. J. Natl. Med. Assoc. 2005, 97, 1155–1160. [Google Scholar]
- Franceschi, C.; Bonafe, M.; Valensin, S.; Olivieri, F.; De Luca, M.; Ottaviani, E.; De Benedictis, G. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann. N. Y. Acad. Sci. 2000, 908, 244–254. [Google Scholar] [CrossRef]
- Arron, J.R.; Choi, Y. Bone versus immune system. Nature 2000, 408, 535–536. [Google Scholar] [CrossRef]
- Ishihara, K.; Hirano, T. IL-6 in autoimmune disease and chronic inflammatory proliferative disease. Cytokine Growth Factor Rev. 2002, 13, 357–368. [Google Scholar] [CrossRef]
- Kiecolt-Glaser, J.K.; Preacher, K.J.; MacCallum, R.C.; Atkinson, C.; Malarkey, W.B.; Glaser, R. Chronic stress and age-related increases in the proinflammatory cytokine IL-6. Proc. Natl. Acad. Sci. USA 2003, 100, 9090–9095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moschen, A.R.; Kaser, A.; Enrich, B.; Ludwiczek, O.; Gabriel, M.; Obrist, P.; Wolf, A.M.; Tilg, H. The RANKL/OPG system is activated in inflammatory bowel disease and relates to the state of bone loss. Gut 2005, 54, 479–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saidenberg-Kermanach, N.; Cohen-Solal, M.; Bessis, N.; De Vernejoul, M.C.; Boissier, M.C. Role for osteoprotegerin in rheumatoid inflammation. Joint Bone Spine 2004, 71, 9–13. [Google Scholar] [CrossRef]
- Williams, C.S.; Mann, M.; DuBois, R.N. The role of cyclooxygenases in inflammation, cancer, and development. Oncogene 1999, 18, 7908–7916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Ryn, J.; Trummlitz, G.; Pairet, M. COX-2 selectivity and inflammatory processes. Curr. Med. Chem. 2000, 7, 1145–1161. [Google Scholar] [CrossRef]
- Houghton, P.J.; Zarka, R.; de las Heras, B.; Hoult, J.R. Fixed oil of Nigella sativa and derived thymoquinone inhibit eicosanoid generation in leukocytes and membrane lipid peroxidation. Planta Med. 1995, 61, 33–36. [Google Scholar] [CrossRef]
- Ghannadi, A.; Hajhashemi, V.; Jafarabadi, H. An investigation of the analgesic and anti-inflammatory effects of Nigella sativa seed polyphenols. J. Med. Food. 2005, 8, 488–493. [Google Scholar] [CrossRef]
- Mansour, M.; Tornhamre, S. Inhibition of 5-lipoxygenase and leukotriene C4 synthase in human blood cells by thymoquinone. J. Enzyme Inhib. Med. Chem. 2004, 19, 431–436. [Google Scholar] [CrossRef]
- El-Dakhakhny, M.; Barakat, M.; El-Halim, M.A.; Aly, S.M. Effects of Nigella sativa oil on gastric secretion and ethanol induced ulcer in rats. J. Ethnopharmacol. 2000, 72, 299–304. [Google Scholar] [CrossRef]
- Buyukozturk, S.; Gelincik, A.; Ozseker, F.; Genc, S.; Savran, F.O.; Kiran, B.; Yillar, G.; Erden, S.; Aydin, F.; Colakoglu, B.; et al. Nigella sativa (black seed) oil does not affect the T-helper 1 and T-helper 2 type cytokine production from splenic mononuclear cells in allergen sensitized mice. J. Ethnopharmacol. 2005, 100, 295–298. [Google Scholar] [CrossRef]
- Al-Ghamdi, M.S. The anti-inflammatory, analgesic and antipyretic activity of Nigella sativa. J. Ethnopharmacol. 2001, 76, 45–48. [Google Scholar] [CrossRef]
- Tanko, Y.; Mohammed, A.; Okasha, M.A.; Shuaibu, A.; Magaji, M.G.; Yaro, A.H. Analgesic and anti-inflammatory activities of ethanol seed extract of Nigella sativa (black cumin) in mice and rats. Eur. J. Sci. Res. 2007, 18, 277–281. [Google Scholar]
