The Endplate Role in Degenerative Disc Disease Research: The Isolation of Human Chondrocytes from Vertebral Endplate—An Optimised Protocol
Abstract
:1. Introduction
1.1. The Anatomy of the Vertebral Endplate
1.2. The Degenerative Process of the Vertebral Endplate
1.3. The Importance of Cell Isolation from the Vertebral Endplate
2. Materials and Methods
2.1. The Source of Tissue
2.2. Reagents and Chemicals
2.3. The Preparation of Tissue for Cell Isolation and Culture
2.4. Immunocytochemistry
- (A)
- For staining of the actin cytoskeleton, the standard manufacturer’s protocol was followed. Briefly, the fixed cells were washed with cold PBS, and after the last washing, the working solution of conjugated phalloidin was added (1:1000 in PBS with 1% BSA). The cells were incubated for 90 min at room temperature and then washed with PBS three times for 5 min. Then, the cells were washed again with the Milliq water, and two drops of Mounting Medium with DAPI were added. Images were taken at 10× magnification on an EVOS FL fluorescence microscope (Thermo Fisher Scientific, Waltham, MA, USA) (Ex/Em = 556/574 nm).
- (B)
- For aggrecan, collagen I and collagen II staining, the cells were incubated after the last PBS irrigation for 30 min with the PBS solution (PBS with 1% BSA and 0.1% Tween 20 for blockade of nonspecific antibodies). Primary antibodies in a solution containing PBS with 1% BSA and 0.1% Tween 20 were added: the Anti-Aggrecan antibody (1:50), the Anti-Collagen I antibody (1:500) and the Anti-Collagen II antibody (1:200). The cells were incubated overnight at 4 °C. After triple irrigation with PBS for five minutes, and the cells were incubated in a dark at room temperature for one hour with secondary antibodies. The following dilutions in PBS with 1% BSA of secondary antibodies were used: for aggrecan 1:1000 Rabbit Anti-Mouse IgG H&L (Alexa Fluor 488) pre-adsorbed and for both collagens 1:1000 Goat Anti-Rabbit IgG H&L (Alexa Fluor 594). Finally, the cells were washed three times for five minutes with PBS, and after the last irrigation with Milliq water, two drops of Fluoroshield Mounting Medium with DAPI were added. Images were taken at ×10 magnification on an EVOS FL fluorescence microscope (Thermo Fisher Scientific, Waltham, MA, USA) (for aggrecan Ex/Em = 495/519, for both collagens Ex/Em = 590/617).
2.5. RNA Extraction and qRT-PCR
3. Results
3.1. Isolation and Culturing of Chondrocytes from Vertebral Endplate
3.2. Cell Characterisation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lemeunier, N.; Leboeuf-Yde, C.; Gagey, O. The natural course of low back pain: A systematic critical literature review. Chiropr. Man. Ther. 2012, 20, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hestbaek, L.; Leboeuf-Yde, C.; Manniche, C. Low back pain: What is the long-term course? A review of studies of general patient populations. Eur. Spine J. 2003, 12, 149–165. [Google Scholar] [CrossRef] [PubMed]
- Junge, T.; Wedderkopp, N.; Boyle, E.; Kjaer, P. The natural course of low back pain from childhood to young adulthood—A systematic review. Chiropr. Man. Ther. 2019, 27, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morlion, B. Chronic low back pain: Pharmacological, interventional and surgical strategies. Nat. Rev. Neurol. 2013, 9, 462–473. [Google Scholar] [CrossRef]
