Myocardial Functional Imaging in Pediatric Nuclear Cardiology
Abstract
:1. Introduction
2. Myocardial Perfusion Imaging (MPI) in Pediatric Nuclear Cardiology
2.1. Indications
- -
- Kawasaki Disease (KD): MPI with Single Photon Emission Computed Tomography (SPECT) is used to detect myocardial ischemia and/or myocardial infarction in pediatric patients with KD. In fact, coronary arteries involvement frequently occurs without prompt treatment, with the development of coronary aneurysms in up to 25% of untreated children. Spontaneous regression of coronary abnormalities is observed in approximately two-thirds of patients during the first year after the acute illness, but long-term coronary stenosis may develop in some patients, even after aneurysm regression. Nuclear imaging is used particularly in patient follow-up. For example, [18F]Fluorodeoxyglucose (FDG) Positron Emission Tomography (PET) can also be used in these children for the assessment of myocardium viability [3,6,7,8].
- -
- Congenital anomalies of the coronary arteries: These findings are sometimes reported in echocardiographic reports. For example, anomalous aortic origin of a coronary artery from the opposite sinus of Valsalva (AAOCA), associated with intramural or interarterial course, is increasingly diagnosed incidentally in children, but the related clinical risks are not well defined [3,6,9,10]. A fundamental exam in the assessment of these patients includes the evaluation of regional myocardial perfusion at rest and during physical or pharmacological stress, such as SPECT. The use of MPI has been reported in other rare congenital coronary diseases such as anomalous origin of the left coronary artery from the pulmonary artery (ALCAPA), Williams syndrome with coronary involvement, myocardial bridging, and complex CHD such as pulmonary atresia-intact ventricular septum with right ventricular coronary sinusoids or tetralogy of Fallot with coronary anomalies [3,10].
- -
- Cardiomyopathies: For the assessment of the extent of myocardial damage in pediatric patients with cardiomyopathies, myocardial perfusion SPECT offers important information regarding cardiac pump function and myocardial function [6,14]. In particular, in hypertrophic cardiomyopathy (HCM), myocardial ischemia has been suggested to contribute to the pathophysiology of the disease and appears to be related to decreased subendocardial perfusion in the hypertrophied segments, compression of intramural small vessels, and myocardial bridging. MPI can contribute as a reliable noninvasive method for the detection of myocardial ischemia, adding to risk stratification and treatment [14,15].
- -
- Heart transplantation: One of the long-term complications of heart transplantation is the development of cardiac allograft vasculopathy. In children, this complication is a major cause of death and retransplantation. The disease involves both distal and proximal coronary arteries and is associated with functional anomalies such as systolic dysfunction and increased filling pressures. Alongside cardiac catheterization, which is the recommended method, but is invasive and uses radiation, nuclear imaging can be used in follow-up [3,16,17].
2.2. SPECT Radiopharmaceuticals
2.3. Patient Preparation
2.4. Stress Testing: Special Focus on Adenosine and Regadenoson
- Physical stressor (preferably, for example, cycle ergometer or treadmill);
- Pharmacological stressor (typically dipyridamole, adenosine, or dobutamine).
2.5. SPECT and Technical Considerations on Image Acquisition and Processing
2.6. PET Radiopharmaceuticals
3. Other Applications in Pediatric Nuclear Cardiology
3.1. Myocardial Viability
3.2. Infections and Inflammations
3.3. Cardiac Sympathetic Innervation
- With KD, probably due to coronary arteries stenosis [68].
