Effect of Extraction Methodology on the Phytochemical Composition for Camelia sinensis “Powdered Tea Extracts” from Different Provenances
Abstract
:1. Introduction
2. Materials and Methods
2.1. Solvents, Reagents and Standards
2.2. Extraction Methodology
2.3. Total Phenolics Content (TPC)
2.4. HPLC-DAD Analysis
2.5. Statistical and Data Analysis
3. Results
4. Discussion
4.1. Total Phenolic Content (TPC) and Total Phenolics
4.2. Phytochemical Characterization: Chromatographic Fingerprinting and Marker Compound Analysis
4.2.1. Phenolic Content
4.2.2. Levels of Catechins
4.2.3. Levels of Oxyaromatic Acids and Flavonols
4.2.4. Levels of L-Theanine
4.2.5. Levels of Alkaloids
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Ethical Approval
Statements and Declarations
References
- Rakesh, C.; Sandeep, G.; Jasleen, K.; Kulbhushan, R.; Anshu, A.; Ujjwal, S. Green tea: A whole body health tonic: A review. Pharma Sci. Monit. 2017, 8, 362–372. [Google Scholar]
- Filippini, T.; Malavolti, M.; Borrelli, F.; Izzo, A.A.; Fairweather-Tait, S.J.; Horneber, M.; Vinceti, M. Green tea (Camellia sinensis) for the prevention of cancer. Cochrane Database Syst. Rev. 2020, 3, CD005004. [Google Scholar] [PubMed] [Green Version]
- Musial, C.; Kuban-Jankowska, A.; Gorska-Ponikowska, M. Beneficial Properties of Green Tea Catechins. Int. J. Mol. Sci. 2020, 21, 1744. [Google Scholar] [CrossRef] [Green Version]
- Abe, S.K.; Inoue, M. Green tea and cancer and cardiometabolic diseases: A review of the current epidemiological evidence. Eur. J. Clin. Nutr. 2021, 75, 865–876. [Google Scholar] [CrossRef]
- Miyata, Y.; Shida, Y.; Hakariya, T.; Sakai, H. Anti-Cancer Effects of Green Tea Polyphenols against Prostate Cancer. Molecules 2019, 24, 193. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.S.; Zhang, J.S. Studies on the prevention of cancer and cardio-metabolic diseases by tea: Issues on mechanisms, effective doses, and toxicities. J. Agric. Food Chem. 2019, 67, 5446–5456. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Duan, S.; Liu, F.C.; Yao, Q.K.; Tu, S.; Xu, Y.; Pan, C.W. Blood pressure is associated with tea consumption: A cross-sectional study in a rural, elderly population of Jiangsu China. J. Nutr. Health Aging 2017, 21, 1151–1159. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Yang, K.; Ding, J.; Chen, G. Effect of green tea supplementation on blood pressure: A systematic review and meta-analysis of randomized controlled trials. Medicine 2020, 99, e19047. [Google Scholar] [CrossRef]
- Abe, S.K.; Saito, E.; Sawada, N.; Tsugane, S.; Ito, H.; Lin, Y.; Tamakoshi, A.; Sado, J.; Kitamura, Y.; Sugawara, Y.; et al. Green tea consumption and mortality in Japanese men and women: A pooled analysis of eight population-based cohort studies in Japan. Eur. J. Epidemiol. 2019, 34, 917–926. [Google Scholar] [CrossRef]
- Odegaard, A.O.; Koh, W.P.; Yuan, J.M.; Pereira, M.A. Beverage habits and mortality in Chinese adults. J. Nutr. 2015, 145, 595–604. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Sui, X.; Yao, B.; Lavie, C.J.; Blair, S.N. Is There a Dose-Response Relationship between Tea Consumption and All-Cause, CVD, and Cancer Mortality? J. Am. Coll. Nutr. 2017, 36, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.; Lee, J.E.; Loftfield, E.; Shu, X.O.; Abe, S.K.; Rahman, M.S.; Saito, E.; Islam, M.R.; Tsugane, S.; Sawada, N.; et al. Coffee and tea consumption and mortality from all causes, cardiovascular disease and cancer: A pooled analysis of prospective studies from the Asia Cohort Consortium. Int. J. Epidemiol. 2021, 1, dyab161. [Google Scholar] [CrossRef]