- Niënhaus, B.E.C.; A Van De Laar, F. Lower back pain: Understanding it is more important than treating it. Ned. Tijdschr. Voor Geneeskd. 2017, 161, D2032. [Google Scholar]
- Iatridis, J.C.; Nicoll, S.B.; Michalek, A.J.; Walter, B.A.; Gupta, M.S. Role of biomechanics in intervertebral disc degeneration and regenerative therapies: What needs repairing in the disc and what are promising biomaterials for its repair? Spine J. 2013, 13, 243–262. [Google Scholar] [CrossRef] [Green Version]
- Kos, N.; Gradisnik, L.; Velnar, T. A Brief Review of the Degenerative Intervertebral Disc Disease. Med. Arch. 2019, 73, 421–424. [Google Scholar] [CrossRef]
- Liu, C.; Yang, M.; Liu, L.; Zhang, Y.; Zhu, Q.; Huang, C.; Wang, H.; Li, H.; Li, C.; Huang, B.; et al. Molecular basis of degenerative spinal disorders from a proteomic perspective (Review). Mol. Med. Rep. 2020, 21, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Molladavoodi, S.; McMorran, J.; Gregory, D. Mechanobiology of annulus fibrosus and nucleus pulposus cells in intervertebral discs. Cell Tissue Res. 2019, 379, 429–444. [Google Scholar] [CrossRef]
- Chen, L.; Battié, M.C.; Yuan, Y.; Yang, G.; Chen, Z.; Wang, Y. Lumbar vertebral endplate defects on magnetic resonance images: Prevalence, distribution patterns, and associations with back pain. Spine J. 2020, 20, 352–360. [Google Scholar] [CrossRef]
- Amelot, A.; Mazel, C. The Intervertebral Disc: Physiology and Pathology of a Brittle Joint. World Neurosurg. 2018, 120, 265–273. [Google Scholar] [CrossRef]
- Tomaszewski, K.A.; Saganiak, K.; Gładysz, T.; Walocha, J.A. The biology behind the human intervertebral disc and its endplates. Folia Morphol. 2015, 74, 157–168. [Google Scholar] [CrossRef] [Green Version]
- Broom, N.D.; Thambyah, A. The Soft–Hard Tissue Junction In: Structure, Mechanics and Function; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar] [CrossRef]
- Mansfield, J.C.; Mandalia, V.; Toms, A.; Winlove, C.P.; Brasselet, S. Collagen reorganization in cartilage under strain probed by polarization sensitive second harmonic generation microscopy. J. R. Soc. Interface 2019, 16, 20180611. [Google Scholar] [CrossRef] [Green Version]
- Boxberger, J.I.; Orlansky, A.S.; Sen, S.; Elliott, D.M. Reduced nucleus pulposus glycosaminoglycan content alters intervertebral disc dynamic viscoelastic mechanics. J. Biomech. 2009, 42, 1941–1946. [Google Scholar] [CrossRef] [Green Version]
- Colombini, A.; Lombardi, G.; Corsi, M.M.; Banfi, G. Pathophysiology of the human intervertebral disc. Int. J. Biochem. Cell Biol. 2008, 40, 837–842. [Google Scholar] [CrossRef]
- Pattappa, G.; Li, Z.; Peroglio, M.; Wismer, N.; Alini, M.; Grad, S. Diversity of intervertebral disc cells: Phenotype and function. J. Anat. 2012, 221, 480–496. [Google Scholar] [CrossRef]
- Chan, W.C.; Sze, K.L.; Samartzis, D.; Leung, V.Y.; Chan, D. Structure and Biology of the Intervertebral Disk in Health and Disease. Orthop. Clin. N. Am. 2011, 42, 447–464. [Google Scholar] [CrossRef]
- Jaumard, N.V.; Welch, W.C.; Winkelstein, B.A. Spinal Facet Joint Biomechanics and Mechanotransduction in Normal, Injury and Degenerative Conditions. J. Biomech. Eng. 2011, 133, 071010. [Google Scholar] [CrossRef] [Green Version]
