Design Strategy for Nanostructured Arrays of Metallodielectric Cuboids to Systematically Tune the Optical Response and Eliminate Spurious Bulk Effects in Plasmonic Biosensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of Nanoarrays by Electron Beam Lithography (EBL)
2.3. Fabrication of Core-Shell Nanoparticle Films
2.4. Protein Adsorption and Bulk Refractive Index Studies
2.5. Scanning Electron Microscopy
2.6. Optical Measurements
2.7. Data Analysis
3. Results
3.1. Comparison of EBL-Generated Nanostructures to Core-Shell Nanoparticle Films and Non-Structured PMMA Layers
3.2. Design Strategies for EBL-Generated Plasmonic Nanostructures
3.3. Sensitivity to Bulk Refractive Index Changes
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ament, I.; Prasad, J.; Henkel, A.; Schmachtel, S.; Sönnichsen, C. Single Unlabeled Protein Detection on Individual Plasmonic Nanoparticles. Nano Lett. 2012, 12, 1092–1095. [Google Scholar] [CrossRef]
- Matteini, P.; Cottat, M.; Tavanti, F.; Panfilova, E.; Scuderi, M.; Nicotra, G.; Menziani, M.C.; Khlebtsov, N.; de Angelis, M.; Pini, R. Site-Selective Surface-Enhanced Raman Detection of Proteins. ACS Nano 2017, 11, 918–926. [Google Scholar] [CrossRef]
- Mejía-Salazar, J.R.; Oliveira, O.N. Plasmonic Biosensing. Chem. Rev. 2018, 118, 10617–10625. [Google Scholar] [CrossRef]
- Bog, U.; Huska, K.; Maerkle, F.; Nesterov-Mueller, A.; Lemmer, U.; Mappes, T. Design of plasmonic grating structures towards optimum signal discrimination for biosensing applications. Opt. Express 2012, 20, 11357–11369. [Google Scholar] [CrossRef] [Green Version]
- Maier, S.A. Plasmonics: Fundamentals and Applications; Springer US: Boston, MA, USA, 2007; Volume 1, 223p. [Google Scholar]
- Homola, J. On the sensitivity of surface plasmon resonance sensors with spectral interrogation. Sens. Actuators B-Chem. 1997, 41, 207–211. [Google Scholar] [CrossRef]
- Homola, J. Surface Plasmon Resonance Based Sensors; Springer: Heidelberg/Berlin, Germany, 2006; 251p. [Google Scholar]
- Homola, J.; Koudela, I.; Yee, S.S. Surface plasmon resonance sensors based on diffraction gratings and prism couplers: Sensitivity comparison. Sens. Actuators B-Chem. 1999, 54, 16–24. [Google Scholar] [CrossRef]
- Hutter, E.; Fendler, J.H. Exploitation of Localized Surface Plasmon Resonance. Adv. Mater. 2004, 16, 1685–1706. [Google Scholar] [CrossRef]
- Stiles, P.L.; Dieringer, J.A.; Shah, N.C.; van Duyne, R.P. Surface-Enhanced Raman Spectroscopy. Annu. Rev. Phys. Chem. 2008, 1, 601–626. [Google Scholar] [CrossRef] [Green Version]
- Madou, M.J. Fundamentals of Microfabrication: The Science of Miniaturization, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Campbell, S.A. The Science and Engineering of Microelectronic Fabrication; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Wu, R.; Jin, Q.; Storey, C.; Collins, J.; Gomard, G.; Lemmer, U.; Canham, L.; Kling, R.; Kaplan, A. Gold nanoplasmonic particles in tunable porous silicon 3D scaffolds for ultra-low concentration detection by SERS. Nanoscale Horiz. 2021, 6, 781–790. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Tadaki, Y.; Nagao, D.; Konno, M. Deposition of Gold Nanoparticles on Polystyrene Spheres by Electroless Metal Plating Technique. J. Phys. Conf. 2007, 61, 582–586. [Google Scholar] [CrossRef]