- Zhao, L.G.; Li, H.L.; Sun, J.W.; Yang, Y.; Ma, X.; Shu, X.O.; Zheng, W.; Xiang, Y.B. Green tea consumption and cause-specific mortality: Results from two prospective cohort studies in China. J. Epidemiol. 2017, 27, 36–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Bodnar, B.H.; Meng, F.; Khan, A.I.; Wang, X.; Saribas, S.; Wang, T.; Lohani, S.C.; Wang, P.; Wei, Z.; et al. Epigallocatechin Gallate from Green Tea Effectively Blocks Infection of SARS-CoV-2 and New Variants by Inhibiting Spike Binding to ACE2 Receptor. Cell Biosci. 2021, 11, 168. [Google Scholar] [CrossRef] [PubMed]
- Barreira, S.; Moutinho, C.; Silva, A.; Neves, J.; Seo, E.; Hegazy, E.; Efferth, E.; Gomes, L.R. Phytochemical characterization and biological activities of green tea (Camellia sinensis) produced in the Azores, Portugal. Phytomed. Plus 2021, 1, 100001. [Google Scholar] [CrossRef]
- Luthria, D.L.; Mukhopadhyay, S.; Krizek, D. Content of total phenolics and phenolic acids in tomato (Lycopersicon esculentum Mill.) fruits as influenced by cultivar and solar UV radiation. J. Food Compos. Anal. 2006, 19, 771–777. [Google Scholar] [CrossRef]
- Song, R.; Kelman, D.; Johns, K.L.; Wright, A.D. Correlation between Leaf Age, Shade Levels and Characteristic Beneficial Natural Constituents of Tea (Camellia sinensis) Grown in Hawaii. J. Food Chem. 2012, 133, 707–714. [Google Scholar] [CrossRef]
- Lee, L.-S.; Kim, S.-H.; Kim, Y.-B.; Kim, Y.C. Quantitative Analysis of Major Constituents in Green Tea with Different Plucking Periods and Their Antioxidant Activity. Molecules 2014, 19, 9173–9186. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.J.; Chang, S.K. A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. J. Food Sci. 2007, 72, 159–166. [Google Scholar] [CrossRef]
- Uchenna, J.; Unachukwu, S.A.; Kavalier, A.; Lyles, J.T.; Kennelly, E.J. White and Green Teas (Camellia sinensis var. sinensis): Variation in Phenolic, Methylxanthine and Antioxidant Profiles. J. Food Sci. 2010, 75, C541–C548. [Google Scholar]
- Chen, Z.-Y.; Zhu, Q.Y.; Tsang, D.; Huang, Y. Degradation of Green Tea Catechins in Tea Drinks. J. Agric. Food Chem. 2001, 49, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Komes, D.; Horžić, D.; Belščak, A.; Ganić, K.; Vulić, K.I. Green tea preparation and its influence on the content of bioactive compounds. Int. Food Res. J. 2010, 43, 167–176. [Google Scholar] [CrossRef]
- Yashin, A.Y.; Nemzer, B.V.; Combet, E.; Yashin, Y.I. Determination of the Chemical Composition of Tea by Chromatographic Methods: A Review. J. Food Res. 2015, 4, 58–88. [Google Scholar] [CrossRef] [Green Version]
- Reygaert, W.C. Green Tea Catechins: Their Use in Treating and Preventing Infectious Diseases. Biomed Res. Int. 2018, 2018, 9105261. [Google Scholar] [CrossRef]
- Zinellu, A.; Sotgia, S.; Scanu, B.; Forteschi, M.; Giordo, R.; Cossu, A.; Posadino, A.M.; Carru, C.; Pintus, G. Human Serum Albumin Increases the Stability of Green Tea Catechins in Aqueous Physiological Conditions. PLoS ONE 2015, 10, e0134690. [Google Scholar] [CrossRef]
- Clifford, M.N.; van der Hooft, J.J.; Crozier, A. Human studies on the absorption, distribution, metabolism, and excretion of tea polyphenols. Am. J. Clin. Nutr. 2013, 98 (Suppl. 6), 1619S–1630S. [Google Scholar] [CrossRef]