- Sharifi, S.; Bulstra, S.K.; Grijpma, D.W.; Kuijer, R. Treatment of the degenerated intervertebral disc; closure, repair and regeneration of the annulus fibrosus. J. Tissue Eng. Regen. Med. 2015, 9, 1120–1132. [Google Scholar] [CrossRef]
- Chen, C.; Zhou, T.; Sun, X.; Han, C.; Zhang, K.; Zhao, C.; Li, X.; Tian, H.; Yang, X.; Zhou, Y.; et al. Autologous fibroblasts induce fibrosis of the nucleus pulposus to maintain the stability of degenerative intervertebral discs. Bone Res. 2020, 8, 7. [Google Scholar] [CrossRef] [Green Version]
- Lv, B.; Yuan, J.; Ding, H.; Wan, B.; Jiang, Q.; Luo, Y.; Xu, T.; Ji, P.; Zhao, Y.; Wang, L.; et al. Relationship between Endplate Defects, Modic Change, Disc Degeneration, and Facet Joint Degeneration in Patients with Low Back Pain. BioMed Res. Int. 2019, 2019, 9369853. [Google Scholar] [CrossRef] [Green Version]
- Newell, N.; Carpanen, D.; Evans, J.H.; Pearcy, M.; Masouros, S.D. Mechanical Function of the Nucleus Pulposus of the Intervertebral Disc Under High Rates of Loading. Spine 2019, 44, 1035–1041. [Google Scholar] [CrossRef]
- Fields, A.J.; Ballatori, A.; Liebenberg, E.C.; Lotz, J.C. Contribution of the Endplates to Disc Degeneration. Curr. Mol. Biol. Rep. 2018, 4, 151–160. [Google Scholar] [CrossRef]
- Sun, Z.; Luo, Z.-J. Osteoporosis therapies might lead to intervertebral disc degeneration via affecting cartilage endplate. Med. Hypotheses 2019, 125, 5–7. [Google Scholar] [CrossRef]
- Splendiani, A.; Bruno, F.; Marsecano, C.; Arrigoni, F.; di Cesare, E.; Barile, A.; Masciocchi, C. Modic I changes size increase from supine to standing MRI correlates with increase in pain intensity in standing position: Uncovering the “biomechanical stress” and “active discopathy” theories in low back pain. Eur. Spine J. 2019, 28, 983–992. [Google Scholar] [CrossRef] [Green Version]
- Bernick, S.; Cailliet, R. Vertebral End-Plate Changes with Aging of Human Vertebrae. Spine 1982, 7, 97–102. [Google Scholar] [CrossRef]
- Grignon, B.; Grignon, Y.; Mainard, D.; Braun, M.; Netter, P.; Roland, J. The structure of the cartilaginous end-plates in elder people. Surg. Radiol. Anat. 2000, 22, 13–19. [Google Scholar] [CrossRef]
- Hadjipavlou, A.G.; Tzermiadianos, M.N.; Bogduk, N.; Zindrick, M. The pathophysiology of disc degeneration: A critical review. J. Bone Jt. Surg. Br. Vol. 2008, 90, 1261–1270. [Google Scholar] [CrossRef] [Green Version]
- Määttä, J.H.; Rade, M.; Freidin, M.B.; Airaksinen, O.; Karppinen, J.; Williams, F.M.K. Strong association between vertebral endplate defect and Modic change in the general population. Sci. Rep. 2018, 8, 16630. [Google Scholar] [CrossRef]
- Zehra, U.; Cheung, J.P.Y.; Bow, C.; Lu, W.; Samartzis, D. Multidimensional vertebral endplate defects are associated with disc degeneration, modic changes, facet joint abnormalities, and pain. J. Orthop. Res. 2019, 37, 1080–1089. [Google Scholar] [CrossRef]
- Naqvi, S.M.; Gansau, J.; Gibbons, D.; Buckley, C.T. In vitro co-culture and ex vivo organ culture assessment of primed and cryopreserved stromal cell microcapsules for intervertebral disc regeneration. Eur. Cells Mater. 2019, 37, 134–152. [Google Scholar] [CrossRef] [PubMed]
