A Brief History of Whiskey Adulteration and the Role of Spectroscopy Combined with Chemometrics in the Detection of Modern Whiskey Fraud
Abstract
:1. Introduction
2. History, Origin and Economic Impact
3. Adulteration, Fraud and Public Safety
4. Standard Methods of Analysis
5. Spectroscopic Methods and the Use of Chemometrics
6. Recent Innovations in Adulterant Analysis
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Murphy, J.P. Poitín: A Spirit of Rebellion and Inspiration. In Proceedings of the 3rd Dublin Gastronomy Symposium (DGS), Dublin, Ireland, 31 May–1 June 2016. [Google Scholar]
- Piggott, J. Whisky, in Current Developments in Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2017; pp. 435–450. [Google Scholar]
- European Parliament and Council. Regulation (EC) No 110/2008 of the European Parliament and of the Council of 15 January 2008 on the definition, description, presentation, labelling and the protection of geographical indications of spirit drinks and repealing Council Regulation (EEC) No 1576/89. Off. J. Eur. Union. 2008, 39, 16–54. [Google Scholar]
- Europe Union. Consolidated version of the Treaty on the Functioning of the European Union (TFEU). Europe Union, Editor. Off. J. Eur. Union 2016, C202, 47–388. [Google Scholar]
- Lee, K.-Y.M.; Paterson, A.; Piggott, J.R.; Richardson, G.D. Origins of Flavour in Whiskies and a Revised Flavour Wheel: A Review. J. Inst. Brew. 2001, 107, 287–313. [Google Scholar] [CrossRef] [Green Version]
- Lyons, T.P. Production of Scotch and Irish Whiskies: Their History and Evolution, in The Alcohol Textbook; Nottingham University Press: Nottingham, UK, 1999; pp. 137–164. [Google Scholar]
- Storrie, M.C. The Scotch Whisky Industry. Trans. Pap. Inst. Br. Geogr. 1962, 1962, 97. [Google Scholar] [CrossRef]
- Bower, J. Scotch Whisky: History, Heritage and the Stock Cycle. Beverages 2016, 2, 11. [Google Scholar] [CrossRef]
- González-Arjona, D.; González-Gallero, V.; Pablos, F.; Gonzalez, A.G. Authentication and differentiation of irish whiskeys by higher-alcohol congener analysis. Anal. Chim. Acta 1999, 381, 257–264. [Google Scholar] [CrossRef]
- Quinn, D. Irish Whiskey, in Whisky; Elsevier: Amsterdam, The Netherlands, 2014; pp. 7–16. [Google Scholar]
- Lyons, T.P. North American Whiskies: A Story of Evolution, Experience, and An Ongoing Entrepreneurial Spirit in Whisky; Elsevier: Amsterdam, The Netherlands, 2014; pp. 39–48. [Google Scholar]
- Podvia, M.W. Bourbon and the Law: A Brief Overview. SSRN Electron. J. 2015, 8, 5. [Google Scholar] [CrossRef]
- Horrocks, S.M. The History of the Distillers Company, 1887-1939: Diversification and Growth in Whisky and Chemicals. Bus. Hist. 1996, 38, 99–101. [Google Scholar] [CrossRef]
- Tachau, M.K.B. The Whiskey Rebellion in Kentucky: A Forgotten Episode of Civil Disobedience. J. Early Repub. 1982, 2, 239. [Google Scholar] [CrossRef]
- Rarick, C.A.; Mich, C.C. The American whiskey renaissance: The rebirth of an American spirit. J. Int. Acad. Case Stud. 2015, 21, 149. [Google Scholar]
- Humphreys, M. An Issue of Confidence: The Decline of the Irish Whiskey Industry in Independent Ireland, 1922. J. Eur. Econ. Hist. 1994, 23, 93. [Google Scholar]
- Weir, R.B. In and Out of Ireland. Ir. Econ. Soc. Hist. 1980, 7, 45–65. [Google Scholar] [CrossRef]
- Bord Bia. Irish Food, Drink and Horticulture. In Export Performance and Prospects; Bord Bia: Dublin, Ireland, 2019. [Google Scholar]
