Prediction of Pulmonary Function Parameters Based on a Combination Algorithm
Abstract
:1. Introduction
- (1)
- This paper is the first to propose the use of volumetric capnography data for the prediction of pulmonary function parameters, which is more accessible and less demanding for testers than other studies.
- (2)
- The algorithm proposed in this paper combines the advantages of traditional machine learning algorithms for processing high-dimensional medical features and deep learning for learning low-dimensional sequence features, to improve the accuracy of pulmonary function parameter prediction.
- (3)
- This paper provides a reference paradigm for other medical data processing by handling high-dimensional features and low-dimensional features in medical data.
2. Materials and Methods
2.1. Signal Acquisition System
2.1.1. Devices and User Interface
2.1.2. Adaptive Adjustment Algorithm
- Prediction of respiratory flow at the next moment.
- Calculation of forecast error.
- Adaptive adjustment of smoothing parameters.
Algorithm 1: Adaptive Adjustment Algorithm. | |
Input: | initial sampling flow , initial smoothing parameter , the prediction window size , |
error calculation window size , the self-adjustment coefficient . | |
Output: | smoothing parameters , sampling flow |
while obtaining the actual respiratory do | |
for len() < do | |
= ) | |
predict the respiratory flow at the next moment | |
obtain actual breathing flow at the i + 1 time point | |
calculation of forecast error | |
calculate the mean value of the difference in the sliding window | |
adaptive adjustment of smoothing parameters and sampling flow | |
end |
2.2. Combination Algorithm
2.2.1. Medical Feature Regression Structure
2.2.2. Sequence Feature Regression Structure
2.2.3. Error Correction Structure
Algorithm 2: Combination Algorithm. | ||
Input: | Test set , is a medical feature vector, is the sequence feature vector | |
Output: | , is the pulmonary function parameter vector | |
for <= do | ||
Medical Feature Regression Structure | ||
through SVM model to obtain | ||
Fusion of features from and to obtain | ||
through XGBoost model to obtain | ||
Sequence feature regression structure | ||
through 1D-CNN model to obtain | ||
Error correction structure | ||
By splicing the vectors and , we obtain the vector | ||
through the KNN model to obtain | ||
end |
3. Results
3.1. Regression Evaluation Index
3.2. Datasets
3.3. Results of the Algorithm
3.3.1. Single-Structure Algorithm Results
3.3.2. Combination Algorithm Results
3.3.3. Comparison of Algorithms
- Comparison of experimental results
- Comparison with state-of-the-art performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aung, Y.Y.M.; Wong, D.C.S.; Ting, D.S.W. The promise of artificial intelligence: A review of the opportunities and challenges of artificial intelligence in healthcare. Br. Med. Bull. 2021, 139, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; See, K.C. Artificial Intelligence for COVID-19: Rapid Review. J. Med. Internet Res. 2020, 22, e21476. [Google Scholar] [CrossRef] [PubMed]