- Stich, S.; Stolk, M.; Girod, P.P.; Thome, C.; Sittinger, M.; Ringe, J.; Seifert, M.; Hegewald, A.A. Regenerative and Immunogenic Characteristics of Cultured Nucleus Pulposus Cells from Human Cervical Intervertebral Discs. PLoS ONE 2015, 10, e0126954. [Google Scholar] [CrossRef] [Green Version]
- Byvaltsev, V.A.; Kolesnikov, S.; Bardonova, L.A.; Belykh, E.G.; Korytov, L.I.; Giers, M.B.; Bowen, S.; Preul, M.C. Development of an In Vitro Model of Inflammatory Cytokine Influences on Intervertebral Disk Cells in 3D Cell Culture Using Activated Macrophage-Like THP-1 Cells. Bull. Exp. Biol. Med. 2018, 166, 151–154. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Park, M.H.; Lee, K. Tissue Engineering Strategies for Intervertebral Disc Treatment Using Functional Polymers. Polymers 2019, 11, 872. [Google Scholar] [CrossRef] [Green Version]
- Chan, S.C.; Gantenbein-Ritter, B. Preparation of Intact Bovine Tail Intervertebral Discs for Organ Culture. J. Vis. Exp. 2012, e3490. [Google Scholar] [CrossRef] [Green Version]
- Haglund, L.; Moir, J.; Beckman, L.; Mulligan, K.R.; Jim, B.; Ouellet, J.A.; Roughley, P.; Steffen, T. Development of a Bioreactor for Axially Loaded Intervertebral Disc Organ Culture. Tissue Eng. Part C Methods 2011, 17, 1011–1019. [Google Scholar] [CrossRef]
- Jin, L.; Shimmer, A.L.; Li, X. The challenge and advancement of annulus fibrosus tissue engineering. Eur. Spine J. 2013, 22, 1090–1100. [Google Scholar] [CrossRef] [Green Version]
- Naranda, J.; Gradišnik, L.; Gorenjak, M.; Vogrin, M.; Maver, U. Isolation and characterization of human articular chondrocytes from surgical waste after total knee arthroplasty (TKA). PeerJ 2017, 5, e3079. [Google Scholar] [CrossRef] [Green Version]
- Vedicherla, S.; Buckley, C.T. Rapid Chondrocyte Isolation for Tissue Engineering Applications: The Effect of Enzyme Concentration and Temporal Exposure on the Matrix Forming Capacity of Nasal Derived Chondrocytes. BioMed Res. Int. 2017, 2017, 12395138. [Google Scholar] [CrossRef]
- Muhammad, S.A.; Nordin, N.; Hussin, P.; Mehat, M.Z.; Tan, S.W.; Fakurazi, S. Optimization of Protocol for Isolation of Chondrocytes from Human Articular Cartilage. Cartilage 2021, 13, 872S–884S. [Google Scholar] [CrossRef]
- Lakstins, K.; Yeater, T.; Arnold, L.; Khan, S.; Hoyland, J.A.; Purmessur, D. Investigating the role of culture conditions on hypertrophic differentiation in human cartilage endplate cells. J. Orthop. Res. 2020, 39, 1204–1216. [Google Scholar] [CrossRef]
- Urban, J.P.; Smith, S.; Fairbank, J.C. Nutrition of the Intervertebral Disc. Spine 2004, 29, 2700–2709. [Google Scholar] [CrossRef]
- Ashinsky, B.G.; Bonnevie, E.D.; Mandalapu, S.A.; Pickup, S.; Wang, C.; Han, L.; Mauck, R.L.; Smith, H.E.; Gullbrand, S.E. Intervertebral Disc Degeneration Is Associated with Aberrant Endplate Remodeling and Reduced Small Molecule Transport. J. Bone Miner. Res. 2020, 35, 1572–1581. [Google Scholar] [CrossRef]
- Ariga, K.; Yonenobu, K.; Nakase, T.; Hosono, N.; Okuda, S.; Meng, W.; Tamura, Y.; Yoshikawa, H. Mechanical stress-induced apoptosis of endplate chondrocytes in organ-cultured mouse intervertebral discs: An ex vivo study. Spine 2003, 28, 1528–1533. [Google Scholar] [CrossRef]
- Harris, L.; Vangsness, C.T. Mesenchymal Stem Cell Levels of Human Spinal Tissues. Spine 2018, 43, E545–E550. [Google Scholar] [CrossRef]
