EEG-Based Emotion Recognition Using a 2D CNN with Different Kernels
Abstract
:1. Introduction
1.1. Background
1.2. Related Work
1.2.1. Emotion Model
1.2.2. EEG-Based Emotion Recognition
1.3. The Contributions of This Study
2. Materials and Methods
2.1. EEG on Emotion
2.2. The Dataset and Process
2.3. Experiment Setting
2.4. Proposed Method
2.4.1. Deep Learning Framework
2.4.2. CNN Model
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Northoff, G. Minding the Brain: A Guide to Philosophy and Neuroscience; Macmillan International Higher Education: London, UK, 2014. [Google Scholar]
- Wyczesany, M.; Ligeza, T. Towards a constructionist approach to emotions: Verification of the three-dimensional model of affect with EEG-independent component analysis. Exp. Brain Res. 2015, 233, 723–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrett, L.F.; Lewis, M.; Haviland-Jones, J.M. Handbook of Emotions; Guilford Publications: New York, NY, USA, 2016. [Google Scholar]
- Cao, Q.; Zhang, W.; Zhu, Y. Deep learning-based classification of the polar emotions of "moe"-style cartoon pictures. Tsinghua Sci. Technol. 2021, 26, 275–286. [Google Scholar] [CrossRef]
- Berger, M.; Wagner, T.H.; Baker, L.C. Internet use and stigmatized illness. Soc. Sci. Med. 2005, 61, 1821–1827. [Google Scholar] [CrossRef] [PubMed]
- Bradley, M.M.; Lang, P.J. Measuring emotion: The self-assessment manikin and the semantic differential. J. Behav. Ther. Exp. Psychiatry 1994, 25, 49–59. [Google Scholar] [CrossRef]
- Porter, S.; Ten Brinke, L. Reading between the lies: Identifying concealed and falsified emotions in universal facial expressions. Psychol. Sci. 2008, 19, 508–514. [Google Scholar] [CrossRef]
- Wioleta, S. Using physiological signals for emotion recognition. In Proceedings of the 2013 6th International Conference on Human System Interaction (HSI), Sopot, Poland, 6–8 June 2013; pp. 556–561. [Google Scholar]
- Wagner, J.; Kim, J.; Andre, E. From Physiological Signals to Emotions: Implementing and Comparing Selected Methods for Feature Extraction and Classification. In Proceedings of the 2005 IEEE International Conference on Multimedia and Expo, Amsterdam, The Netherlands, 6 July 2005; pp. 940–943. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.H.; Bang, S.W.; Kim, S.R. Emotion recognition system using short-term monitoring of physiological signals. Med. Biol. Eng. Comput. 2004, 42, 419–427. [Google Scholar] [CrossRef]
- Brosschot, J.F.; Thayer, J.F. Heart rate response is longer after negative emotions than after positive emotions. Int. J. Psychophysiol. 2003, 50, 181–187. [Google Scholar] [CrossRef]
- Coan, J.; Allen, J. Frontal EEG asymmetry as a moderator and mediator of emotion. Biol. Psychol. 2004, 67, 7–50. [Google Scholar] [CrossRef]
- Petrantonakis, P.C.; Hadjileontiadis, L.J. A Novel Emotion Elicitation Index Using Frontal Brain Asymmetry for Enhanced EEG-Based Emotion Recognition. IEEE Trans. Inf. Technol. Biomed. 2011, 15, 737–746. [Google Scholar] [CrossRef]
- Li, X.; Hu, B.; Zhu, T.; Yan, J.; Zheng, F. Towards affective learning with an EEG feedback approach. In Proceedings of the 1st ACM International Workshop on Multimedia Technologies for Distance Learning, Beijing, China, 23 October 2009; pp. 33–38. [Google Scholar]
- Ekman, P.E.; Davidson, R.J. The Nature of Emotion: Fundamental Questions; Oxford University Press: New York, NY, USA, 1994. [Google Scholar]
- Plutchik, R. A psycho evolutionary theory of emotion. Soc. Sci. Inf. 1980, 21, 529–553. [Google Scholar] [CrossRef]