- Renouf, M.; Marmet, C.; Guy, P.A.; Beaumont, M.; Lepage, M.; Williamson, G.; Dionisi, F. Dose-response plasma appearance of green tea catechins in adults. Mol. Nutr. Food Res. 2013, 57, 833–839. [Google Scholar] [CrossRef]
- Battestin, V.; Macedo, G.A.; De Freitas, V.A.P. Hydrolysis of epigallocatechin gallate using a tannase from Paecilomyces variotii. J. Food Chem. 2008, 108, 228–233. [Google Scholar] [CrossRef]
- Wang, X.; Cai, C.; Li, X. Optimal Extraction of Gallic Acid from Suaeda glauca Bge. Leaves and Enhanced Efficiency by Ionic Liquids. Int. J. Chem. Eng. 2016, 2016, 5217802. [Google Scholar] [CrossRef] [Green Version]
- Matthews, D.G.; Caruso, M.; Alcazar, M.A.; Wright, K.M.; Maier, C.S.; Stevens, J.F.; Gray, N.E.; Quinn, J.F.; Soumyanath, A. Caffeoylquinic Acids in Centella asiatica Reverse Cognitive Deficits in Male 5XFAD Alzheimer’s Disease Model Mice. Nutrients 2020, 12, 3488. [Google Scholar] [CrossRef]
- Sasaki, K.; Davies, J.; Doldan, N.G.; Arao, S.; Ferdousi, F.; Szele, F.G.; Isoda, H. 3,4,5-Tricaffeoylquinic acid induces adult neurogenesis and improves deficit of learning and memory in aging model senescence-accelerated prone 8 mice. Aging 2019, 11, 401–422. [Google Scholar] [CrossRef] [PubMed]
- Bourne, L.C.; Rice-Evans, C.A. Urinary detection of hydroxycinnamates and flavonoids in humans after highdietary intake of fruit. Free Radic. Res. 1998, 28, 429–438. [Google Scholar] [CrossRef] [PubMed]
- Spencer, J.P.; Chowrimootoo, G.; Choudhury, R.; Debnam, E.S.; Srai, S.K.; Rice-Evans, C. The small intestine can both absorb and glucuronidate luminal flavonoids. FEBS Lett. 1999, 458, 224–230. [Google Scholar] [CrossRef] [Green Version]
- Dupas, C.; Baglieri, A.M.; Ordonaud, C.; Tom, D.; Maillard, M. Chlorogenic acid is poorly absorbed, independently of the food matrix: A Caco-2 cells and rat chronic absorption study. Mol. Nutr. Food Res. 2006, 50, 1053–1060. [Google Scholar] [CrossRef]
- Clifford, M.N.; Kerimi, A.; Williamson, G. Bioavailability and metabolism of chlorogenic acids (acyl-quinic acids) in humans. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1299–1352. [Google Scholar] [CrossRef]
- Monteiro, M.; Farah, A.; Perrone, D.; Trugo, L.C.; Donangelo, C. Chlorogenic acid compounds from coffee are differentially absorbed and metabolized in humans. J. Nutr. 2007, 137, 2196–2221. [Google Scholar] [CrossRef] [Green Version]
- Farah, A.; Monteiro, M.; Donangelo, C.M.; Lafay, S. Chlorogenic acids from green coffee extract are highly bioavailable in humans. J. Nutr. 2008, 138, 2309–2315. [Google Scholar] [CrossRef] [Green Version]
- Manach, C.; Morand, C.; Crespy, V.; Demigne, C.; Texier, O.; Regerat, F.; Remesy, C. Quercetin is recovered in human plasma as conjugated derivatives which retain antioxidant properties. FEBS Lett. 1998, 426, 331–336. [Google Scholar] [CrossRef] [Green Version]
- Olthof, M.R.; Hollman, P.C.; Vree, T.B.; Katan, M.B. Bioavailabilities of Quercetin-3-Glucoside and Quercetin-4′-Glucoside Do Not Differ in Humans. J. Nutr. 2000, 130, 1200–1203. [Google Scholar] [CrossRef]
- Geleijnse, J.M.; Launer, L.J.; Van der Kuip, D.A.M.; Hofman, A.; Witteman, J.C.M. Inverse association of tea and flavonoid intakes with incident myocardial infarction: The Rotterdam Study. Am. J. Clin. Nutr. 2002, 75, 880–886. [Google Scholar] [CrossRef]
- Kampkötter, A.; Gombitang, N.; Kwonkam, C.; Zurawski, R.F.; Timpel, C.; Chovolou, Y.; Wätjen, W.; Kahl, R. Effects of the flavonoids kaempferol and fisetin on thermotolerance, oxidative stress and FoxO transcription factor DAF-16 in the model organism Caenorhabditis elegans. Arch. Toxicol. 2007, 81, 849–858. [Google Scholar] [CrossRef] [PubMed]