- Ozdemir, H.; Kara, M.I.; Erciyas, K.; Ozer, H.A.; Ay, S. Preventive effects of thymoquinone in a rat periodontitis model: A morphometric and histopathological study. J. Periodontal Res. 2012, 47, 74–80. [Google Scholar] [CrossRef]
- Osman, M.T. Nigella sativa has beneficial effect on osteoporosis and bone healing: Is it a fact or fiction? A systematic review. Asian J. Pharm. Clin. Res. 2017, 10, 41–46. [Google Scholar] [CrossRef] [Green Version]
- Abd Elrahman, S.M.; Younes, S.A.; Kawana, K.Y. Evaluation of Nigella sativa on socket healing in rabbits. Alex. Dent. J. 2019, 44, 60–64. [Google Scholar] [CrossRef]
- Arslan, A.H.; Tomruk, C.O.; Meydanlı, E.G.; Ozdemir, I.; Duygu Capar, G.; Kutan, E.; Yılmaz, A.; Yalcın Ulker, G.M. Histopathological evaluation of the effect of systemic thymoquinone administration on healing of bone defects in rat tibia. Biotechnol. Biotechnol. Equip. 2017, 31, 175–181. [Google Scholar] [CrossRef] [Green Version]
- Mendi, A. Nigella sativa oil could induce osteogenic differentiation of dental pulp mesenchymal stem cells: Clinical nutrition for dentistry. Food Health 2018, 4, 19–24. [Google Scholar] [CrossRef]
- Ahmed, Z.M.; Attia, M.S.; Mahmoud, A.M.; Shoreibah, E.A. Evaluation of Topical Application of Nigella Sativa (Black Seeds) on Delayed Dental Implant. Al-Azhar Dent. J. Girls 2020, 7, 255–261. [Google Scholar] [CrossRef] [Green Version]
- Seif, A.A. Nigella Sativa reverses osteoporosis in ovariectomized rats. BMC Complement. Altern. Med. 2014, 14, 22. [Google Scholar] [CrossRef]
- Kuntadi Syamsul, M.H.; Rudijanto, A.; Sumitro, S.B. The Effect of Nigella sativa Extract on Repair of Osteoporosis through Suppression of TRAF 6 and NFATc 1 in Ovariectomized Rat. Ann. Rom. Soc. Cell Biol. 2021, 25, 5471–5479. [Google Scholar]
- Purty, M.K.; Oraon, S.; Dinkar Minj, S.; Biswas, A.K.; Bhusan Biswal, S.; Mohapatra, S. Effect of Nigella sativa on bone mass density (BMD) in albino rats. Int. J. Health Clin. Res. 2020, 3, 134–146. [Google Scholar]
- Lak, Y.S.; Khorram, S.; Abbasi, M.M.; Asghari-Jafarabadi, M.; Tarighat-Esfanjani, A.; Bazri, E.; Omidi, H. The effects of natural nano-sized clinoptilolite and Nigella sativa supplementation on serum bone markers in diabetic rats. Bioimpacts 2019, 9, 173–178. [Google Scholar] [CrossRef] [Green Version]
- Valizadeh, N.; Zakeri, H.R.; Amin asnafi, G.; Shafiee, A.; Sarkhail, P.; Heshmat, R.; Sereshti, H.; Larijani, B. Impact of Black seed (Nigella sativa) extract on bone turnover markers in postmenopausal women with osteoporosis. DARU J. Pharm. Sci. 2009, 17, 20–25. [Google Scholar]
- Mohammed, I.E.D.; Samia, M.A.; Safaa, H.E.R. Comparative study of the protective role of Nigella sativa oil, estradiol and alendronate on steroid induced osteoporosis in rats. Bull. Alex. Fac. Med. 2004, 40, 249–263. [Google Scholar]
- Amna, T.; Alghamdi, A.A.; Shang, K.; Hassan, M.S. Nigella sativa-coated hydroxyapatite scaffolds: Synergetic cues to stimulate myoblasts differentiation and offset infections. Tissue Eng. Regen. Med. 2021, 18, 787–795. [Google Scholar] [CrossRef] [PubMed]
- Farshbaf-Khalili, A.; Farajnia, S.; Pourzeinali, S.; Shakouri, S.K.; Salehi-Pourmehr, H. The effect of nanomicelle curcumin supplementation and Nigella sativa oil on the expression level of miRNA-21, miRNA-422a, and miRNA-503 gene in postmenopausal women with low bone mass density: A randomized, triple-blind, placebo-controlled clinical trial with factorial design. Phytother. Res. 2021, 35, 6216–6227. [Google Scholar] [PubMed]