- Alade, O.M.; Sowunmi, O.Y.; Misra, S.; Maskeliūnas, R.; Damaševičius, R. A neural network based expert system for the diagnosis of diabetes mellitus. In International Conference on Information Technology Science; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Azeez, N.A.; Towolawi, T.; Vyver, C.V.D.; Misra, S.; Adewumi, A.; Damaševičius, R.; Ahuja, R. A fuzzy expert system for diagnosing and analyzing human diseases. In International Conference on Innovations in Bio-Inspired Computing and Applications; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Azeez, N.A.; Oyeniran, S.O.; Vyver, C.V.D.; Misra, S.; Ahuja, R.; Damasevicius, R.; Maskeliunas, R. Diagnosing oral ulcers with Bayes model. In International Conference on Innovations in Bio-Inspired Computing and Applications; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Hui, B.; Liu, Y.; Qiu, J.; Cao, L.; Ji, L.; He, Z. Study of texture segmentation and classification for grading small hepatocellular carcinoma based on CT images. Tsinghua Sci. Technol. 2020, 26, 199–207. [Google Scholar] [CrossRef]
- Tan, C.L.; Chan, Y.; Candasamy, M.; Chellian, J.; Madheswaran, T.; Sakthivel, L.P.; Patel, V.K.; Chakraborty, A.; MacLoughlin, R.; Kumar, D.; et al. Unravelling the molecular mechanisms underlying chronic respiratory diseases for the development of novel therapeutics via in vitro experimental models. Eur. J. Pharmacol. 2022, 919, 174821. [Google Scholar] [CrossRef]
- Hashimoto, N.; Wakahara, K.; Sakamoto, K. The importance of appropriate diagnosis in the practical management of chronic obstructive pulmonary disease. Diagnostics 2021, 11, 618. [Google Scholar] [CrossRef]
- Barnes, T.; Fromer, L. Spirometry use: Detection of chronic obstructive pulmonary disease in the primary care setting. Clin. Interv. Aging 2011, 6, 47–52. [Google Scholar] [CrossRef] [Green Version]
- Schermer, T.R.; Jacobs, J.E.; Chavannes, N.; Hartman, J.; Folgering, H.T.; Bottema, B.J.; van Weel, C. Validity of spirometric testing in a general practice population of patients with chronic obstructive pulmonary disease (COPD). Thorax 2003, 58, 861–866. [Google Scholar] [CrossRef] [Green Version]
- Sharan, R.V.; Abeyratne, U.R.; Swarnkar, V.R.; Claxton, S.; Hukins, C.; Porter, P. Predicting spirometry readings using cough sound features and regression. Physiol. Meas. 2018, 39, 095001. [Google Scholar] [CrossRef]
- Ioachimescu, O.C.; Stoller, J.K.; Garcia-Rio, F. Area under the expiratory flow-volume curve: Predicted values by artificial neural networks. Sci. Rep. 2020, 10, 16624. [Google Scholar] [CrossRef]
- Miyoshi, S.; Katayama, H.; Matsubara, M.; Kato, T.; Hamaguchi, N.; Yamaguchi, O. Prediction of spirometric indices using forced oscillometric indices in patients with asthma, COPD, and interstitial lung disease. Int. J. Chronic Obstr. Pulm. Dis. 2020, 15, 1565. [Google Scholar] [CrossRef]
- Chen, J.; Yang, Z.; Yuan, Q.; Xiong, D.-X.; Guo, L.-Q. Prediction models for pulmonary function during acute exacerbation of chronic obstructive pulmonary disease. Physiol. Meas. 2020, 41, 125010. [Google Scholar] [CrossRef] [PubMed]
