Effects of Pulsed Electric Fields on the Physicochemical and Sensory Properties of Thompson Seedless Grapes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Grape Selection and Preparation
2.2. PEF Equipment and Implementation
2.3. Grape Processing and Measurements
2.3.1. Pressing
2.3.2. Physicochemical Measurements
2.4. Aroma Profile Analyses of Grape Juices from Control and PEF-Treated Grapes
2.4.1. Sensory Analysis of Grape Juice
2.4.2. Instrument-Based Analysis of Grape Juice with SPME/GC–MS
2.5. Statistical Analysis
3. Results
3.1. Physicochemical Measurements
3.1.1. Color Measurements of Whole Grapes Relative to PEF Intensity and Time after PEF Treatment
3.1.2. Texture Measurements
3.1.3. Measurements of pH and °Bx
3.1.4. Measurements of Yield, Reducing Sugars, and Total Polyphenols
3.2. Sensory and Instrumental Analyses of Grape Juices
3.2.1. Sensory Analysis of Grape Juice
3.2.2. Instrumental Analysis of Grape Juice with SPME/GC–MS
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Electric Field Strength E (kV/cm) | Applied Energy (kJ) | Voltage (kV) | Pulse Number | Specific Energy Input (kJ/kg) | Measured Temperature Increase Due to PEF Treatment ∆T (°C) |
---|---|---|---|---|---|
2 | 1.250 | 10.0 | 50 | 2.5 | 0.0 |
3 | 2.812 | 15.0 | 50 | 5.624 | 0.0 |
4.5 | 6.328 | 22.5 | 50 | 12.656 | 1.9 |
6 | 11.250 | 30.0 | 50 | 22.5 | 4.0 |
Mean Values of L*, a*, and b* for Treatment Strength and Replica | Summarized Mean Values of L*, a*, and b* for Each Treatment Strength and Replicas 1–3 | |||||
---|---|---|---|---|---|---|
Trial | L* | a* | b* | L* | a* | b* |
0 kV/cm (Replicate 1) | 62.65 | 1.11 | 17.04 | 62.74 | 1.07 | 16.48 |
0 kV/cm (Replicate 2) | 62.44 | 1.15 | 17.46 | |||
0 kV/cm (Replicate 3) | 63.13 | 0.96 | 14.95 | |||
2 kV/cm (Replicate 1) | 63.98 | 0.86 | 16.36 | 65.10 | 0.64 | 15.20 |
2 kV/cm (Replicate 2) | 67.79 | 0.26 | 12.37 | |||
2 kV/cm (Replicate 3) | 63.54 | 0.81 | 16.88 | |||
3 kV/cm (Replicate 1) | 63.60 | 0.88 | 16.53 | 63.80 | 0.88 | 17.25 |
3 kV/cm (Replicate 2) | 64.66 | 0.23 | 13.76 | |||
3 kV/cm (Replicate 3) | 63.15 | 1.53 | 21.45 | |||
4.5 kV/cm (Replicate 1) | 63.15 | 1.16 | 18.84 | 62.48 | 1.56 | 21.38 |
4.5 kV/cm (Replicate 2) | 62.35 | 1.70 | 21.20 | |||
4.5 kV/cm (Replicate 3) | 61.95 | 1.81 | 24.11 | |||
6 kV/cm (Replicate 1) | 63.51 | 1.05 | 18.61 | 63.83 | 0.84 | 16.15 |
6 kV/cm (Replicate 2) | 64.49 | 0.60 | 13.13 | |||
6 kV/cm (Replicate 3) | 63.50 | 0.88 | 16.71 |
References
- Toepfl, S.; Heinz, V.; Knorr, D. High intensity pulsed electric fields applied for food preservation. Chem. Eng. Process. 2007, 46, 537–546. [Google Scholar] [CrossRef]
- López, N.; Puértolas, E.; Condón, S.; Álvarez, I.; Raso, J. Application of pulsed electric fields for improving the maceration process during vinification of red wine: Influence of grape variety. Eur. Food Res. Technol. 2008, 227, 1099–1107. [Google Scholar] [CrossRef]
- Zimmermann, U.; Pilwart, G.; Riemann, F. Dielectric Breakdown of Cell Membranes. Biophys. J. 1974, 14, 881–899. [Google Scholar] [CrossRef]
- Rivas, A.; Rodrigo, D.; Martínez, A.; Barbosa-Cánovas, G.V.; Rodrigo, M. Effect of PEF and heat pasteurization on the physical-chemical characteristics of blended orange and carrot juice. Food Sci. Technol. 2006, 39, 1163–1170. [Google Scholar] [CrossRef]
- El Kantar, S.; Boussetta, N.; Lebovka, N.; Foucart, R.; Rajha, H.N.; Maroun, R.G.; Louka, N.; Vorobiev, E. Pulsed electric field treatment of citrus fruits: Improvement of juice and polyphenols extraction. Innov. Food Sci. Emerg. Technol. 2018, 46, 153–161. [Google Scholar] [CrossRef]