- Dahint, R.; Trileva, E.; Acunman, H.; Konrad, U.; Zimmer, M.; Stadler, V.; Himmelhaus, M. Optically responsive nanoparticle layers for the label-free analysis of biospecific interactions in array formats. Biosens. Bioelectron. 2007, 22, 3174–3181. [Google Scholar] [CrossRef]
- Buecker, P.; Trileva, E.; Himmelhaus, M.; Dahint, R. Label-free biosensors based on optically responsive nanocomposite layers: Sensitivity and dynamic range. Langmuir 2008, 24, 8229–8239. [Google Scholar] [CrossRef]
- Wang, H.; Wu, Y.; Lassiter, B.; Nehl, C.L.; Hafner, J.H.; Nordlander, P.; Halas, N.J. Symmetry breaking in individual plasmonic nanoparticles. Proc. Natl. Acad. Sci. USA 2006, 103, 10856–10860. [Google Scholar] [CrossRef] [Green Version]
- Lakhotiya, H.; Nazir, A.; Roesgaard, S.; Eriksen, E.; Christiansen, J.; Bondesgaard, M.; van Veggel, F.C.J.M.; Iversen, B.B.; Balling, P.; Julsgaard, B. Resonant Plasmon-Enhanced Upconversion in Monolayers of Core–Shell Nanocrystals: Role of Shell Thickness. ACS Appl. Mater. Interfaces 2018, 11, 1209–1218. [Google Scholar] [CrossRef]
- Himmelhaus, M.; Takei, H. Cap-shaped gold nanoparticles for an optical biosensor. Sens. Actuators B Chem. 2000, 63, 24–30. [Google Scholar] [CrossRef]
- Takei, H.; Himmelhaus, M.; Okamoto, T. Absorption spectrum of surface-bound cap-shaped gold particles. Opt. Lett. 2002, 27, 342–344. [Google Scholar] [CrossRef]
- Grab, A.L.; Brink, A.; Himmelhaus, M.; Dahint, R. Integration of core/shell nanoparticle and QCM-D sensors in a single device: A new approach to the in situ detection of solvent content in thin adsorbed films with minimized response to spurious bulk refractive index changes. Sens. Actuators B Chem. 2017, 251, 396–403. [Google Scholar] [CrossRef]
- Trileva, E.; Himmelhaus, M.; Guvenc, H.O.; Grab, A.L.; Dahint, R. On the importance of optical contacts in gold hybrid structures for enhancement of localized surface plasmon resonance sensing. Sens. Actuators B Chem. 2014, 203, 424–434. [Google Scholar] [CrossRef]
- Wang, H.; Brandl, D.W.; Nordlander, P.; Halas, N.J. Plasmonic Nanostructures: Artificial Molecules. Acc. Chem. Res. 2007, 40, 53–62. [Google Scholar] [CrossRef]
- Prodan, E.; Radloff, C.; Halas, N.J.; Nordlander, P. A hybridization model for the plasmon response of complex nanostructures. Science 2003, 302, 419–422. [Google Scholar] [CrossRef]
- Panaretos, A.H.; Werner, D.H. Tunable wavelength dependent nanoswitches enabled by simple plasmonic core-shell particles. Opt. Express 2013, 21, 26052–26067. [Google Scholar] [CrossRef] [PubMed]
- Radloff, C.; Halas, N.J. Plasmonic properties of concentric nanoshells. Nano Lett. 2004, 4, 1323–1327. [Google Scholar] [CrossRef]
- Doll, P.; Al-Ahmad, A.; Bacher, A.; Muslija, A.; Thelen, R.; Hahn, L.; Ahrens, R.; Spindler, B.; Guber, A. Fabrication of silicon nanopillar arrays by electron beam lithography and reactive ion etching for advanced bacterial adhesion studies. Mater. Res. Express 2019, 6, 065402. [Google Scholar] [CrossRef]
- Nguyen, D.M.; Lee, D.; Rho, J. Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths. Sci. Rep. 2017, 7, 2611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.J.; Li, W.; Chen, K.J. Application of two-dimensional polystyrene arrays in the fabrication of ordered silicon pillars. J. Alloy. Compd. 2008, 450, 512–516. [Google Scholar] [CrossRef]