- Li, D.; Zhu, B.; Ding, L.; Lu, W.; Xu, G.; Wu, J. Role of the mitochondrial pathway in serum deprivation-induced apoptosis of rat endplate cells. Biochem. Biophys. Res. Commun. 2014, 452, 354–360. [Google Scholar] [CrossRef]
- Grant, M.; Epure, L.; Bokhari, R.; Roughley, P.; Antoniou, J.; Mwale, F. Human cartilaginous endplate degeneration is induced by calcium and the extracellular calcium-sensing receptor in the intervertebral disc. Eur. Cells Mater. 2016, 32, 137–151. [Google Scholar] [CrossRef]
- Liu, L.-T.; Huang, B.; Li, C.-Q.; Zhuang, Y.; Wang, J.; Zhou, Y. Characteristics of Stem Cells Derived from the Degenerated Human Intervertebral Disc Cartilage Endplate. PLoS ONE 2011, 6, e26285. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, D.J.; Seguin, C.; Wang, J.; Pilliar, R.M.; Kandel, R.A. Formation of a nucleus pulposus-cartilage endplate construct in vitro. Biomaterials 2006, 27, 397–405. [Google Scholar] [CrossRef]
- Yin, X.; Jiang, L.; Yang, J.; Cao, L.; Dong, J. Application of biodegradable 3D-printed cage for cervical diseases via anterior cervical discectomy and fusion (ACDF): An in vitro biomechanical study. Biotechnol. Lett. 2017, 39, 1433–1439. [Google Scholar] [CrossRef]
- Rožanc, J.; Gradišnik, L.; Velnar, T.; Gregorič, M.; Milojević, M.; Vihar, B.; Gole, B.; Maver, U. Mesenchymal Stem Cells Isolated from Paediatric Paravertebral Adipose Tissue Show Strong Osteogenic Potential. Biomedicines 2022, 10, 378. [Google Scholar] [CrossRef]
- Lau, T.T.; Peck, Y.; Huang, W.; Wang, D.-A. Optimization of Chondrocyte Isolation and Phenotype Characterization for Cartilage Tissue Engineering. Tissue Eng. Part C Methods 2015, 21, 105–111. [Google Scholar] [CrossRef]
- Oseni, A.O.; Butler, P.; Seifalian, A. Optimization of chondrocyte isolation and characterization for large-scale cartilage tissue engineering. J. Surg. Res. 2013, 181, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Otero, M.; Favero, M.; Dragomir, C.; El Hachem, K.; Hashimoto, K.; Plumb, D.A.; Goldring, M.B. Human Chondrocyte Cultures as Models of Cartilage-Specific Gene Regulation. In Human Cell Culture Protocols; Mitry, R.R., Hughes, R.D., Eds.; Humana Press: Totowa, NJ, USA, 2011; pp. 301–336. [Google Scholar] [CrossRef] [Green Version]
- Parolin, M.; Gawri, R.; Mwale, F.; Steffen, T.; Roughley, P.; Antoniou, J.; Jarzem, P.; Haglund, L.; Ouellet, J. Development of a whole disc organ culture system to study human intervertebral disc. Evid. Based Spine Care J. 2010, 1, 67–68. [Google Scholar] [CrossRef] [Green Version]
- Phelan, K.; May, K.M. Basic Techniques in Mammalian Cell Tissue Culture. Curr. Protoc. Toxicol. 2016, 70, A.3B.1–A.3B.22. [Google Scholar] [CrossRef]
- Maroudas, A.; A Stockwell, R.; Nachemson, A.; Urban, J. Factors involved in the nutrition of the human lumbar intervertebral disc: Cellularity and diffusion of glucose in vitro. J. Anat. 1975, 120, 113–130. [Google Scholar]
- Roughley, P.J. Biology of Intervertebral Disc Aging and Degeneration: Involvement of the extracellular matrix. Spine 2004, 29, 2691–2699. [Google Scholar] [CrossRef]