- Alarcao, S.M.; Fonseca, M.J. Emotions Recognition Using EEG Signals: A Survey. IEEE Trans. Affect. Comput. 2017, 10, 374–393. [Google Scholar] [CrossRef]
- Kroupi, E.; Vesin, J.-M.; Ebrahimi, T. Subject-Independent Odor Pleasantness Classification Using Brain and Peripheral Signals. IEEE Trans. Affect. Comput. 2015, 7, 422–434. [Google Scholar] [CrossRef]
- Bahari, F.; Janghorbani, A. EEG-based emotion recognition using Recurrence Plot analysis and K nearest neighbor classifier. In Proceedings of the 2013 20th Iranian Conference on Biomedical Engineering (ICBME), Tehran, Iran, 18–20 December 2013; pp. 228–233. [Google Scholar] [CrossRef]
- Zheng, W.-L.; Lu, B.-L. Investigating Critical Frequency Bands and Channels for EEG-Based Emotion Recognition with Deep Neural Networks. IEEE Trans. Auton. Ment. Dev. 2015, 7, 162–175. [Google Scholar] [CrossRef]
- Tripathi, S.; Acharya, S.; Sharma, R.D.; Mittal, S.; Bhattacharya, S. Using deep and convolutional neural networks for accurate emotion classification on DEAP dataset. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; pp. 4746–4752. [Google Scholar]
- Zhang, D.; Yao, L.; Zhang, X.; Wang, S.; Chen, W.; Boots, R. Cascade and parallel convolutional recurrent neural networks on EEG-based intention recognition for brain-computer interface. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence, AAAI 2018, New Orleans, LA, USA, 2–7 February 2018. [Google Scholar]
- Alhagry, S.; Fahmy, A.A.; El-Khoribi, R.A. Emotion recognition based on EEG using lstm recurrent neural network. Emotion 2017, 8, 355–358. [Google Scholar] [CrossRef] [Green Version]
- Salama, E.S.; El-Khoribi, R.A.; Shoman, M.E.; Wahby, M.A. EEG-Based Emotion Recognition using 3D Convolutional Neural Networks. Int. J. Adv. Comput. Sci. Appl. 2018, 9, 329–337. [Google Scholar] [CrossRef]
- Song, T.; Zheng, W.; Song, P.; Cui, Z. EEG Emotion Recognition Using Dynamical Graph Convolutional Neural Networks. IEEE Trans. Affect. Comput. 2018, 11, 532–541. [Google Scholar] [CrossRef] [Green Version]
- Zhong, P.; Wang, D.; Miao, C. EEG-based emotion recognition using regularized graph neural networks. IEEE Trans. Affect. Comput. 2020. [Google Scholar] [CrossRef]
- Yin, Y.; Zheng, X.; Hu, B.; Zhang, Y.; Cui, X. EEG emotion recognition using fusion model of graph convolutional neural networks and LSTM. Appl. Soft Comput. 2020, 100, 106954. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, Q.; Qiu, M.; Wang, Y.; Xiaowei, C. Emotion Recognition from Multi-Channel EEG through Parallel Convolutional Recurrent Neural Network. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN) 2018, Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–7. [Google Scholar]
- Liu, J.; Wu, G.; Luo, Y.; Qiu, S.; Yang, S.; Li, W.; Bi, Y. EEG-Based Emotion Classification Using a Deep Neural Network and Sparse Autoencoder. Front. Syst. Neurosci. 2020, 14, 43. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, J.; Tan, J.H.; Chen, Y.; Chen, Y.; Li, D.; Yang, L.; Su, J.; Huang, X.; Che, W. An investigation of deep learning models for EEG-based emotion recognition. Front. Neurosci. 2020, 14, 622759. [Google Scholar] [CrossRef]
- Donmez, H.; Ozkurt, N. Emotion Classification from EEG Signals in Convolutional Neural Networks. In Proceedings of the 2019 Innovations in Intelligent Systems and Applications Conference (ASYU), Izmir, Turkey, 31 October–2 November 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Zulkifley, M.; Abdani, S.R. EEG signals classification by using convolutional neural networks. In Proceedings of the IEEE Symposium on Acoustics, Speech and Signal Processing (SASSP 2019), Kuala Lumpur, Malaysia, 20 March 2019. [Google Scholar]