- Kremeier, P.; Böhm, S.H.; Tusman, G. Clinical use of volumetric capnography in mechanically ventilated patients. Int. J. Clin. Monit. Comput. 2019, 34, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Jarenbäck, L.; Tufvesson, E.; Ankerst, J.; Bjermer, L.; Jonson, B. The Efficiency Index (EFFi), based on volumetric capnography, may allow for simple diagnosis and grading of COPD. Int. J. Chronic Obstr. Pulm. Dis. 2018, 13, 2033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kellerer, C.; Schneider, A.; Klütsch, K.; Husemann, K.; Sorichter, S.; Jörres, R.A. Correspondence between Capnovolumetric and Conventional Lung Function Parameters in the Diagnosis of Obstructive Airway Diseases. Respiration 2020, 99, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Rosli, M.H.B.M.; Kumarasamy, R.; Malarvili, M.B. Design of Device to Monitor Asthma Severity Using Mainstream Technology while Administering Medication. IOP Conf. Ser. Mater. Sci. Eng. 2020, 884, 012010. [Google Scholar] [CrossRef]
- Wu, H.-C.; Gupta, N.; Mylavarapu, P.S. Blind multiridge detection for automatic nondestructive testing using ultrasonic signals. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2006, 53, 1902–1911. [Google Scholar] [CrossRef]
- Mood, A.M.; Graybill, F.A.; Boes, D.C. Introduction to the Theory of Statistics, 3rd ed.; McGraw-Hill Education: New York, NY, USA, 1974. [Google Scholar]
- Gao, J.; Li, F.; Wang, B.; Liang, H. Unsupervised nonlinear adaptive manifold learning for global and local information. Tsinghua Sci. Technol. 2021, 26, 163–171. [Google Scholar] [CrossRef]
- Kiasadegh, M.; Emdad, H.; Ahmadi, G.; Abouali, O. Transient numerical simulation of airflow and fibrous particles in a human upper airway model. J. Aerosol Sci. 2019, 140, 105480. [Google Scholar] [CrossRef]
- Arora, P.; Boyne, D.; Slater, J.J.; Gupta, A.; Brenner, D.R.; Druzdzel, M.J. Bayesian Networks for Risk Prediction Using Real-World Data: A Tool for Precision Medicine. Value Health 2019, 22, 439–445. [Google Scholar] [CrossRef] [Green Version]
- Karim, R.; Beyan, O.; Zappa, A.; Costa, I.G.; Rebholz-Schuhmann, D.; Cochez, M.; Decker, S. Deep learning-based clustering approaches for bioinformatics. Brief. Bioinform. 2020, 22, 393–415. [Google Scholar] [CrossRef] [Green Version]
- Boehnke, N.; Hammond, P.T. Power in Numbers: Harnessing Combinatorial and Integrated Screens to Advance Nanomedicine. JACS Au 2021, 2, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Halpin, D.M.G.; Criner, G.J.; Papi, A.; Singh, D.; Anzueto, A.; Martinez, F.J.; Agusti, A.A.; Vogelmeier, C.F. Global Initiative for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease. The 2020 GOLD Science Committee Report on COVID-19 and Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2021, 203, 24–36. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, V.K.; Dahiya, K.; Sharma, A. Problem formulations and solvers in linear SVM: A review. Artif. Intell. Rev. 2018, 52, 803–855. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016. [Google Scholar]
- Meng, Y.; Yang, N.; Qian, Z.; Zhang, G. What makes an online review more helpful: An interpretation framework using XGBoost and SHAP values. J. Theor. Appl. Electron. Commer. Res. 2020, 16, 466–490. [Google Scholar] [CrossRef]
- Cherkassky, V.; Ma, Y. Practical selection of SVM parameters and noise estimation for SVM regression. Neural Netw. 2004, 17, 113–126. [Google Scholar] [CrossRef] [Green Version]