- Antoniou, J.; Goudsouzian, N.M.; Heathfield, T.F.; Winterbottom, N.; Steffen, T.; Poole, A.R.; Aebi, M.; Alini, M. The Human Lumbar Endplate. Evidence of changes in biosynthesis and denaturation of the extracellular matrix with growth, maturation, aging, and degeneration. Spine 1996, 21, 1153–1161. [Google Scholar] [CrossRef]
- Tan, A.R.; Hung, C.T. Concise Review: Mesenchymal Stem Cells for Functional Cartilage Tissue Engineering: Taking Cues from Chondrocyte-Based Constructs. Stem Cells Transl. Med. 2017, 6, 1295–1303. [Google Scholar] [CrossRef]
- Rikkers, M.; Korpershoek, J.V.; Levato, R.; Malda, J.; Vonk, L.A. The clinical potential of articular cartilage-derived progenitor cells: A systematic review. Npj Regen. Med. 2022, 7, 1–20. [Google Scholar] [CrossRef]
- Jiang, Y.; Cai, Y.; Zhang, W.; Yin, Z.; Hu, C.; Tong, T.; Lu, P.; Zhang, S.; Neculai, D.; Tuan, R.S.; et al. Human Cartilage-Derived Progenitor Cells from Committed Chondrocytes for Efficient Cartilage Repair and Regeneration. Stem Cells Transl. Med. 2016, 5, 733–744. [Google Scholar] [CrossRef] [PubMed]
- Vinod, E.; Kachroo, U.; Amirtham, S.M.; Ramasamy, B.; Sathishkumar, S. Comparative analysis of fresh chondrocytes, cultured chondrocytes and chondroprogenitors derived from human articular cartilage. Acta Histochem. 2020, 122, 151462. [Google Scholar] [CrossRef] [PubMed]
- Mhanna, R.; Kashyap, A.; Palazzolo, G.; Vallmajo-Martin, Q.; Becher, J.; Möller, S.; Schnabelrauch, M.; Zenobi-Wong, M. Chondrocyte Culture in Three Dimensional Alginate Sulfate Hydrogels Promotes Proliferation While Maintaining Expression of Chondrogenic Markers. Tissue Eng. Part A 2014, 20, 1454–1464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mennan, C.; García, J.; McCarthy, H.; Owen, S.; Perry, J.; Wright, K.; Banerjee, R.; Richardson, J.B.; Roberts, S. Human Articular Chondrocytes Retain Their Phenotype in Sustained Hypoxia While Normoxia Promotes Their Immunomodulatory Potential. Cartilage 2019, 10, 467–479. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gradišnik, L.; Maver, U.; Gole, B.; Bunc, G.; Voršič, M.; Ravnik, J.; Šmigoc, T.; Bošnjak, R.; Velnar, T. The Endplate Role in Degenerative Disc Disease Research: The Isolation of Human Chondrocytes from Vertebral Endplate—An Optimised Protocol. Bioengineering 2022, 9, 137. https://doi.org/10.3390/bioengineering9040137
Gradišnik L, Maver U, Gole B, Bunc G, Voršič M, Ravnik J, Šmigoc T, Bošnjak R, Velnar T. The Endplate Role in Degenerative Disc Disease Research: The Isolation of Human Chondrocytes from Vertebral Endplate—An Optimised Protocol. Bioengineering. 2022; 9(4):137. https://doi.org/10.3390/bioengineering9040137
Chicago/Turabian StyleGradišnik, Lidija, Uroš Maver, Boris Gole, Gorazd Bunc, Matjaž Voršič, Janez Ravnik, Tomaž Šmigoc, Roman Bošnjak, and Tomaž Velnar. 2022. "The Endplate Role in Degenerative Disc Disease Research: The Isolation of Human Chondrocytes from Vertebral Endplate—An Optimised Protocol" Bioengineering 9, no. 4: 137. https://doi.org/10.3390/bioengineering9040137
APA StyleGradišnik, L., Maver, U., Gole, B., Bunc, G., Voršič, M., Ravnik, J., Šmigoc, T., Bošnjak, R., & Velnar, T. (2022). The Endplate Role in Degenerative Disc Disease Research: The Isolation of Human Chondrocytes from Vertebral Endplate—An Optimised Protocol. Bioengineering, 9(4), 137. https://doi.org/10.3390/bioengineering9040137