- O’Connor, A. Brewing and Distilling in Scotland-Economic Facts and Figures; Scottish Parliament Information Centre (SPICe): Edinburgh, UK, 2018. [Google Scholar]
- Distilled Spirits Council of the United States. 2018 Annual Economic Briefing Presentation; Distilled Spirits Council of the United States: Washington, DC, USA, 2019. [Google Scholar]
- Chaudhry, P.; Zimmerman, A.; Peters, J.R.; Cordell, V.V. Preserving intellectual property rights: Managerial insight into the escalating counterfeit market quandary. Bus. Horizons 2009, 52, 57–66. [Google Scholar] [CrossRef]
- Green, R.T.; Smith, T. Executive Insights: Countering Brand Counterfeiters. J. Int. Mark. 2002, 10, 89–106. [Google Scholar] [CrossRef]
- Kotelnikova, Z. Explaining Counterfeit Alcohol Purchases in Russia. Alcohol. Clin. Exp. Res. 2017, 41, 810–819. [Google Scholar] [CrossRef]
- Neufeld, M.; Rehm, J. Effectiveness of policy changes to reduce harm from unrecorded alcohol in Russia between 2005 and now. Int. J. Drug Policy 2018, 51, 1–9. [Google Scholar] [CrossRef]
- International Chamber of Commerce. The Economic Impacts of Counterfeiting and Piracy; International Chamber of Commerce: Paris, France, 2017. [Google Scholar]
- BBC. Third of Rare Scotch Whiskies Tested Found to Be Fake. BBC News. 2018. Available online: https://www.bbc.com/news/uk-scotland-scotland-business-46566703 (accessed on 31 July 2020).
- Cameron, G. Dram and blast: Third of vintage scotch whisky found to be fake. The Times. 2018. Available online: https://www.thetimes.co.uk/article/dram-and-blast-third-of-vintage-scotch-whisky-found-to-be-fake-frhscnlx0 (accessed on 31 July 2020).
- Carrell, S. Rare whisky market flooded with fakes, says dealer. The Guardian. 2018. Available online: https://www.theguardian.com/uk-news/2018/dec/20/rare-whisky-market-flooded-with-fakes-says-dealer (accessed on 31 July 2020).
- Neufeld, M.; Lachenmeier, D.; Hausler, T.; Rehm, J. Surrogate alcohol containing methanol, social deprivation and public health in Novosibirsk, Russia. Int. J. Drug Policy 2016, 37, 107–110. [Google Scholar] [CrossRef]
- Neufeld, M.; Wittchen, H.-U.; Rehm, J. Drinking patterns and harm of unrecorded alcohol in Russia: A qualitative interview study. Addict. Res. Theory 2017, 25, 1–11. [Google Scholar] [CrossRef]
- Aghababaeian, H.; Ahvazi, L.A.; Taghizadeh, A.O. The Methanol Poisoning Outbreaks in Iran. Alcohol 2019, 54, 128–130. [Google Scholar] [CrossRef]
- Ahmad, K. Methanol-laced moonshine kills 140 in Kenya. Lancet 2000, 356, 1911. [Google Scholar] [CrossRef]
- Dennis, M.J. Recent developments in food authentication. Analyst 1998, 123, 151–156. [Google Scholar] [CrossRef]
- Diviak, T.; Dijkstra, J.K.; Snijders, T.A. Poisonous connections: A case study on a Czech counterfeit alcohol distribution network. Glob. Crime 2019, 21, 51–73. [Google Scholar] [CrossRef] [Green Version]
- McKee, M.; Adany, R.; Leon, D.A. Illegally produced alcohol. BMJ 2012, 344, e1146. [Google Scholar] [CrossRef] [PubMed]
- Humayun, S.G.J.G.H. Toxic moonshine kills 154 people and leaves hundreds hospitalized in India. CNN. 2019. Available online: https://edition.cnn.com/2019/02/24/asia/india-alcohol-poisoning/index.html (accessed on 31 July 2020).
- Roger, C. Social Media Misinformation That Led to 300 Deaths in Iran Claimed That Drinking Methanol was a Cure for COVID-19. Tech Times. 2020. Available online: https://www.techtimes.com/articles/248428/20200329/social-media-misinformation-that-led-to-300-deaths-in-iran-claimed-drinking-methanol-was-a-cure-for-covid-19.htm (accessed on 31 July 2020).