3.4. Lung Scintigraphy
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shanmuga Sundaram, P.; Padma, S. Role of myocardial perfusion single photon emission computed tomography in pediatric cardiology practice. Ann. Pediatr. Cardiol. 2009, 2, 127–139. [Google Scholar] [CrossRef] [PubMed]
- Bernsen, M.L.E.; Koppes, J.C.C.; Straver, B.; Verberne, H.J. Left ventricular ischemia after arterial switch procedure: Role of myocardial perfusion scintigraphy and cardiac CT. J. Nucl. Cardiol. 2019, 27, 651–658. [Google Scholar] [CrossRef] [PubMed]
- Venet, M.; Friedberg, M.K.; Mertens, L.; Baranger, J.; Jalal, Z.; Tlili, G.; Villemain, O. Nuclear Imaging in Pediatric Cardiology: Principles and Applications. Front. Pediatr. 2022, 10, 909994. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Sharma, A.; Patel, C.; Ramakrsihnan, S.; Das, S.; Sangdup, T.; Kumar, R.; Bisoi, A.K. Feasibility and Utility of Adenosine Stress Echocardiography in Children Following Post-Arterial Switch Operation: A Comparison with Technetium 99m-Sestamibi Myocardial Perfusion SPECT (MPS). Pediatr. Cardiol. 2021, 42, 891–897. [Google Scholar] [CrossRef]
- Milanesi, O.; Stellin, G.; Zucchetta, P. Nuclear Medicine in Pediatric Cardiology. Semin. Nucl. Med. 2017, 47, 158–169. [Google Scholar] [CrossRef]
- Moscatelli, S.; Bianco, F.; Cimini, A.; Panebianco, M.; Leo, I.; Bucciarelli-Ducci, C.; Perrone, M.A. The Use of Stress Cardiovascular Imaging in Pediatric Population. Children 2023, 10, 218. [Google Scholar] [CrossRef]
- Mostafa, M.S.; Sayed, A.O.; Al Said, Y.M. Assessment of coronary ischaemia by myocardial perfusion dipyridamole stress technetium-99 m tetrofosmin, single-photon emission computed tomography, and coronary angiography in children with Kawasaki disease: Pre- and post-coronary bypass grafting. Cardiol. Young 2015, 25, 927–934. [Google Scholar] [CrossRef]
- Abe, T.; Tsuda, E.; Sugiyama, H.; Kiso, K.; Yamada, O. Risk factors of non-sustained ventricular tachycardia by technetium-perfusion imaging in patients with coronary artery lesions caused by Kawasaki disease. J. Cardiol. 2019, 73, 358–362. [Google Scholar] [CrossRef]
- Gräni, C.; Benz, D.C.; Schmied, C.; Vontobel, J.; Mikulicic, F.; Possner, M.; Clerc, O.F.; Stehli, J.; Fuchs, T.A.; Pazhenkottil, A.P.; et al. Hybrid CCTA/SPECT myocardial perfusion imaging findings in patients with anomalous origin of coronary arteries from the opposite sinus and suspected concomitant coronary artery disease. J. Nucl. Cardiol. 2015, 24, 226–234. [Google Scholar] [CrossRef]
- Medepalli, L.C.; Medepalli, V.M.; Scully, T.A. The complementary nature of multimodal imaging in the management of an anomalous aortic origin of the right coronary artery from the left coronary cusp. J. Nucl. Cardiol. 2020, 28, 2399–2402. [Google Scholar] [CrossRef]
- Yang, M.-F.; Xie, B.-Q.; Lv, X.-D.; Hua, Z.-D.; Duan, F.-J.; Yan, C.-W.; Xu, G.M.; Song, L.-P.; Tian, Y.-Q.; Li, S.-J. The Role of Myocardial Viability Assessed by Perfusion/F-18 FDG Imaging in Children with Anomalous Origin of the Left Coronary Artery From the Pulmonary Artery. Clin. Nucl. Med. 2012, 37, 44–48. [Google Scholar] [CrossRef] [PubMed]
- De Jin, C.; Kim, M.H.; Jin, X.; Park, K. Hybrid cardiac imaging-guided optimal management of right anomalous coronary artery origin from the opposite sinus with interarterial course (R-ACAOS): A case report. Eur. Heart J.-Case Rep. 2021, 5, ytab210. [Google Scholar] [CrossRef] [PubMed]
- Possner, M.; Buechel, R.R.; Vontobel, J.; Mikulicic, F.; Gräni, C.; Benz, D.C.; Clerc, O.F.; Fuchs, T.A.; Tobler, D.; Stambach, D.; et al. Myocardial blood flow and cardiac sympathetic innervation in young adults late after arterial switch operation for transposition of the great arteries. Int. J. Cardiol. 2019, 299, 110–115. [Google Scholar] [CrossRef]