- Wirries, A.; Schubert, A.K.; Zimmermann, R.; Jabari, S.; Ruchholtz, S.; El-Najjar, N. Thymoquinone accelerates osteoblast differentiation and activates bone morphogenetic protein-2 and ERK pathway. Int. Immunopharmacol. 2013, 15, 381–386. [Google Scholar] [CrossRef]
- Thummuri, D.; Jeengar, M.K.; Shrivastava, S.; Nemani, H.; Ramavat, R.N.; Chaudhari, P.; Naidu, V.G.M. Thymoquinone prevents RANKL-induced osteoclastogenesis activation and osteolysis in an in vivo model of inflammation by suppressing NF-KB and MAPK Signalling. Pharmacol. Res. 2015, 99, 63–73. [Google Scholar] [CrossRef]
- Rahmani-Moghadam, E.; Talaei-Khozani, T.; Zarrin, V.; Vojdani, Z. Thymoquinone loading into hydroxyapatite/alginate scaffolds accelerated the osteogenic differentiation of the mesenchymal stem cells. Biomed. Eng. Online 2021, 20, 76. [Google Scholar] [CrossRef]
- Ahmad, A.; Husain, A.; Mujeeb, M.; Khan, S.A.; Najmi, A.K.; Siddique, N.A.; Damanhouri, Z.A.; Anwar, F. A review on therapeutic potential of Nigella sativa: A miracle herb. Asian Pac. J. Trop. Biomed. 2013, 3, 337–352. [Google Scholar] [CrossRef] [Green Version]
- Goyal, S.N.; Prajapati, C.P.; Gore, P.R.; Patil, C.R.; Mahajan, U.B.; Sharma, C.; Talla, S.P.; Ojha, S.K. Therapeutic potential and pharmaceutical development of thymoquinone: A multitargeted molecule of natural origin. Front. Pharmacol. 2017, 8, 656. [Google Scholar] [CrossRef] [PubMed]
- Algahtani, M.S.; Ahmad, M.Z.; Shaikh, I.A.; Abdel-Wahab, B.A.; Nourein, I.H.; Ahmad, J. Thymoquinone Loaded Topical Nanoemulgel for Wound Healing: Formulation Design and In-Vivo Evaluation. Molecules 2021, 26, 3863. [Google Scholar] [CrossRef] [PubMed]
- Harkaeh, S.; Qari, Y.; Tashkandi, H.; Almuhayawi, M.; Saber, S.H.; El-Shitany, N.; Shaker, S.; Lucas, F.; Alamri, T.; Al-Jaouni, S.; et al. Thymoquinone nanoparticles protect against cisplatin-induced nephrotoxicity in Ehrlich carcinoma model without compromising cisplatin anti-cancer efficacy. J. King Saud Univ. Sci. 2022, 34, 101675. [Google Scholar] [CrossRef]
- El-Far, A.H.; Salaheldin, T.A.; Godugu, K.; Darwish, N.H.; Mousa, S.A. Thymoquinone and its nanoformulation attenuate colorectal and breast cancers and alleviate doxorubicin-induced cardiotoxicity. Nanomedicine 2021, 16, 1457–1469. [Google Scholar] [CrossRef] [PubMed]
- Lodovichi, J.; Landucci, E.; Pitto, L.; Gisone, I.; D’Ambrosio, M.; Luceri, C.; Salvatici, M.C.; Bergonzi, M.C. Evaluation of the increase of the thymoquinone permeability formulated in polymeric micelles: In vitro test and in vivo toxicity assessment in Zebrafish embryos. Eur. J. Pharm. Sci. 2022, 169, 106090. [Google Scholar] [CrossRef]
- Mehanna, M.M.; Sarieddine, R.; Alwattar, J.K.; Chouaib, R.; Gali-Muhtasib, H. Anticancer activity of thymoquinone cubic phase nanoparticles against human breast cancer: Formulation, cytotoxicity and subcellular localization. Int. J. Nanomed. 2020, 15, 9557. [Google Scholar] [CrossRef]
- Usmani, A.; Mishra, A.; Jafri, A.; Arshad, M.; Siddiqui, M.A. Green synthesis of silver nanocomposites of Nigella sativa seeds extract for hepatocellular carcinoma. Curr. Nanomater. 2019, 4, 191–200. [Google Scholar] [CrossRef]