- Anwar, A.M.; Eldeib, A.M. EEG signal classification using convolutional neural networks on combined spatial and temporal dimensions for BCI systems. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 434–437. [Google Scholar]
- Tatum, W.O. Handbook of EEG Interpretation; Demos Medical Publishing: New York, NY, USA, 2008. [Google Scholar]
- Koelsch, S. Brain correlates of music-evoked emotions. Nat. Rev. Neurosci. 2014, 15, 170–180. [Google Scholar] [CrossRef] [PubMed]
- Teplan, M. Fundamentals of EEG measurement. Meas. Sci. Technol. 2002, 2, 1–11. [Google Scholar]
- Niedermeyer, E.; da Silva, F. Electroencephalography: Basic Principles, Clinical Applications, and Related Fields; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2005. [Google Scholar]
- Bos, D.O. EEG-Based Emotion Recognition: The Influence of Visual and Auditory Stimuli. Capita Selecta (MSc course). 2006. [Google Scholar]
- Islam, M.R.; Moni, M.A.; Islam, M.M.; Rashed-Al-Mahfuz, M.; Islam, M.S.; Hasan, M.K.; Hossain, M.S.; Ahmad, M.; Uddin, S.; Azad, A.; et al. Emotion recognition from EEG signal focusing on deep learning and shallow learning techniques. IEEE Access 2021, 9, 94601–94624. [Google Scholar] [CrossRef]
- Koelstra, S.; Muhl, C.; Soleymani, M.; Lee, J.-S.; Yazdani, A.; Ebrahimi, T.; Pun, T.; Nijholt, A.; Patras, I. DEAP: A Database for Emotion Analysis; Using Physiological Signals. IEEE Trans. Affect. Comput. 2011, 3, 18–31. [Google Scholar] [CrossRef] [Green Version]
- Morris, J.D. SAM: The Self-Assessment Manikin and Efficient Cross-Cultural Measurement of Emotional Response. J. Advert. Res. 1995, 35, 63–68. [Google Scholar]
- Zhang, J.; Wu, H.; Chen, W.; Wei, S.; Chen, H. Design and tool flow of a reconfigurable asynchronous neural network accelerator. Tsinghua Sci. Technol. 2021, 26, 565–573. [Google Scholar] [CrossRef]
- Chao, H.; Dong, L.; Liu, Y.; Lu, B. Emotion Recognition from Multiband EEG Signals Using CapsNet. Sensors 2019, 19, 2212. [Google Scholar] [CrossRef] [Green Version]
- Pandey, P.; Seeja, K. Subject independent emotion recognition from EEG using VMD and deep learning. J. King Saud Univ. Comput. Inf. Sci. 2019, 34, 1730–1738. [Google Scholar] [CrossRef]
- Islam, R.; Ahmad, M. Virtual Image from EEG to Recognize Appropriate Emotion using Convolutional Neural Network. In Proceedings of the 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT), Dhaka, Bangladesh, 3–5 May 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Alazrai, R.; Homoud, R.; Alwanni, H.; Daoud, M.I. EEG-Based Emotion Recognition Using Quadratic Time-Frequency Distribution. Sensors 2018, 18, 2739. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Zheng, W.-L.; Lu, B. Emotion recognition using multimodal deep learning. In Proceedings of The 23rd International Conference on Neural Information Processing (ICONIP 2016), Kyoto, Japan, 16–21 October 2016; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2016; Volume 9948, pp. 521–529. [Google Scholar] [CrossRef]
- Cui, H.; Liu, A.; Zhang, X.; Chen, X.; Wang, K.; Chen, X. EEG-based emotion recognition using an end-to-end regional-asymmetric convolutional neural network. Knowl.-Based Syst. 2020, 205, 106243. [Google Scholar] [CrossRef]
- Vijayakumar, S.; Flynn, R.; Murray, N. A Comparative Study of Machine Learning Techniques for Emotion Recognition from Peripheral Physiological Signals. In Proceedings of the ISSC 2020. 31st Irish Signals and System Conference, Letterkenny, Ireland, 11–12 June 2020; pp. 1–21. [Google Scholar]