- Da Silva, A.R.; Moreira, L.D.R.; Brum, E.D.S.; De Freitas, M.L.; Boligon, A.A.; Athayde, M.L.; Roman, S.S.; Mazzanti, C.M.; Brandão, R. Biochemical and hematological effects of acute and sub-acute administration to ethyl acetate fraction from the stem bark Scutia buxifolia Reissek in mice. J. Ethnopharmacol. 2014, 153, 908–916. [Google Scholar] [CrossRef]
- Jackson, D.S.; Crockett, D.F.; Wolnik, K.A. The Indirect Detection of Bleach (Sodium Hypochlorite) in Beverages as Evidence of Product Tampering. J. Forensic Sci. 2006, 51, 827–831. [Google Scholar] [CrossRef] [PubMed]
- Kwiatkowski, A.; Czerwicka, M.; Smulko, J.; Stepnowski, P. Detection of Denatonium Benzoate (Bitrex) Remnants in Noncommercial Alcoholic Beverages by Raman Spectroscopy. J. Forensic Sci. 2014, 59, 1358–1363. [Google Scholar] [CrossRef]
- Gemma, S.; Vittozzi, L.; Testai, E. Metabolism of chloroform in the human liver and identification of the competent P450s. Drug Metab. Dispos. 2003, 31, 266–274. [Google Scholar] [CrossRef] [Green Version]
- Lachenmeier, D.W. Is There a Need for Alcohol Policy to Mitigate Metal Contamination in Unrecorded Fruit Spirits? Int. J. Environ. Res. Public Health 2020, 17, 2452. [Google Scholar] [CrossRef] [Green Version]
- Bonar-Bridges, J. The Proof Is on the Label-Protecting Kentucky Bourbon in the Global Era. Ky. J. Equine Agric. Nat. Resour. L. 2015, 8, 491. [Google Scholar]
- Soon, J.; Manning, L. Developing anti-counterfeiting measures: The role of smart packaging. Food Res. Int. 2019, 123, 135–143. [Google Scholar] [CrossRef]
- Cozzolino, D. Editorial overview: Innovation in food science—food fraud. Curr. Opin. Food Sci. 2016, 10. [Google Scholar] [CrossRef]
- Cozzolino, D. Food Adulteration, in Spectroscopic Methods in Food Analysis; CRC Press: Boca Raton, FL, USA, 2017; pp. 353–362. [Google Scholar]
- Ellis, D.I.; Muhamadali, H.; Allen, D.P.; Elliott, C.T.; Goodacre, R. A flavour of omics approaches for the detection of food fraud. Curr. Opin. Food Sci. 2016, 10, 7–15. [Google Scholar] [CrossRef]
- Manning, L.; Louise, M. Food fraud: Policy and food chain. Curr. Opin. Food Sci. 2016, 10, 16–21. [Google Scholar] [CrossRef]
- El Sheikha, A.F. DNAFoil: Novel technology for the rapid detection of food adulteration. Trends Food Sci. Technol. 2019, 86, 544–552. [Google Scholar] [CrossRef]
- Ellis, D.I.; Muhamadali, H.; Haughey, S.A.; Elliott, C.T.; Goodacre, R. Point-and-shoot: Rapid quantitative detection methods for on-site food fraud analysis – moving out of the laboratory and into the food supply chain. Anal. Methods 2015, 7, 9401–9414. [Google Scholar] [CrossRef] [Green Version]
- Freitas, J.M.; Ramos, D.L.; Sousa, R.M.; Paixão, T.R.L.C.; Santana, M.H.; Munoz, R.A.A.; Richter, E.M. A portable electrochemical method for cocaine quantification and rapid screening of common adulterants in seized samples. Sens. Actuators B Chem. 2017, 243, 557–565. [Google Scholar] [CrossRef]
- Li, B.; Wang, H.; Zhao, Q.; Ouyang, J.; Wu, Y. Rapid detection of authenticity and adulteration of walnut oil by FTIR and fluorescence spectroscopy: A comparative study. Food Chem. 2015, 181, 25–30. [Google Scholar] [CrossRef]
- Limm, W.; Karunathilaka, S.R.; Yakes, B.J.; Mossoba, M.M. A portable mid-infrared spectrometer and a non-targeted chemometric approach for the rapid screening of economically motivated adulteration of milk powder. Int. Dairy J. 2018, 85, 177–183. [Google Scholar] [CrossRef]
- Lohumi, S.; Lee, S.; Lee, H.; Cho, B.-K. A review of vibrational spectroscopic techniques for the detection of food authenticity and adulteration. Trends Food Sci. Technol. 2015, 46, 85–98. [Google Scholar] [CrossRef]
- Mu, T.; Chen, S.; Zhang, Y.; Chen, H.; Guo, P.; Meng, F. Portable Detection and Quantification of Olive Oil Adulteration by 473-nm Laser-Induced Fluorescence. Food Anal. Methods 2015, 9, 275–279. [Google Scholar] [CrossRef]
- Minnens, F.; Sioen, I.; van de Brug, F. Ensuring the Integrity of the European food chain. Available online: https://publications.tno.nl/publication/34634494/OjbnKz/minnens-2018-D17.6.pdf (accessed on 31 July 2020).