- Rushmi, Z.T.; Akter, N.; Mow, R.J.; Afroz, M.; Kazi, M.; de Matas, M.; Rahman, M.; Shariare, M.H. The impact of formulation attributes and process parameters on black seed oil loaded liposomes and their performance in animal models of analgesia. Saudi Pharm. J. 2017, 25, 404–412. [Google Scholar] [CrossRef] [Green Version]
- Moghaddam, F.A.; Ebrahimian, M.; Oroojalian, F.; Yazdian-Robati, R.; Kalalinia, F.; Tayebi, L.; Hashemi, M. Effect of thymo-quinone-loaded lipid–polymer nanoparticles as an oral delivery system on anticancer efficiency of doxorubicin. J. Nanostruct. Chem. 2022, 12, 33–44. [Google Scholar] [CrossRef]
- Sunoqrot, S.; Alfaraj, M.; Hammad, A.A.; Kasabri, V.; Shalabi, D.; Deeb, A.A.; Hasan Ibrahim, L.; Shnewer, K.; Yousef, I. Development of a thymoquinone polymeric anticancer nanomedicine through optimization of polymer molecular weight and nano-particle architecture. Pharmaceutics 2020, 12, 811. [Google Scholar] [CrossRef]
- Deepak, S.S.; Sikender, M.; Garg, V.; Samim, M. Entrapment of seed extract of Nigella sativa into thermosensitive (NIPAAm–Co–VP) co-polymeric micelles and its antibacterial activity. Int. J. Pharm. Sci. Drug Res. 2011, 3, 246–252. [Google Scholar]
- Rahat, I.; Rizwanullah, M.; Gilani, S.J.; Bin-Jummah, M.N.; Imam, S.S.; Kala, C.; Asif, M.; Alshehri, S.; Sharma, S.K. Thymoquinone loaded chitosan-Solid lipid nanoparticles: Formulation optimization to oral bioavailability study. J. Drug Deliv. Sci. Technol. 2021, 64, 102565. [Google Scholar] [CrossRef]
- Ismail, N.; Ismail, M.; Azmi, N.H.; Bakar, M.F.A.; Yida, Z.; Abdullah, M.A.; Basri, H. Thymoquinone-rich fraction nanoemulsion (TQRFNE) decreases Aβ40 and Aβ42 levels by modulating APP processing, up-regulating IDE and LRP1, and down-regulating BACE1 and RAGE in response to high fat/cholesterol diet-induced rats. Biomed. Pharmacother. 2017, 95, 780–788. [Google Scholar] [CrossRef]
- Vijayakumar, S.; Divya, M.; Vaseeharan, B.; Chen, J.; Biruntha, M.; Silva, L.P.; Duran-Lara, E.F.; Shreema, K.; Ranjan, S.; Dasgupta, N. Biological compound capping of silver nanoparticle with the seed extracts of blackcumin (Nigella sativa): A potential antibacterial, antidiabetic, anti-inflammatory, and antioxidant. J. Inorg. Organomet. Polym. Mater. 2021, 31, 624–635. [Google Scholar] [CrossRef]
- Sawamoto, K.; Alvarez, J.V.; Herreno, A.M.; Otero-Espinar, F.J.; Couce, M.L.; Almeciga-Diaz, C.J.; Tomatsu, S. Bone-specific drug delivery for osteoporosis and rare skeletal disorders. Curr. Osteoporos. Rep. 2020, 18, 515–525. [Google Scholar] [CrossRef] [PubMed]
- Hannan, M.A.; Zahan, M.S.; Sarker, P.P.; Moni, A.; Ha, H.; Uddin, M.J. Protective effects of black cumin (Nigella sativa) and its bioactive constituent, thymoquinone against kidney injury: An aspect on pharmacological insights. Int. J. Mol. Sci. 2021, 22, 9078. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.N.; Hossain, K.S.; Sarker, P.P.; Ferdous, J.; Hannan, M.A.; Rahman, M.M.; Chu, D.T.; Uddin, M.J. Revisiting pharmacological potentials of Nigella sativa seed: A promising option for COVID-19 prevention and cure. Phytother. Res. 2021, 35, 1329–1344. [Google Scholar] [CrossRef]
S. No. | Part of NS | Experimental Model | Molecular Mechanisms/Significant Outcome | Ref. |
---|---|---|---|---|
1. | Seed volatile oil (100 mg/kg, i.p.) for 4 weeks | Streptozotocin-induced diabetic osteopenia in Wistar rats. | Enhanced insulin production, improved bone mass, connectivity, and biomechanical strength; showed synergistic enhancement in the therapeutic effect of hPTH. | [46] |