- Schilling, S.; Alber, T.; Toepfl, S.; Neidhardt, S.; Knorr, D.; Schieber, A.; Carle, R. Effects of pulsed electric field treatment of apple mash on juice yield and quality attributes of apple juices. Innov. Food Sci. Emerg. Technol. 2007, 8, 127–134. [Google Scholar] [CrossRef]
- Sevenich, R.; Gratz, M.; Hradecka, B.; Fauster, T.; Teufl, T.; Schottroff, F.; Chytilova, L.S.; Hurkova, K.; Tomaniova, M.; Hajslova, J.; et al. Differentiation of sea buckthorn syrups processed by high pressure, pulsed electric fields, ohmic heating, and thermal pasteurization based on quality evaluation and chemical fingerprint. Front. Nutr. 2023, 10, 912824. [Google Scholar] [CrossRef]
- Koch, Y.; Witt, J.; Lammerskitten, A.; Siemer, C.; Toepfl, S. The influence of Pulsed Electric Fields (PEF) on the peeling ability of different fruits and vegetables. J. Food Eng. 2022, 322, 110938. [Google Scholar] [CrossRef]
- Leong, S.Y.; Roberts, R.; Hu, Z.; Bremer, P.; Silcock, P.; Toepfl, S.; Oey, I. Texture and in vitro starch digestion kinetics of French Fries produced from potatoes (Solanum tuberosum L.) pre-treated with Pulsed Electric Fields. Appl. Food Res. 2022, 2, 100194. [Google Scholar] [CrossRef]
- Jin, T.Z.; Yu, Y.; Gurtler, J.B. Effects of pulsed electric field processing on microbial survival, quality change and nutritional characteristics of blueberries. Food Sci. Technol. 2017, 77, 517–524. [Google Scholar] [CrossRef]
- Donsi, F.; Ferrari, G.; Fruilo, M.; Pataro, G. Pulsed Electric Field-Assisted Vinification of Aglianico and Piedirosso Grapes. J. Agric. Food Chem. 2010, 58, 11606–11615. [Google Scholar] [CrossRef] [PubMed]
- Arcena, M.R.; Leong, S.Y.; Then, S.; Hochberg, M.; Sack, M.; Mueller, G.; Sigler, J.; Kebede, B.; Silcock, P.; Oey, I. The effect of pulsed electric fields pretreatment on the volatile and phenolic profiles of Merlot grape musts at different winemaking stages and the sensory characteristics of the finished wines. Innov. Food Sci. Emerg. Technol. 2021, 70, 102698. [Google Scholar] [CrossRef]
- Saldaña, G.; Cebrián, G.; Abenoza, M.; Sánchez-Gimeno, C.; Álvarez, I.; Raso, J. Assessing the efficacy of PEF treatments for improving polyphenol extraction during red wine vinifications. Innov. Food Sci. Emerg. Technol. 2017, 39, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Fauster, T.; Philipp, C.; Hanz, K.; Scheibelberger, R.; Teufl, T.; Nauer, S.; Scheibelhofer, H.; Jaeger, H. Impact of a combined pulsed electric field (PEF) and enzymatic mash treatment on yield, fermentation behaviour and composition of white wine. Eur. Food Res. Technol. 2020, 246, 609–620. [Google Scholar] [CrossRef]
- Praporscic, I.; Lebovka, N.; Vorobiev, E.; Mietton-Peuchot, M. Pulsed electric field enhanced expression and juice quality of white grapes. Sep. Purif. Technol. 2007, 52, 520–526. [Google Scholar] [CrossRef]
- Comuzzo, P.; Marconi, M.; Zanella, G.; Querzè, M. Pulsed electric field processing of white grapes (cv. Garganega): Effects on wine composition and volatile compounds. Food Chem. 2018, 264, 16–23. [Google Scholar] [CrossRef]
- Garde-Cerdán, T.; González-Arenzana, L.; López, N.; López, R.; Santamaría, P.; López-Alfaro, I. Effect of different pulsed electric field treatments on the volatile composition of Graciano, Tempranillo and Grenache grape varieties. Innov. Food Sci. Emerg. Technol. 2013, 20, 91–99. [Google Scholar] [CrossRef]
- Puértolas, E.; Saldaña, G.; Condón, S.; Álvarez, I.; Raso, J. A Comparison of the Effect of Macerating Enzymes and Pulsed Electric Fields Technology on Phenolic Content and Color of Red Wine. J. Food Sci. 2009, 74, C647–C651. [Google Scholar] [CrossRef]
- Wine Consumption Worldwide from 2000 to 2022 (in Million Hectoliters) in Statista. Available online: https://www.statista.com/statistics/232937/volume-of-global-wine-consumption/ (accessed on 1 September 2023).