- de Oliveira, L.P.; Rocha, D.P.; de Araujo, W.R.; Muñoz, R.A.A.; Paixão, T.R.L.C.; Salles, M.O. Forensics in hand: New trends in forensic devices (2013–2017). Anal. Methods 2018, 10, 5135–5163. [Google Scholar] [CrossRef]
- European Communities. Commission Regulation (EC) no. 2870/2000 of 19 December 2000, Laying Down the Community Reference Methods for the Analysis of Spirits Drinks. Off. J. Eur. Commun. Bruss. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2000:333:0020:0046:EN:PDF (accessed on 31 July 2020).
- Evans, L. New law in the EU. Eur. Food Feed Law Rev. 2016, 11, 226–228. [Google Scholar]
- Horwitz, W.; Albert, R.; Deutsch, M.J. Guidelines for Collaborative Study Procedure to Validate Characteristics of a Method of Analysis. J. Assoc. Off. Anal. Chem. 1989, 72, 694–704. [Google Scholar] [CrossRef]
- Adams, M.J. Chemometrics in Analytical Spectroscopy; Royal Society of Chemistry (RSC): London, UK, 2004. [Google Scholar]
- Geladi, P. Chemometrics in spectroscopy. Part Classical chemometrics. Spectrochim. Acta Part B At. Spectrosc. 2003, 58, 767–782. [Google Scholar] [CrossRef]
- Geladi, P.; Sethson, B.; Nyström, J.; Lillhonga, T.; Lestander, T.; Burger, J. Chemometrics in spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2004, 59, 1347–1357. [Google Scholar] [CrossRef]
- Workman, J.J.; Mobley, P.R.; Kowalski, B.R.; Bro, R. Review of Chemometrics Applied to Spectroscopy: 1985-1995, Part I. Appl. Spectrosc. Rev. 1996, 31, 73–124. [Google Scholar] [CrossRef]
- Kemsley, E.K.; Defernez, M.; Marini, F. Multivariate statistics: Considerations and confidences in food authenticity problems. Food Control. 2019, 105, 102–112. [Google Scholar] [CrossRef]
- Cozzolino, D. The use of correlation, association and regression to analyse processes and products. In Mathematical and Statistical Methods in Food Science and Technology; Wiley Blackwell: Chichester, UK, 2014; pp. 19–30. [Google Scholar]
- Truong, V.K.; Dupont, M.; Elbourne, A.; Gangadoo, S.; Pathirannahalage, P.R.; Cheeseman, S.; Chapman, J.; Cozzolino, D. From Academia to Reality Check: A Theoretical Framework on the Use of Chemometric in Food Sciences. Foods 2019, 8, 164. [Google Scholar] [CrossRef] [Green Version]
- Wold, S. Chemometrics; what do we mean with it, and what do we want from it? Chemom. Intell. Lab. Syst. 1995, 30, 109–115. [Google Scholar] [CrossRef]
- MacKenzie, W.M.; Aylott, R.I. Analytical strategies to confirm Scotch whisky authenticity. Analyst 2004, 129, 607. [Google Scholar] [CrossRef] [PubMed]
- Martins, A.R.; Talhavini, M.; Vieira, M.L.; Zacca, J.J.; Braga, J. Discrimination of whisky brands and counterfeit identification by UV–Vis spectroscopy and multivariate data analysis. Food Chem. 2017, 229, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Joshi, I.; Truong, V.K.; Crawford, R.J.; Chapman, J.; Cozzolino, D. Influence of the Scanning Temperature on the Classification of Whisky Samples Analysed by UV-VIS Spectroscopy. Appl. Sci. 2019, 9, 3254. [Google Scholar] [CrossRef] [Green Version]
- Pontes, M.; Santos, S.; Araujo, M.C.U.; Almeida, L.F.; Lima, R.; Gaião, E.; Souto, U. Classification of distilled alcoholic beverages and verification of adulteration by near infrared spectrometry. Food Res. Int. 2006, 39, 182–189. [Google Scholar] [CrossRef]