- Moscatelli, S.; Leo, I.; Bianco, F.; Borrelli, N.; Beltrami, M.; Garofalo, M.; Milano, E.G.; Bisaccia, G.; Iellamo, F.; Bassareo, P.P.; et al. The Role of Multimodality Imaging in Pediatric Cardiomyopathies. J. Clin. Med. 2023, 12, 4866. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.-M. Cardiomyopathy in the pediatric patients. Pediatr. Neonatol. 2018, 59, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Robinson, B.; Goudie, B.; Remmert, J.; Gidding, S.S. Usefulness of Myocardial Perfusion Imaging with Exercise Testing in Children. Pediatr. Cardiol. 2012, 33, 1061–1068. [Google Scholar] [CrossRef] [PubMed]
- Daly, K.P.; Dearling, J.L.J.; Seto, T.; Dunning, P.; Fahey, F.S.; Packard, A.B.; Briscoe, D.M. Use of [18F]FDG Positron Emission Tomography to Monitor the Development of Cardiac Allograft Rejection. Transplantation 2015, 99, e132–e139. [Google Scholar] [CrossRef]
- Verberne, H.J.; Acampa, W.; Anagnostopoulos, C.; Ballinger, J.; Bengel, F.; De Bondt, P.; Buechel, R.R.; Cuocolo, A.; van Eck-Smit, B.L.F.; Flotats, A.; et al. EANM procedural guidelines for radionuclide myocardial perfusion imaging with SPECT and SPECT/CT: 2015 revision. Eur. J. Nucl. Med. 2015, 42, 1929–1940. [Google Scholar] [CrossRef]
- Alexiou, G.A.; Xourgia, X.; Vartholomato, E.; Tsiouris, S.; Kalef-Ezra, J.A.; Fotopoulos, A.D.; Kyritsis, A.P. Comparison of 99mTc-Tetrofosmin and 99mTc-Sestamibi Uptake in Glioma Cell Lines: The Role of P-Glycoprotein Expression. Int. J. Mol. Imaging 2014, 2014, 471032. [Google Scholar] [CrossRef]
- Sogbein, O.O.; Pelletier-Galarneau, M.; Schindler, T.H.; Wei, L.; Wells, R.G.; Ruddy, T.D. New SPECT and PET Radiopharmaceuticals for Imaging Cardiovascular Disease. BioMed Res. Int. 2014, 2014, 942960. [Google Scholar] [CrossRef]
- Available online: https://www.eanm.org/publications/dosage-calculator (accessed on 2 March 2023).
- Available online: https://www.eanm.org/content-eanm/uploads/2017/01/EANM_Dosage_Card_040214.pdf (accessed on 2 March 2023).
- Alzahrani, T.; Khiyani, N.; Zeltser, R. Adenosine SPECT Thallium Imaging. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Van Dijk, R.; Ties, D.; Kuijpers, D.; van der Harst, P.; Oudkerk, M. Effects of Caffeine on Myocardial Blood Flow: A Systematic Review. Nutrients 2018, 10, 1083. [Google Scholar] [CrossRef] [PubMed]
- Lapeyre, A.C., 3rd; Goraya, T.Y.; Johnston, D.L.; Gibbons, R.J. The impact of caffeine on vasodilator stress perfusion studies. J. Nucl. Cardiol. 2004, 11, 506–511. [Google Scholar] [CrossRef] [PubMed]
- Andrikopoulou, E.; Morgan, C.J.; Brice, L.; Bajaj, N.S.; Doppalapudi, H.; Iskandrian, A.E.; Hage, F.G. Incidence of atrioventricular block with vasodilator stress SPECT: A meta-analysis. J. Nucl. Cardiol. 2017, 26, 616–628. [Google Scholar] [CrossRef] [PubMed]
- Noel, C.V.; Krishnamurthy, R.; Masand, P.; Moffett, B.; Schlingmann, T.; Cheong, B.Y.; Krishnamurthy, R. Myocardial Stress Perfusion MRI: Experience in Pediatric and Young-Adult Patients Following Arterial Switch Operation Utilizing Regadenoson. Pediatr. Cardiol. 2018, 39, 1249–1257. [Google Scholar] [CrossRef] [PubMed]
- Noel, C.V.; Krishnamurthy, R.; Moffett, B.; Krishnamurthy, R. Myocardial Stress Perfusion Magnetic Resonance: Initial Experience in a Pediatric and Young Adult Population Using Regadenoson. Pediatr. Radiol. 2017, 47, 280–289. [Google Scholar] [CrossRef]
- Doan, T.T.; Wilkinson, J.C.; Loar, R.W.; Pednekar, A.S.; Masand, P.M.; Noel, C.V. Regadenoson Stress Perfusion Cardiac Magnetic Resonance Imaging in Children with Kawasaki Disease and Coronary Artery Disease. Am. J. Cardiol. 2019, 124, 1125–1132. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, L.E. Myocardial stress perfusion magnetic resonance in children with hypertrophic cardiomyopathy. Cardiol. Young 2018, 28, 702–708. [Google Scholar] [CrossRef]