- Li, M.; Xu, H.; Liu, X.; Lu, S. Emotion recognition from multichannel EEG signals using K-nearest neighbor classification. Technol. Health Care 2018, 26, 509–519. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Lu, B.-L. EEG Data Augmentation for Emotion Recognition Using a Conditional Wasserstein GAN. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 2535–2538. [Google Scholar] [CrossRef]
- Zhong, Y.; Jianhua, Z. Subject-generic EEG feature selection for emotion classification via transfer recursive feature elimination. In Proceedings of the 2017 36th Chinese Control Conference (CCC), Dalian, China, 26–28 July 2017; pp. 11005–11010. [Google Scholar] [CrossRef]
- Menezes, M.L.R.; Samara, A.; Galway, L.; Sant’Anna, A.; Verikas, A.; Alonso-Fernandez, F.; Wang, H.; Bond, R. Towards emotion recognition for virtual environments: An evaluation of eeg features on benchmark dataset. Pers. Ubiquitous Comput. 2017, 21, 1003–1013. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Ji, X.; Zhang, S. An approach to EEG-based emotion recognition using combined feature extraction method. Neurosci. Lett. 2016, 633, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Khaund, K.; Hazarika, S.M. Bispectral Analysis of EEG for Emotion Recognition. Procedia Comput. Sci. 2016, 84, 31–35. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, J.; Campos, D. Improving BCI-based emotion recognition by combining EEG feature selection and kernel classifiers. Expert Syst. Appl. 2016, 47, 35–41. [Google Scholar] [CrossRef]
- Lan, Z.; Sourina, O.; Wang, L.; Liu, Y. Real-time EEG-based emotion monitoring using stable features. Vis. Comput. 2016, 32, 347–358. [Google Scholar] [CrossRef]
- Mohammadi, Z.; Frounchi, J.; Amiri, M. Wavelet-based emotion recognition system using EEG signal. Neural Comput. Appl. 2016, 28, 1985–1990. [Google Scholar] [CrossRef]
- Cheng, J.; Chen, M.; Li, C.; Liu, Y.; Song, R.; Liu, A.; Chen, X. Emotion Recognition From Multi-Channel EEG via Deep Forest. IEEE J. Biomed. Health Inform. 2021, 25, 453–464. [Google Scholar] [CrossRef]
- Wen, Z.; Xu, R.; Du, J. A novel convolutional neural network for emotion recognition based on EEG signal. In Proceedings of the 2017 International Conference on Security, Pattern Analysis and Cybernetics (SPAC), Shenzhen, China, 15–17 December 2017; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2017; pp. 672–677. [Google Scholar]
- Wang, Y.; Huang, Z.; McCane, B.; Neo, P. EmotioNet: A 3-D Convolutional Neural Network for EEG-based Emotion Recognition. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, 8–13 July 2018; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2018. [Google Scholar]
- Gupta, V.; Chopda, M.D.; Pachori, R.B. Cross-Subject Emotion Recognition Using Flexible Analytic Wavelet Transform From EEG Signals. IEEE Sens. J. 2019, 19, 2266–2274. [Google Scholar] [CrossRef]
- Zhang, Z.; Cong, X.; Feng, W.; Zhang, H.; Fu, G.; Chen, J. WAEAS: An optimization scheme of EAS scheduler for wearable applications. Tsinghua Sci. Technol. 2021, 26, 72–84. [Google Scholar] [CrossRef]
Hyper-Parameter of the Proposed Model | Value/Type |
---|---|
Batch size | 128 |
Learning rate | 0.0001 |
Momentum | 0.9 |
Dropout | 0.25 |
Number of epochs | 200 |
Pooling layer | Max pooling |
Activation function Window size Optimizer Loss Function | LeakyReLU 3 S Adam Cross Entropy |
Number of Layers | Layer Type | Numbers of Input Channels/Output Channels |
---|---|---|
1 | Input (shape:1, 384, 32) | |