- Sujka, K.; Koczoń, P. The application of FT-IR spectroscopy in discrimination of differently originated and aged whisky. Eur. Food Res. Technol. 2018, 244, 2019–2025. [Google Scholar] [CrossRef] [Green Version]
- Large, J.; Kemsley, E.; Wellner, N.; Goodall, I.; Bagnall, A. Detecting Forged Alcohol Non-invasively Through Vibrational Spectroscopy and Machine Learning. In Proceedings of the Agreement Technologies; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2018; pp. 298–309. [Google Scholar]
- Backhaus, A.; Ashok, P.C.; Praveen, B.B.; Dholakia, K.; Seiffert, U. Classifying Scotch Whisky from near-infrared Raman spectra with a Radial Basis Function Network with Relevance Learning. In Proceedings of the ESANN 2012, Bruges, Belgium, 25–27 April 2012. [Google Scholar]
- Picque, D.; Lieben, P.; Corrieu, G.; Cantagrel, R.; Lablanquie, O.; Snakkers, G. Discrimination of Cognacs and Other Distilled Drinks by Mid-infrared Spectropscopy. J. Agric. Food Chem. 2006, 54, 5220–5226. [Google Scholar] [CrossRef]
- Chen, D.; Tan, Z.; Huang, Z.; Lv, Y.; Li, Q. Detection of lethal fake liquors using digitally labelled gas-phase Fourier transform infrared spectroscopy. Spectrosc. Lett. 2019, 52, 204–210. [Google Scholar] [CrossRef]
- Wiśniewska, P.; Boqué, R.; Borràs, E.; Busto, O.; Wardencki, W.; Namiesnik, J.; Dymerski, T. Authentication of whisky due to its botanical origin and way of production by instrumental analysis and multivariate classification methods. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 173, 849–853. [Google Scholar] [CrossRef]
- Ellis, D.I.; Muhamadali, H.; Xu, Y.; Eccles, R.; Goodall, I.; Goodacre, R. Rapid through-container detection of fake spirits and methanol quantification with handheld Raman spectroscopy. Analyst 2019, 144, 324–330. [Google Scholar] [CrossRef]
- Ellis, D.I.; Eccles, R.; Xu, Y.; Griffen, J.; Muhamadali, H.; Matousek, P.; Goodall, I.; Goodacre, R. Through-container, extremely low concentration detection of multiple chemical markers of counterfeit alcohol using a handheld SORS device. Sci. Rep. 2017, 7, 12082. [Google Scholar] [CrossRef]
Analytical Technique | Indicative Data or Analyte | Authenticity Issue/Information |
---|---|---|
Densitometry | Alcohol Strength (not suitable for spirits with significant levels of dissolved solids, e.g., sugars) | Dilution |
Distillation and Densitometry | Alcohol Strength | Dilution |
Gas Chromatography with flame ionisation detector (GC-FID) | Volatile Compounds | Category and brand discrimination |
GC-FID | Denaturants (Methanol, isopropanol, methyl ethyl ketone etc.) | Detection of non-potable alcohol |
UV-Vis Spectroscopy (UV-Vis) | Spectroscopic profile | Brand discrimination |
Ultra-High-Performance Liquid Chromatography-UV-Vis (UHPLC-UV) | Maturation Congeners | Category discrimination, lack of maturation, addition of flavouring |
pH | pH | Lack of maturation |
Atomic Absorption Spectroscopy (AAS) | Trace Metals | Brand Discrimination |
Ion Chromatography (IC) | Trace Metals | Brand Discrimination |
Inductively coupled plasma-optical emission spectrometry (ICP-OES) | Trace Metals | Brand Discrimination |
Inductively coupled plasma-Mass Spectrometry (ICP-MS) | Trace Metals | Brand Discrimination |
Ion Chromatography-Pulsed Amperometry Detection (IC-PAD) | Sugars | Addition of sweetening |
Ultra-High-Performance Liquid Chromatography-Reflective Index Detection (UHPLC-RI) | Sugars | Addition of sweetening, brand discrimination |