- Genova, G. Qualitative Evaluation of Aroma-Active Compounds in Grape and Grape-Derived Products by Means of Headspace SPME-GC/MS Analysis. Perkin Elmer 2012, 1–7. [Google Scholar]
- Paranjpe, S.S.; Ferruzzi, M.; Morgan, M.T. Effect of a flash vacuum expansion process on grape juice yield and quality. Food Sci. Technol. 2012, 48, 147–155. [Google Scholar] [CrossRef]
- Christensen, L.P. Raisin Grape Varieties. In Raisin Production Manual, 1st ed.; Christensen, L.P., Ed.; UCANR Publications: Oakland, CA, USA, 2000; p. 39. [Google Scholar]
- California Grape Acreage Report, 2021 Summary. Available online: https://www.nass.usda.gov/Statistics_by_State/California/Publications/Specialty_and_Other_Releases/Grapes/Acreage/2022/grpacSUMMARY2021Crop.pdf (accessed on 12 September 2023).
- Vitis International Variety Catalogue—Varieties Registered in Europe. Available online: https://www.vivc.de/index.php?r=www-europ-catalogue%2Fresult&WwwEuropCatalogueSearch%5Bvivc_var_id%5D=12051&sort=-eu_member# (accessed on 12 September 2023).
- Gierling, R. Farbmanagement, 3rd ed.; mitp-Verlag: Heidelberg, Germany, 2006. [Google Scholar]
- Miller, G.L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Meyners, M.; Castura, J.C. Randomization of CATA attributes: Should attribute lists be allocated to assessors or to samples. Food Qual. Prefer. 2016, 48, 210–215. [Google Scholar] [CrossRef]
- Valentin, D.; Chollet, S.; Lelevre, M.; Abdi, H. Quick and dirty but still pretty good: A review of new descriptive methods in food science. Int. J. Food Sci. Technol. 2012, 47, 1563–1578. [Google Scholar] [CrossRef]
- Ares, G.; Bruzzone, F.; Vidal, L.; Cadena, R.S.; Giménez, A.; Pineau, B.; Hunter, D.C.; Paisley, A.G.; Jaeger, S.R. Evaluation of a rating-based variant of check-all-that-apply questions: Rate-All-That-Apply (RATA). Food Qual. Prefer. 2014, 36, 87–95. [Google Scholar] [CrossRef]
- Varela, P.; Ares, G. Sensory profiling, the blurred line between sensory and consumer science. A review of novel methods for product characterization. Food Res. Int. 2012, 48, 893–908. [Google Scholar] [CrossRef]
- DIN 10962:1997-10; Deutsches Institut für Normung e. V., Areas for Sensory Analysis- Specifications of Testrooms. Beuth Verlag GmbH: Berlin, Germany,, 1997.
- National Library of Medicine—Ethanol. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Ethanol (accessed on 8 May 2023).
- National Library of Medicine—Hexanal. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Hexanal (accessed on 9 May 2023).
- National Library of Medicine—Isobutanol. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Isobutanol (accessed on 26 July 2023).
- National Library of Medicine—2-Hexenal. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/2-Hexenal (accessed on 8 May 2023).
- National Library of Medicine—1-Hexanol. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/1-Hexanol (accessed on 8 May 2023).