- Aghezzaf, B.; El Fahim, H. Iterated local search algorithm for solving the orienteering problem with soft time windows. SpringerPlus 2016, 5, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Tanabe, T.; Ye, J.; Suzuyama, T.; Kobayashi, T.; Yamaguchi, Y.; Yasuda, M. Potential for improving the local realization of coordinated universal time with a convolutional neural network. Rev. Sci. Instrum. 2019, 90, 125111. [Google Scholar] [CrossRef] [Green Version]
- Abo-Tabik, M.; Costen, N.; Darby, J.; Benn, Y. Towards a Smart Smoking Cessation App: A 1D-CNN Model Predicting Smoking Events. Sensors 2020, 20, 1099. [Google Scholar] [CrossRef] [Green Version]
- Ma, D.; Shang, L.; Tang, J.; Bao, Y.; Fu, J.; Yin, J. Classifying breast cancer tissue by Raman spectroscopy with one-dimensional convolutional neural network. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 256, 119732. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. NIPS 2012, 60, 84–90. [Google Scholar] [CrossRef]
- Zhuang, J.; Dong, Y.; Bai, H.; Zuo, P.; Cheng, J. Auto-Selecting Receptive Field Network for Visual Tracking. IEEE Access 2019, 7, 157449–157458. [Google Scholar] [CrossRef]
- Zhou, R.; Wang, C.; Zhang, P.; Chen, X.; Du, L.; Wang, P.; Zhao, Z.; Du, M.; Fang, Z. ECG-based biometric under different psychological stress states. Comput. Methods Programs Biomed. 2021, 202, 106005. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.Y.; Wang, S.H.; Zhang, Y.D. Survey on theory and application of k-Nearest-Neighbors algorithm. Comput. Eng. Appl. 2017, 53, 1–7. [Google Scholar]
- Pu, G.; Wang, L.; Shen, J.; Dong, F. A hybrid unsupervised clustering-based anomaly detection method. Tsinghua Sci. Technol. 2021, 26, 146–153. [Google Scholar] [CrossRef]
- Burmyakov, A. Schedulability Analysis of Multiprocessor Real-time Systems Using Pruning. Ph.D. Thesis, Universidade do Porto, Porto, Portugal, 2016. [Google Scholar]
Layers (Type) | Output Size | Param |
---|---|---|
C1 (Conv1D) | (None, 2396, 32) | 192 |
P1 (MaxPooling1D) | (None, 479, 32) | 0 |
D1 (Dropout) | (None, 479, 32) | 0 |
C2 (Conv1D) | (None, 475, 64) | 10,304 |
P2 (MaxPooling1D) | (None, 95, 64) | 0 |
D2 (Dropout) | (None, 95, 64) | 0 |
C3 (Conv1D) | (None, 91, 32) | 10,272 |
P3 (MaxPooling1D) | (None, 91, 32) | 0 |
D3 (Dropout) | (None, 91, 32) | 0 |
F1 (Flatten) | (None, 576) | 0 |
F2 (Dense) | (None, 2) | 1154 |
Variable | Description | Units |
---|---|---|
C12 | Carbon dioxide concentration at the boundary of phase 1 and phase 2 | mmHg |
C23 | Carbon dioxide concentration at the boundary of phase 2 and phase 3 | mmHg |
V12 | Volume at the boundary of phase 1 and phase 2 | mL |
V23 | Volume at the boundary of phase 2 and phase 3 | mL |
V2 | The volume of phase 2 | mL |
V3 | The volume of phase 3 | mL |
S2 | Slope of phase 2 | mmHg/L |
S3 | Slope of phase 2 | mmHg/L |
S3/S2 | The ratio of slopes of phases 3 and 2 | / |
Angle23 | The angle between phases 2 and 3 | ° |
Amount | Category | Variable | Units | Values | |
---|---|---|---|---|---|
Data | 1007 | Demographics | Male | % | 53.1% |
Age | years | 56 (14) | |||
Height | cm | 166 (9) | |||
Weight | kg | 69 (14) | |||
BMI | kg·m−2 | 24.94 (4.20) | |||
Volumetric capnography | C12 | mmHg | 2.49 (0.80) | ||
C23 | mmHg | 27.22 (4.76) | |||
V12 | mL | 276 (58) | |||
V23 | mL | 757 (157) | |||
V2 | mL | 480 (128) | |||
V3 | ml | 2061(903) | |||
S2 | mmHg/L | 74.63 (25.19) | |||
S3 | mmHg/L | 5.44 (3.37) | |||
S3/S2 | / | 0.08 (0.04) | |||