- Ocean Optics. SpectraSuite® Spectrometer Operating Software Installation and Operation Manual; User Manual; Ocean Optics: Dunedin, FL, USA, 2009. [Google Scholar]
- Koledintseva, M.Y.; Dubroff, R.E.; Schwartz, R.W. A Maxwell Garnett Model for dielectric mixtures containing containing conducting Particles at optical frequencies. Prog. Electromagn. Res.-Pier 2006, 63, 223–242. [Google Scholar] [CrossRef] [Green Version]
- Bosch, S.; Ferre-Borrull, J.; Leinfellner, N.; Canillas, A. Effective dielectric function of mixtures of three or more materials: A numerical procedure for computations. Surf. Sci. 2000, 453, 9–17. [Google Scholar] [CrossRef]
- Weiland, T. Time domain electromagnetic field computation with finite difference methods. Int. J. Numer. Model. -Electron. Netw. Devices Fields 1996, 9, 295–319. [Google Scholar] [CrossRef]
- Li, L. Multilayer modal method for diffraction gratings of arbitrary profile, depth, and permittivity. J. Opt. Soc. Am. A 1993, 10, 2581–2591. [Google Scholar] [CrossRef]
- Li, L. Use of Fourier series in the analysis of discontinuous periodic structures. J. Opt. Soc. Am. A 1996, 13, 1870–1876. [Google Scholar] [CrossRef]
- Li, L.; Chandezon, J.; Granet, G.; Plumey, J.-P. Rigorous and efficient grating-analysis method made easy for optical engineers. Appl. Opt. 1999, 38, 304–313. [Google Scholar] [CrossRef] [PubMed]
- Synopsis. RCWA Simulation Tool for Diffractive Optical Structures. Available online: https://www.synopsys.com/photonic-solutions/rsoft-photonic-device-tools/passive-device-diffractmod.html (accessed on 31 November 2021).
- Andam, N.; Refki, S.; Hayashi, S.; Sekkat, Z. Plasmonic mode coupling and thin film sensing in metal–insulator–metal structures. Sci. Rep. 2021, 11, 15093. [Google Scholar] [CrossRef] [PubMed]
- Breitling, F.; Felgenhauer, T.; Nesterov, A.; Lindenstruth, V.; Stadler, V.; Bischoff, F.R. Particle-based synthesis of peptide arrays. Chembiochem 2009, 10, 803–808. [Google Scholar] [CrossRef]
- Wagner, J.; König, K.; Förtsch, T.; Löffler, F.; Fernandez, S.; Felgenhauer, T.; Painke, F.; Torralba, G.; Lindenstruth, V.; Stadler, V.; et al. Microparticle transfer onto pixel electrodes of 45 μm pitch on HV-CMOS chips—Simulation and experiment. Sens. Actuators A Phys. 2011, 172, 533–545. [Google Scholar] [CrossRef]
- Jung, H.; Kim, S.; Han, D.; Jang, J.; Oh, S.; Choi, J.-H.; Lee, E.-S.; Hahn, J.W. Plasmonic lithography for fabricating nanoimprint masters with multi-scale patterns. J. Micromech. Microeng. 2015, 25, 055004. [Google Scholar] [CrossRef]
- Pang, Z.; Zhang, X. Direct writing of large-area plasmonic photonic crystals using single-shot interference ablation. Nanotechnology 2011, 22, 145303. [Google Scholar] [CrossRef]
- Ou, X.; Liu, Y.; Zhang, M.; Hua, L.; Zhan, S. Plasmonic gold nanostructures for biosensing and bioimaging. Microchim. Acta 2021, 188, 304. [Google Scholar] [CrossRef] [PubMed]
- Motogaito, A.; Tanaka, R.; Hiramatsu, K. Fabrication of perfect plasmonic absorbers for blue and near-ultraviolet lights using double-layer wire-grid structures. J. Eur. Opt. Soc.-Rapid Publ. 2021, 17, 6. [Google Scholar] [CrossRef]