2. | Seed powder (800 mg/kg, p.o.) for 12 weeks | Ovariectomy-induced osteoporosis in female Wistar rats. | NS reversed ovariectomy-induced osteoporosis, possibly via its unsaturated fatty acids, antioxidant, and anti-inflammatory properties. | [99] |
3. | Ethanolic seed extract (5, 10, and 20 mg/kg, p.o.) for 8 weeks | Ovariectomy-induced osteoporosis in female Wistar rats. | Treatment with extract enhanced bone matrix thickness and reversed osteoporosis condition through suppression of TRAF6 and NFATc1. | [100] |
4. | Seed extract (10 mg/kg, p.o.) for 4 weeks | Ovariectomy-induced calvarial defect model in female Wistar rats. | NS extract treatment enhances bone healing process via enhancing osteoblastic activity. | [10] |
5. | Seed powder extract (400, 800, and 1200 mg/kg, p.o.) for 90 days | Ovariectomy-induced osteoporosis in female Wistar rats. | Augmentation in dry bone mass with NS extract treatment, possibly via enhancing osteoblastic activity and reducing osteoclastic activity. | [101] |
6. | NS Oil (800 mg/kg, p.o.) for 6 weeks | Steroid-induced osteoporosis in female rats. | Treatment with oil reduced bone resorption and enhanced bone formation via decreased urinary hydroxyproline level and enhanced serum osteocalcin, bone-specific alkaline phosphate, and calcium level. | [104] |
7. | Oil (25, 50, and 100 µg) | Osteoblast and myoblast differentiation in C2C12 cell lines. | Enhanced osteoblast and myoblast differentiation. | [105] |
8. | TQ (1, 5, 10, 20, 30, and 40 μM) | Bone formation by using MC3T3-E1 osteoblast cells. | TQ potentiated anabolic effects in MC3T3E1 cells via inducing the expression of bone morphogenetic protein-2 and upregulated the phosphorylation of ERK signaling pathway. | [107] |
9. | TQ (2.5, 5, 10, 15 μM) TQ (5 mg/kg, p.o.) for 8 days | RANKL-induced osteoclastogenesis in RAW 264.7 and primary bone marrow-derived macrophages cells. LPS-induced bone resorption in male C57/BL6 mice. | TQ suppressed RANKL-induced NF-κB activation via attenuating phosphorylation of IKKα/β, MAPKs, and inhibiting expression of TRAP, DC-STAMP, NFATc1, c-Fos, and ROS level. TQ inhibited bone resorption by suppressing osteoclastogenesis and improving bone mineral density in mice. | [108] |
10. | TQ (25, 50, and 100 µM) | Adipose-derived mesenchymal stem cells differentiation. | TQ potentiated stem cell differentiation into the osteoblasts by enhancing collagen, osteopontin level, and osteocalcin gene. | [109] |
S. No. | Active Agent | Type of Nanoparticle | Route | Indication | Research Outcome | Ref. |
---|---|---|---|---|---|---|
1. | TQ | Cubic phase nanoparticles (cubosomes) | In vitro | Breast Cancer | -Significant improvement in apoptotic activity with TQ-loaded cubosomes in MDA-MB-231 cells. -These cubosomes accumulate in the cytoplasm of MDA-MB-231 cells. | [116] |
2. | NS seed extract | Silver nano-composites | In vitro | Hepatocellular carcinoma | -Significant (p < 0.05) cytotoxic effect in developed Nigella sativa silver nanocomposite system with IC50 value 7.16 μg/mL against HepG2 cancer cell. | [117] |
3. | NS seed oil | Liposomes | Oral | Antianalgesic | -Oil of Nigella sativa seeds containing liposomal formulation exhibited significant analgesic activity in Swiss albino mice. | [118] |