2 | conv_1 (Conv2d) | 1/25 (kernel size: 5 × 1) |
3 | droputout1 (Dropout=0.25) | 1/25 |
4 | conv_2 (Conv2d) | 25/25 (kernel size: 1 × 3, stride = (1,2)) |
5 | bn1 (BatchNorm2d) | 25 |
6 | pool1 (MaxPool2d (2,1)) | 25/25 |
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | conv_3 (Conv2d) droputout2 (Dropout = 0.25) conv_4 (Conv2d) bn2 (BatchNorm2d)pool2 (MaxPool2d (2,1)) conv_5 (Conv2d) droputout3 (Dropout = 0.25) conv_6 (Conv2d) bn3 (BatchNorm2d) pool3 (MaxPool2d (2,1)) conv_7 (Conv2d) droputout4 (Dropout = 0.25) conv_8 (Conv2d) bn4 (BatchNorm2d) flatten (Flatten layer) Linear1 (Linear) Droputout5 (Dropout = 0.5) Linear2 (Linear) | 25/50 (kernel size: 5 × 1) 25/50 50/50 (kernel size: 1 × 3, stride = (1,2)) 50 50 50/100 (kernel size: 5 × 1) 50/100 100/100 (kernel size: 1 × 3, stride = (1,2)) 100 100 100/200 (kernel size: 5 × 1) 100/200 200/200 (kernel size: 1 × 3) 200 Shape: 128 × 8000 8000/256 256/2 (binary classification task, number of classes = 2) |
Author | Accuracies (%) |
---|---|
Chao et al. [43] | Val:68.28, Aro:66.73 (deep learning) |
Pandey and Seeja [44] | Val:62.5, Aro:61.25 (deep learning) |
Islam and Ahmad [45] | Val:81.51, Aro:79.42 (deep learning) |
Alazrai et al. [46] Yang et al. [28] | Val:75.1, Aro:73.8 (traditional machine learn) Val:90.80, Aro:91.03 (deep learning) |
Alhagry et al. [23] Liu et al. [47] Cui et al. [48] Vijiayakumar et al. [49] Li et al. [50] Luo [51] Zhong and Jianhua [52] Menezes et al. [53] Zhang et al. [54] Kumar et al. [55] Atkinson and Campos [56] Lan et al. [57] Mohammadi et al. [58] Koelstra et al. [39] Tripathi et al. [21] Cheng et al. [59] Wen et al. [60] Wang et al. [61] Gupta et al. [62] Yin et al. [27] Salama et al. [24] Our method | Val:85.45, Aro:85.65 (deep learning) Val:85.2, Aro:80.5 (deep learning) Val:96.65, Aro:97.11 (deep learning) Val:70.41, Aro:73.75 (traditional machine learn) Val:95.70, Aro:95.69 (traditional machine learn) Val:78.17, Aro:73.79 (deep learning) Val:78.00, Aro:78.00 (deep learning) Val:88.00, Aro:69.00 (deep learning) Val:94.98, Aro:93.20 (deep learning) Val:61.17, Aro:64.84 (Non—machine learning) Val:73.06, Aro:73.14 (deep learning) Val:73.10, Aro:71.75 (deep learning) Val:86.75, Aro:84.05 (deep learning) Val:57.60, Aro:62.00 (traditional machine learn) Val:81.40, Aro:73.40 (deep learning) Val:97.69, Aro:97.53 (deep learning) Val:77.98, Aro:72.98 (deep learning) Val:72.10, Aro:73.10 (deep learning) Val:79.99, Aro:79.95 (traditional machine learn) Val:85.27, Aro:84.81 (deep learning) Val:88.49, Aro:87.44 (deep learning) Val:99.99, Aro:99.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhang, L.; Xia, P.; Wang, P.; Chen, X.; Du, L.; Fang, Z.; Du, M. EEG-Based Emotion Recognition Using a 2D CNN with Different Kernels. Bioengineering 2022, 9, 231. https://doi.org/10.3390/bioengineering9060231
Wang Y, Zhang L, Xia P, Wang P, Chen X, Du L, Fang Z, Du M. EEG-Based Emotion Recognition Using a 2D CNN with Different Kernels. Bioengineering. 2022; 9(6):231. https://doi.org/10.3390/bioengineering9060231
Chicago/Turabian StyleWang, Yuqi, Lijun Zhang, Pan Xia, Peng Wang, Xianxiang Chen, Lidong Du, Zhen Fang, and Mingyan Du. 2022. "EEG-Based Emotion Recognition Using a 2D CNN with Different Kernels" Bioengineering 9, no. 6: 231. https://doi.org/10.3390/bioengineering9060231
APA StyleWang, Y., Zhang, L., Xia, P., Wang, P., Chen, X., Du, L., Fang, Z., & Du, M. (2022). EEG-Based Emotion Recognition Using a 2D CNN with Different Kernels. Bioengineering, 9(6), 231. https://doi.org/10.3390/bioengineering9060231