- Lu, R.; Ni, J.; Yin, S.; Ji, Y. Responsive Plasmonic Nanomaterials for Advanced Cancer Diagnostics. Front. Chem. 2021, 9, 652287. [Google Scholar] [CrossRef] [PubMed]
Structure | Cube Length | Cube Width | Cube Height | Connections | Gap in between Cuboids | Abbreviation | |
---|---|---|---|---|---|---|---|
1 | 150 nm | 150 nm | 150 nm | no | 150 nm | 150/150/150-150-nc | |
2 | 150 nm | 150 nm | 300 nm | no | 150 nm | 150/150/300-150-nc | |
3 | 300 nm | 300 nm | 150 nm | no | 300 nm | 300/300/150-300-nc | |
4 | 300 nm | 300 nm | 300 nm | no | 300 nm | 300/300/300-300-nc | |
5 | 300 nm | 300 nm | 600 nm | no | 300 nm | 300/300/600-300-nc | |
Structure | Cube Length | Cube Width | Cube Height | Connection Length | Connection Width | Connection Height | |
6 | 150 nm | 150 nm | 150 nm | 150 nm | 50 nm | 150 nm | 150/150/150-150-c |
7 | 150 nm | 150 nm | 300 nm | 150 nm | 50 nm | 300 nm | 150/150/300-150-c |
8 | 150 nm | 150 nm | 600 nm | 150 nm | 50 nm | 600 nm | 150/150/600-150-c |
9 | 300 nm | 300 nm | 150 nm | 150 nm | 100 nm | 150 nm | 300/300/150-150-c |
10 | 300 nm | 300 nm | 150 nm | 300 nm | 100 nm | 150 nm | 300/300/150-300-c |
11 | 300 nm | 300 nm | 150 nm | 600 nm | 100 nm | 150 nm | 300/300/150-600-c |
12 | 300 nm | 300 nm | 150 nm | 900 nm | 100 nm | 150 nm | 300/300/150-900-c |
13 | 300 nm | 300 nm | 300 nm | 150 nm | 100 nm | 300 nm | 300/300/300-150-c |
[14] | 300 nm | 300 nm | 300 nm | 300 nm | 100 nm | 300 nm | 300/300/300-300-c |
15 | 300 nm | 300 nm | 300 nm | 600 nm | 100 nm | 300 nm | 300/300/300-600-c |
16 | 300 nm | 300 nm | 300 nm | 900 nm | 100 nm | 300 nm | 300/300/300-900-c |
17 | 300 nm | 300 nm | 600 nm | 300 nm | 100 nm | 600 nm | 300/300/600-300-c |
18 | 600 nm | 600 nm | 150 nm | 600 nm | 200 nm | 150 nm | 600/600/150-600-c |
19 | 600 nm | 600 nm | 300 nm | 600 nm | 200 nm | 300 nm | 600/600/300-600-c |
20 | 600 nm | 600 nm | 600 nm | 600 nm | 200 nm | 600 nm | 600/600/600-600-c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grab, A.L.; Bacher, A.; Nesterov-Mueller, A.; Dahint, R. Design Strategy for Nanostructured Arrays of Metallodielectric Cuboids to Systematically Tune the Optical Response and Eliminate Spurious Bulk Effects in Plasmonic Biosensors. Bioengineering 2022, 9, 63. https://doi.org/10.3390/bioengineering9020063
Grab AL, Bacher A, Nesterov-Mueller A, Dahint R. Design Strategy for Nanostructured Arrays of Metallodielectric Cuboids to Systematically Tune the Optical Response and Eliminate Spurious Bulk Effects in Plasmonic Biosensors. Bioengineering. 2022; 9(2):63. https://doi.org/10.3390/bioengineering9020063
Chicago/Turabian StyleGrab, Anna Luise, Andreas Bacher, Alexander Nesterov-Mueller, and Reiner Dahint. 2022. "Design Strategy for Nanostructured Arrays of Metallodielectric Cuboids to Systematically Tune the Optical Response and Eliminate Spurious Bulk Effects in Plasmonic Biosensors" Bioengineering 9, no. 2: 63. https://doi.org/10.3390/bioengineering9020063
APA StyleGrab, A. L., Bacher, A., Nesterov-Mueller, A., & Dahint, R. (2022). Design Strategy for Nanostructured Arrays of Metallodielectric Cuboids to Systematically Tune the Optical Response and Eliminate Spurious Bulk Effects in Plasmonic Biosensors. Bioengineering, 9(2), 63. https://doi.org/10.3390/bioengineering9020063