- Dabeek, W.M.; Marra, M.V. Dietary Quercetin and Kaempferol: Bioavailability and Potential Cardiovascular-Related Bioactivity in Humans. Nutrients 2019, 11, 2288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Vries, J.H.; Hollman, P.C.; Meyboom, S.; Buysman, M.N.; Zock, P.L.; van Staveren, W.A.; Katan, M.B. Plasma concentrations and urinary excretion of the antioxidant flavonols quercetin and kaempferol as biomarkers for dietary intake. Am. J. Clin. Nutr. 1998, 68, 60–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DuPont, M.S.; Day, A.J.; Bennett, R.N.; Mellon, F.A.; Kroon, P.A. Absorption of kaempferol from endive, a source of kaempferol-3-glucuronide, in humans. Eur. J. Clin. Nutr. 2004, 58, 947–954. [Google Scholar] [CrossRef] [Green Version]
- Kelly, S.P.; Gomez-Ramirez, M.; Montesi, J.L.; Foxe, J.J. L-theanine and caffeine in combination affect human cognition as evidenced by oscillatory alpha-band activity and attention task performance. J. Nutr. 2008, 138, 1572S–1577S. [Google Scholar] [CrossRef]
- Calgarotto, A.K.; Maso, V.; Junior, G.C.F.; Nowill, A.E.; Filho, P.L.; Vassallo, J.; Saad, S.T.O. Antitumor activities of Quercetin and Green Tea in xenografts of human leukemia HL60 cells. Sci. Rep. 2018, 8, 3459. [Google Scholar] [CrossRef] [Green Version]
- Scheid, L.; Ellinger, S.; Alteheld, B.; Herholz, H.; Ellinger, J.; Henn, T.; Helfrich, H.P.; Stehle, P. Kinetics of L-Theanine Uptake and Metabolism in Healthy Participants Are Comparable after Ingestion of L-Theanine via Capsules and Green Tea. J. Nutr. 2012, 142, 2091–2096. [Google Scholar] [CrossRef] [Green Version]
Tea Sample | TPC * (mg GAE/g Extract) | Ref. |
---|---|---|
C1 | 92.883 ± 3.196 d | This work |
C2 | 65.007 ± 1.399 f | This work |
C3 | 56.017 ± 1.125 g,h | This work |
A1 | 151.843 ± 6.857 a | [15] |
A2 | 111.793 ± 1.575 b | [15] |
A3 | 85.179 ± 1.776 d,e | [15] |
J1 | 79.147 ± 1.976 e | This work |
J2 | 62.133 ± 2.052 f,g | This work |
J3 | 52.087 ± 1.126 h | This work |
SL1 | 102.927 ± 4.636 c | This work |
SL2 | 80.683 ± 1.168 e | This work |
SL3 | 63.384 ± 1.125 f,g | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barreira, S.; Silva, A.M.N.; Moutinho, C.; Seo, E.-J.; Hegazy, M.-E.F.; Efferth, T.; Gomes, L.R. Effect of Extraction Methodology on the Phytochemical Composition for Camelia sinensis “Powdered Tea Extracts” from Different Provenances. Beverages 2022, 8, 13. https://doi.org/10.3390/beverages8010013
Barreira S, Silva AMN, Moutinho C, Seo E-J, Hegazy M-EF, Efferth T, Gomes LR. Effect of Extraction Methodology on the Phytochemical Composition for Camelia sinensis “Powdered Tea Extracts” from Different Provenances. Beverages. 2022; 8(1):13. https://doi.org/10.3390/beverages8010013
Chicago/Turabian StyleBarreira, Sérgio, André M. N. Silva, Carla Moutinho, Ean-Jeong Seo, Mohamed-Elamir F. Hegazy, Thomas Efferth, and Lígia Rebelo Gomes. 2022. "Effect of Extraction Methodology on the Phytochemical Composition for Camelia sinensis “Powdered Tea Extracts” from Different Provenances" Beverages 8, no. 1: 13. https://doi.org/10.3390/beverages8010013
APA StyleBarreira, S., Silva, A. M. N., Moutinho, C., Seo, E. -J., Hegazy, M. -E. F., Efferth, T., & Gomes, L. R. (2022). Effect of Extraction Methodology on the Phytochemical Composition for Camelia sinensis “Powdered Tea Extracts” from Different Provenances. Beverages, 8(1), 13. https://doi.org/10.3390/beverages8010013