- Dae, M.W. Pediatric Nuclear Cardiology. Semin. Nucl. Med. 2007, 37, 382–390. [Google Scholar] [CrossRef]
- Israel, O.; Pellet, O.; Biassoni, L.; De Palma, D.; Estrada-Lobato, E.; Gnanasegaran, G.; Kuwert, T.; la Fougère, C.; Mariani, G.; Massalha, S.; et al. Two decades of SPECT/CT—The coming of age of a technology: An updated review of literature evidence. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 1990–2012. [Google Scholar] [CrossRef]
- Mogi, A.; Takahashi, Y.; Nakajima, K.; Shimizu, H.; Saito, K.; Tomaru, K.-I. Effect of Scatter, Attenuation and Resolution Correction on a Pediatric Myocardial Perfusion SPECT Image. J. Cardiovasc. Med. Cardiol. 2014, 1, 26–29. [Google Scholar] [CrossRef]
- Wei, H.; Wu, J.; Han, K.; Hu, G.; Wang, H.; Guo, X.; Liu, H.; Wu, Z.; Li, S. CMR validation of left ventricular volumes and ejection fraction measured by the IQ-SPECT system in patients with small heart size. EJNMMI Res. 2023, 13, 33. [Google Scholar] [CrossRef]
- Hyafil, F.; Gimelli, A.; Slart, R.H.J.A.; Georgoulias, P.; Rischpler, C.; Lubberink, M.; Sciagra, R.; Bucerius, J.; Agostini, D.; Verberne, H.J.; et al. EANM procedural guidelines for myocardial perfusion scintigraphy using cardiac-centered gamma cameras. Eur. J. Hybrid Imaging 2019, 3, 11. [Google Scholar] [CrossRef]
- Rischpler, C.; Woodard, P.K. PET/MR Imaging in Cardiovascular Imaging. PET Clin. 2019, 14, 233–244. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Pampaloni, M.; Allada, V.; Fishbein, M.C.; Schelbert, H.R. Myocardial perfusion and viability by positron emission tomography in infants and children with coronary abnormalities: Correlation with echocardiography, coronary angiography, and histopathology. J. Am. Coll. Cardiol. 2003, 41, 618–626. [Google Scholar] [CrossRef] [PubMed]
- Bengel, F.M.; Hauser, M.; Duvernoy, C.S.; Kuehn, A.; I Ziegler, S.; Stollfuss, J.C.; Beckmann, M.; Sauer, U.; Muzik, O.; Schwaiger, M.; et al. Myocardial blood flow and coronary flow reserve late after anatomical correction of transposition of the great arteries. J. Am. Coll. Cardiol. 1998, 32, 1955–1961. [Google Scholar] [CrossRef]
- Dixit, M.; Akhilesh, S.; Shanker, N.; Subhash, K.; Sanjay, G. Fully automated synthesis of nitrogen-13-NH3 by SHIs HM-18 cyclotron and dedicated module for routine clinical studies: Our institutional experiences. Indian J. Nucl. Med. 2022, 37, 50. [Google Scholar] [CrossRef]
- Walsh, W.F.; Fill, H.R.; Harper, P.V. Nitrogen-13-labeled ammonia for myocardial imaging. Semin. Nucl. Med. 1977, 7, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Driessen, R.S.; Raijmakers, P.G.; Stuijfzand, W.J.; Knaapen, P. Myocardial perfusion imaging with PET. Int. J. Cardiovasc. Imaging 2017, 33, 1021–1031. [Google Scholar] [CrossRef] [PubMed]
- Krivokapich, J.; Huang, S.C.; Phelps, M.E.; MacDonald, N.S.; Shine, K.I.; Lionetti, V.; Guiducci, L.; Simioniuc, A.; Aquaro, G.D.; Simi, C.; et al. Dependence of 13NH3 myocardial extraction and clearance on flow and metabolism. Am. J. Physiol. Circ. Physiol. 1982, 242, H536–H542. [Google Scholar] [CrossRef]
- Manabe, O.; Kikuchi, T.; Scholte, A.J.H.A.; El Mahdiui, M.; Nishii, R.; Zhang, M.-R.; Suzuki, E.; Yoshinaga, K. Radiopharmaceutical tracers for cardiac imaging. J. Nucl. Cardiol. 2018, 25, 1204–1236. [Google Scholar] [CrossRef]