- National Library of Medicine—2-Hexen-1-ol. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/2-Hexen-1-OL (accessed on 8 May 2023).
- National Library of Medicine—Linalool. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Linalool (accessed on 9 May 2023).
- National Library of Medicine—Geraniol. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Geraniol (accessed on 9 May 2023).
- Zhang, Y.; Gao, B.; Zhang, M.; Shi, J.; Xu, Y. Pulsed electric field processing effects on physicochemical properties, flavor compounds and microorganisms of Longan Juice. J. Food Process. Preserv. 2010, 34, 1121–1138. [Google Scholar] [CrossRef]
- Aadil, R.M.; Zeng, X.-A.; Sun, D.-W.; Wang, M.-S.; Liu, Z.-W.; Zhang, Z.-H. Combined effects of sonication and pulsed electric field on selected quality parameters of grapefruit juice. Food Sci. Technol. 2015, 62, 890–893. [Google Scholar] [CrossRef]
- Le Moigne, M.; Maury, C.; Bertrand, D.; Jourjon, F. Sensory and instrumental characterisation of Cabernet Franc grapes according to ripening stages and growing location. Food Qual. Prefer. 2008, 19, 220–231. [Google Scholar] [CrossRef]
- Grimi, N.; Mamouni, F.; Lebovka, N.; Vorobiev, E.; Vaxelaire, J. Impact of apple processing modes on extracted juice quality: Pressing assisted by pulsed electric fields. J. Food Eng. 2011, 103, 52–61. [Google Scholar] [CrossRef]
- Fidelibus, M.W. Grapevine Variety and Number of Canes Affect Dry-on-Vine (DOV) Raisin Production on an Overhead Arbor Trellis. Horticulturae 2021, 7, 356. [Google Scholar] [CrossRef]
- Patidar, A.; Vishwakarma, S.; Meena, D. Traditional and recent development of pretreatment and drying process of grapes during raisin production: A review of novel pretreatment and drying methods of grapes. Food Front. 2021, 2, 46–61. [Google Scholar] [CrossRef]
- Min, S.; Zhang, Q.H. Effects of Commercial-scale Pulsed Electric Field Processing on Flavor and Color of Tomato Juice. J. Food Sci. 2003, 68, 1600–1606. [Google Scholar] [CrossRef]
- Bobinaitė, R.; Pataro, G.; Lamanauskas, N.; Šatkauskas, S.; Viškelis, P.; Ferrari, G. Application of pulsed electric field in the production of juice and extraction of bioactive compounds from blueberry fruits and their by-products. J. Food Sci. Technol. 2015, 52, 5898–5905. [Google Scholar] [CrossRef]
- Jaeger, H.; Schulz, M.; Lu, P.; Knorr, D. Adjustment of milling, mash electroporation and pressing for the development of a PEF assisted juice production in industrial scale. Innov. Food Sci. Emerg. Technol. 2012, 14, 46–60. [Google Scholar] [CrossRef]
- Siddeeg, A.; Zeng, X.A.; Rahaman, A.; Manzoor, M.F.; Ahmed, Z.; Ammar, A.-F. Quality characteristics of the processed dates vinegar under influence of ultrasound and pulsed electric field treatments. J. Food Sci. Technol. 2019, 56, 4380–4389. [Google Scholar] [CrossRef]
- Sánchez-Palomo, E.; Consuelo Díaz-Maroto, M.; Soledad Pérez-Coello, M. Rapid determination of volatile compounds in grapes by HS-SPME coupled with GC–MS. Talanta 2005, 66, 1152–1157. [Google Scholar] [CrossRef]