Gas Chromatography-Mass Spectrometry (GC-MS) | Flavourings, Denaturants, Fingerprinting | Brand discrimination, addition of flavourings, detection of non-potable alcohol |
Liquid Chromatography-Mass Spectrometry (LC-MS) | Flavourings, Denaturants, Fingerprinting | Brand discrimination, addition of flavourings, detection of non-potable alcohol |
Nuclear Magnetic Resonance spectroscopy (NMR) | Ethanol | Botanical origin of ethanol, detection of synthetic alcohol |
14C dating by Liquid Scintillation Counting or Accelerator Mass Spectrometry | Ethanol | Date of production |
Technique | Application | Number of Samples | Validation Method | Reported Classification | Ref |
---|---|---|---|---|---|
UV-Vis (PCA) | Authentication of Scotch Whiskies | Ref set 50 Test set 35 | Complimentary gas chromatographic authentication | 100% | 69 |
UV-Vis (PLS-DA) | Discrimination and identification of Scotch whiskies | Ref set 164 Test set 73 | Two independent data sets not part of the reference set | Ref 98.6% Test 93.1% | 70 |
UV-Vis (PLS-DA) | Discrimination of whiskies | 27 | N/A | N/A | 71 |
NIR (PCA/SIMCA) | Authentication and provenance of whiskies | Ref set 40 Test set 69 | Cross Validation | 100% | 72 |
FT-IR (PLS-DA) | Discrimination and authentication of whiskies | 200 | Validation set containing 25% of samples | 96.3% | 73 |
NIR (Machine Learning) | Determination of ethanol and methanol concentration | 44 | Leave one out Cross Validation | 100% | 74 |
Raman (Machine Learning) | Discrimination and identification of Scotch whiskies | 6 classes (400 samples) | 5-fold cross validation | 70–90% | 75 |
ATR-IR (PLS-DA) | Discrimination and identification of whiskies and other spirits | Ref set 85 Test set 23 | Validation set 43 | ≥96% | 76 |
FT-IR (PCA) | Authentication of whiskies and detection of methanol. | 150 | Cross Validation | ≥97% | 77 |
FT-IR/UV-Vis (PLS-DA) | Authentication and provenance of whiskies | 11 | Cross Validation | 100% | 78 |
Raman/NIR (PLS-DA) | Discrimination and authentication of whiskies | 114 | N/A | 100% | 79 |
Raman (PC-DFA) | Discrimination and authentication of whiskies | 144 | N/A | 100% | 80 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Power, A.C.; Néill, C.N.; Geoghegan, S.; Currivan, S.; Deasy, M.; Cozzolino, D. A Brief History of Whiskey Adulteration and the Role of Spectroscopy Combined with Chemometrics in the Detection of Modern Whiskey Fraud. Beverages 2020, 6, 49. https://doi.org/10.3390/beverages6030049
Power AC, Néill CN, Geoghegan S, Currivan S, Deasy M, Cozzolino D. A Brief History of Whiskey Adulteration and the Role of Spectroscopy Combined with Chemometrics in the Detection of Modern Whiskey Fraud. Beverages. 2020; 6(3):49. https://doi.org/10.3390/beverages6030049
Chicago/Turabian StylePower, Aoife C., Caoimhe Ní Néill, Sive Geoghegan, Sinéad Currivan, Mary Deasy, and Daniel Cozzolino. 2020. "A Brief History of Whiskey Adulteration and the Role of Spectroscopy Combined with Chemometrics in the Detection of Modern Whiskey Fraud" Beverages 6, no. 3: 49. https://doi.org/10.3390/beverages6030049
APA StylePower, A. C., Néill, C. N., Geoghegan, S., Currivan, S., Deasy, M., & Cozzolino, D. (2020). A Brief History of Whiskey Adulteration and the Role of Spectroscopy Combined with Chemometrics in the Detection of Modern Whiskey Fraud. Beverages, 6(3), 49. https://doi.org/10.3390/beverages6030049