Angle23 | ° | 168.26 (5.81) | |||
Spirometric | FEV1 | l | 2.53 (0.86) | ||
FVC | l | 3.49 (0.99) |
Type | Pulmonary Function Parameters | RMSE (L) | R2 | ACC |
---|---|---|---|---|
SVM + XGBoost | FEV1 | 0.43 | 0.78 | 73.90% |
FVC | 0.48 | 0.79 | 79.18% |
Type | Pulmonary Function Parameters | RMSE (L) | R2 | ACC |
---|---|---|---|---|
1D-CNN | FEV1 | 0.66 | 0.57 | 65.09% |
FVC | 0.61 | 0.73 | 74.76% |
Type | Pulmonary Function Parameters | RMSE (L) | R2 | ACC |
---|---|---|---|---|
Combination algorithm | FEV1 | 0.35 | 0.85 | 80.79% |
FVC | 0.39 | 0.86 | 85.77% |
Parameter Types | Algorithm Types | RMSE (L) | R2(P) | MPE | MAPE | RMSPE | ACC |
---|---|---|---|---|---|---|---|
FEV1 | SVM + XGBoost | 0.43 | 0.78 (<0.01) | 45.58% | 15.71% | 17.01% | 73.90% |
1D-CNN | 0.66 | 0.57 (0.02) | 56.91% | 21.51% | 26.30% | 65.09% | |
combination algorithm | 0.35 | 0.85 (<0.01) | 32.84% | 10.96% | 13.83% | 80.79% | |
FVC | SVM + XGBoost | 0.48 | 0.79 (<0.01) | 36.57% | 12.26% | 13.64% | 79.18% |
1D-CNN | 0.61 | 0.73 (<0.01) | 44.30% | 14.19% | 17.22% | 74.76% | |
combination algorithm | 0.39 | 0.86 (<0.01) | 23.27% | 8.35% | 11.06% | 85.77% |
Author | Subjects | Methodology | Result |
---|---|---|---|
Sharan et al. [11] | 322 | Linear and nonlinear regression models | A root mean square error (and correlation coefficient) for standard spirometry parameters FEV1, FVC, and FEV1/FVC of 0.593 L (0.810), 0.725 L (0.749), and 0.164 L (0.547). |
Ioachimescu et al. [12] | 3567 | Regular linear or optimized regression, ANN models | The AEX could become an essential tool in assessing respiratory impairment. |
Miyoshi et al. [13] | 683 | Multivariate linear regression analysis | Actual and estimated VC, FVC, and FEV1 values showed significant correlations (all r > 0.8 and p < 0.001) in all groups. |
Chen et al. [14] | 143 | M-SVR | The mean squared errors were lower than 0.15 l2, and the decision coefficients (R2) were higher than 0.40. |
Ours | 1007 | SVM, XGBoost, 1D-CNN, KNN | The root mean squared errors (RMSE) were lower than 0.39 L. The coefficient of determinations (R2) was higher than 0.85. The comprehensive percentage error (CPE) was lower than 20%. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, R.; Wang, P.; Li, Y.; Mou, X.; Zhao, Z.; Chen, X.; Du, L.; Yang, T.; Zhan, Q.; Fang, Z. Prediction of Pulmonary Function Parameters Based on a Combination Algorithm. Bioengineering 2022, 9, 136. https://doi.org/10.3390/bioengineering9040136
Zhou R, Wang P, Li Y, Mou X, Zhao Z, Chen X, Du L, Yang T, Zhan Q, Fang Z. Prediction of Pulmonary Function Parameters Based on a Combination Algorithm. Bioengineering. 2022; 9(4):136. https://doi.org/10.3390/bioengineering9040136
Chicago/Turabian StyleZhou, Ruishi, Peng Wang, Yueqi Li, Xiuying Mou, Zhan Zhao, Xianxiang Chen, Lidong Du, Ting Yang, Qingyuan Zhan, and Zhen Fang. 2022. "Prediction of Pulmonary Function Parameters Based on a Combination Algorithm" Bioengineering 9, no. 4: 136. https://doi.org/10.3390/bioengineering9040136
APA StyleZhou, R., Wang, P., Li, Y., Mou, X., Zhao, Z., Chen, X., Du, L., Yang, T., Zhan, Q., & Fang, Z. (2022). Prediction of Pulmonary Function Parameters Based on a Combination Algorithm. Bioengineering, 9(4), 136. https://doi.org/10.3390/bioengineering9040136