4. | TQ | Lipid–polymeric nanoparticles (hybrid NPs) | In vitro | Colon cancer | -TQ-loaded hybrid NPs exhibited improved absorption compared to free TQ in intestinal absorption tests (Caco-2 cells). -TQ-loaded hybrid NPs improved the anticancer activity and minimized the migration of C26 cancer cells more compared to the free TQ. | [119] |
5. | TQ | Polymeric NPs | Oral | Pancreatic cancer | -TQ-loaded polymeric NPs exhibited significant anticancer activity against the PANC-1 cancer cell line. -TQ-loaded polymeric NPs exhibited a significant increase in oral bioavailability compared to free TQ in mice. -Investigation signifies its ability to improve the biopharmaceutical characteristics of free TQ. | [120] |
6. | NS seed extract | Polymeric micelle | In vitro | Antibacterial | -Antibacterial assay activity reveals a larger zone of inhibition in the case of NS seeds containing polymeric micelle compared to the crude extract. | [121] |
7. | TQ | Chitosan-modified solid lipid NPs | Oral | - | -Significant improvement in oral bioavailability of TQ-loaded chitosan-modified solid lipid NPs compared to the TQ suspension. | [122] |
8. | TQ-rich fraction | Nanoemulsion | Oral | Alzheimer | -The TQ-rich fraction containing a nanoemulsion system decreased the level of soluble Aβ40 and Aβ42 through modulation of APP processing, ultimately helpful to achieve the anti-Alzheimer activity. | [123] |
9. | TQ | Nanoemulsion | Topical | Wound healing | -Significant improvement in the process of healing in the excisional wound in case of TQ containing nanoemulgel compared to the TQ gel | [112] |
10. | NS seed extract | NS extract-capped silver NPs | In vitro | Antidiabetic | -A significant antidiabetic activity was observed in the case of NS extract-capped silver nanoparticles in dipeptidyl peptidase IV inhibition assay and α-amylase assay. | [124] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, J.; Albarqi, H.A.; Ahmad, M.Z.; Orabi, M.A.A.; Md, S.; Bandopadhyay, R.; Ahmed, F.; Khan, M.A.; Ahamad, J.; Mishra, A. Utilization of Nanotechnology to Improve Bone Health in Osteoporosis Exploiting Nigella sativa and Its Active Constituent Thymoquinone. Bioengineering 2022, 9, 631. https://doi.org/10.3390/bioengineering9110631
Ahmad J, Albarqi HA, Ahmad MZ, Orabi MAA, Md S, Bandopadhyay R, Ahmed F, Khan MA, Ahamad J, Mishra A. Utilization of Nanotechnology to Improve Bone Health in Osteoporosis Exploiting Nigella sativa and Its Active Constituent Thymoquinone. Bioengineering. 2022; 9(11):631. https://doi.org/10.3390/bioengineering9110631
Chicago/Turabian StyleAhmad, Javed, Hassan A. Albarqi, Mohammad Zaki Ahmad, Mohamed A. A. Orabi, Shadab Md, Ritam Bandopadhyay, Faraha Ahmed, Mohammad Ahmed Khan, Javed Ahamad, and Awanish Mishra. 2022. "Utilization of Nanotechnology to Improve Bone Health in Osteoporosis Exploiting Nigella sativa and Its Active Constituent Thymoquinone" Bioengineering 9, no. 11: 631. https://doi.org/10.3390/bioengineering9110631
APA StyleAhmad, J., Albarqi, H. A., Ahmad, M. Z., Orabi, M. A. A., Md, S., Bandopadhyay, R., Ahmed, F., Khan, M. A., Ahamad, J., & Mishra, A. (2022). Utilization of Nanotechnology to Improve Bone Health in Osteoporosis Exploiting Nigella sativa and Its Active Constituent Thymoquinone. Bioengineering, 9(11), 631. https://doi.org/10.3390/bioengineering9110631