- Vallverdú-Queralt, A.; Oms-Oliu, G.; Odriozola-Serrano, I.; Lamuela-Raventos, R.M.; Martín-Belloso, O.; Elez-Martínez, P. Effects of pulsed electric fields on the bioactive compound content and antioxidant capacity of tomato fruit. J. Agric. Food Chem. 2012, 60, 3126–3134. [Google Scholar] [CrossRef] [PubMed]
Fruity Attributes | Desirable Attributes | Non-Desirable Attributes |
---|---|---|
Pear | Fruity | Woody |
Apple | Sweetish | Earthy |
Peach | Sour | Musty |
Gooseberry | Aromatic | Oxidized (fermented) |
Lemon | Tart | Chemical |
Lime | Fresh | Yeasty |
Grapefruit | Flowery | |
Herbaceous | ||
Neutral | ||
Rounded |
Electric Field Strength E [kV/cm] | ΔE of Whole Grapes between 5 and 60 min | ΔE of Whole Grapes between Different Field Strengths and Control Sample (0 kV/cm) after 60 min | ΔE of the Extracted Juice between Different Field Strengths and Control Sample (0 kV/cm) |
---|---|---|---|
0 | 0.55 ± 0.12 | - | - |
2 | 2.64 ± 0.28 | 3.21 ± 0.67 | 2.92 ± 3.16 |
3 | 2.66 ± 0.54 | 3.74 ± 0.53 | 3.11 ± 2.08 |
4.5 | 2.90 ± 0.79 | 3.88 ± 0.79 | 4.96 ± 2.66 |
6 | 2.73 ± 0.62 | 3.52 ± 0.62 | 2.30 ± 1.50 |
Electric Field Strength (kV/cm) | Crunchiness (N/mm2) | Firmness (N/mm) |
---|---|---|
0 | 0.070 ± 0.011 a | 1.319 ± 0.259 a |
2 | 0.047 ± 0.005 bc | 0.723 ± 0.134 b |
3 | 0.035 ± 0.007 c | 0.799 ± 0.087 b |
4.5 | 0.050 ± 0.012 bc | 0.839 ± 0.203 b |
6 | 0.052 ± 0.009 b | 0.982 ± 0.119 b |
Electric Field Strength E (kV/cm) | pH | °Bx | Yield (mL) | Red. Sugar (g/L) | TPI (mg/L) |
---|---|---|---|---|---|
0 | 3.44 ± 0.55 ab | 17.90 ± 0.46 b | 164.9 ± 6.6 a | 198.86 ± 21.12 b | 306.20 ± 116.89 b |
2 | 3.60 ± 0.10 a | 20.47 ± 2.79 a | 149.5 ± 7.0 a | 206.00 ± 9.45 ab | 281.47 ± 62.02 b |
3 | 3.39 ± 0.25 b | 17.89 ± 2.37 b | 160.7 ± 9.5 a | 213.98 ± 15.84 ab | 296.83 ± 55.86 b |
4.5 | 3.50 ± 0.16 ab | 20.68 ± 1.13 a | 150.5 ± 6.1 a | 220.97 ± 11.96 a | 398.90 ± 48.47 a |
6 | 3.42 ± 0.17 ab | 18.49 ± 2.11 b | 158.7 ± 5.1 a | 210.55 ± 4.57 ab | 367.91 ± 51.04 a |
Peak No. | RT (min) | Hit Name | Aroma Profile–Odor 1 |
---|---|---|---|
1 | 2.836 | Ethanol | Weak; ethereal; vinous |
2 | 6.277 | Hexanal | Fruity; strong, green grass; sharp, aldehyde |
3 | 7.106 | Isobutanol | Sweet; musty; wine-like; disagreeable |
4 | 12.138 | (E)-2-hexenal | Strong, fruity, green, vegetable-like |
5 | 18.048 | 1-hexanol | Fruity; freshly mown grass; sweet alcohol |
6 | 20.514 | (E)-2-hexen-1-ol | Strong, fruity-green aroma |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scharf, S.; Sandmann, M. Effects of Pulsed Electric Fields on the Physicochemical and Sensory Properties of Thompson Seedless Grapes. Beverages 2023, 9, 82. https://doi.org/10.3390/beverages9040082
Scharf S, Sandmann M. Effects of Pulsed Electric Fields on the Physicochemical and Sensory Properties of Thompson Seedless Grapes. Beverages. 2023; 9(4):82. https://doi.org/10.3390/beverages9040082
Chicago/Turabian StyleScharf, Sabrina, and Michael Sandmann. 2023. "Effects of Pulsed Electric Fields on the Physicochemical and Sensory Properties of Thompson Seedless Grapes" Beverages 9, no. 4: 82. https://doi.org/10.3390/beverages9040082
APA StyleScharf, S., & Sandmann, M. (2023). Effects of Pulsed Electric Fields on the Physicochemical and Sensory Properties of Thompson Seedless Grapes. Beverages, 9(4), 82. https://doi.org/10.3390/beverages9040082