- Calabria, F.; Schillaci, O. Radiopharmaceuticals a Guide to PET/CT and PET/MRI, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Chhatriwalla, A.K.; Prieto, L.R.; Brunken, R.C.; Cerqueira, M.D.; Younoszai, A.; Jaber, W.A. Preliminary Data on the Diagnostic Accuracy of Rubidium-82 Cardiac PET Perfusion Imaging for the Evaluation of Ischemia in a Pediatric Population. Pediatr. Cardiol. 2008, 29, 732–738. [Google Scholar] [CrossRef] [PubMed]
- Bonnet, D.; Bonhoeffer, P.; Sidi, D.; Kachaner, J.; Acar, P.; Villain, E.; Vouhé, P.R. Surgical angioplasty of the main coronary arteries in children. J. Thorac. Cardiovasc. Surg. 1999, 117, 352–357. [Google Scholar] [CrossRef] [PubMed]
- Kwatra, N.S.; Grant, F.D.; Lim, R.; Lee, E.Y. Up-to-date review of nuclear medicine applications in pediatric thoracic imaging. Eur. J. Radiol. 2017, 95, 418–427. [Google Scholar] [CrossRef] [PubMed]
- Pagnanelli, R.; Camposano, H.; Borges-Neto, S. Technologist corner: Reducing the small-heart effect in pediatric gated myocardial perfusion single-photon emission computed tomography. J Nucl Cardiol. 2017, 24, 944–945. [Google Scholar] [CrossRef] [PubMed]
- Takalkar, A.; Hernandez-Pampaloni, M.; Cheng, G.; Zhuang, H.; Alavi, A. Pediatric Cardiac PET Imaging. PET Clin. 2008, 3, 587–596. [Google Scholar] [CrossRef]
- Caobelli, F.; Kamani, C.H.; Nkoulou, R.; Buechel, R.R. Executive Committee of the Swiss Society of Nuclear Medicine (SGNM) The importance of 18F-FDG cardiac PET/CT for the assessment of myocardial viability in ischaemic heart disease. Swiss Med. Wkly. 2021, 151, w20511. [Google Scholar] [CrossRef]
- Meyer, Z.; Fischer, M.; Koerfer, J.; Laser, K.; Kececioglu, D.; Burchert, W.; Ulrich, S.; Preuss, R.; Haas, N. The role of FDG-PET-CT in pediatric cardiac patients and patients with congenital heart defects. Int. J. Cardiol. 2016, 220, 656–660. [Google Scholar] [CrossRef]
- Erba, P.A.; Lancellotti, P.; Vilacosta, I.; Gaemperli, O.; Rouzet, F.; Hacker, M.; Signore, A.; Slart, R.H.J.A.; Habib, G. Recommendations on nuclear and multimodality imaging in IE and CIED infections. Eur. J. Nucl. Med. 2018, 45, 1795–1815. [Google Scholar] [CrossRef]
- Jamar, F.; Buscombe, J.; Chiti, A.; Christian, P.E.; Delbeke, D.; Donohoe, K.J.; Israel, O.; Martin-Comin, J.; Signore, A. EANM/SNMMI Guideline for18F-FDG Use in Inflammation and Infection. J. Nucl. Med. 2013, 54, 647–658. [Google Scholar] [CrossRef]
- Van der Geest, K.S.M.; Treglia, G.; Glaudemans, A.W.J.M.; Brouwer, E.; Sandovici, M.; Jamar, F.; Gheysens, O.; Slart, R.H.J.A. Diagnostic value of [18F]FDG-PET/CT for treatment monitoring in large vessel vasculitis: A systematic review and meta-analysis. Eur. J. Nucl. Med. 2021, 48, 3886–3902. [Google Scholar] [CrossRef]
- Gupta, K.; Jadhav, R.; Prasad, R.; Virmani, S. Cardiac uptake patterns in routine 18F-FDG PET-CT scans: A pictorial review. J. Nucl. Cardiol. 2020, 27, 1296–1305. [Google Scholar] [CrossRef] [PubMed]
- Hardisky, D.B.; Tricarico, R.; Kelly, J.M.; Bobbey, A.J.; Stacy, M.R. Utility of 18F-FDG PET/CT Imaging in Diagnosing Pulmonary Prosthetic Valve Endocarditis in a Pediatric Patient. Clin. Nucl. Med. 2021, 46, e567–e569. [Google Scholar] [CrossRef]
- Visschers, N.C.; Hulzebos, E.H.; van Brussel, M.; Takken, T. Comparing four non-invasive methods to determine the ventilatory anaerobic threshold during cardiopulmonary exercise testing in children with congenital heart or lung disease. Clin Physiol Funct Imaging. 2015, 35, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Soliman, M.; Laxer, R.; Manson, D.; Yeung, R.; Doria, A.S. Imaging of systemic vasculitis in childhood. Pediatr. Radiol. 2015, 45, 1110–1125. [Google Scholar] [CrossRef] [PubMed]
- Tateishi, U.; Tsuchiya, J.; Yokoyama, K. Large vessel vasculitis: Imaging standards of 18F-FDG PET/CT. Jpn. J. Radiol. 2020, 39, 225–232. [Google Scholar] [CrossRef]
- Weisert, M.; Harake, D.; Hede, S.; Russell, M.; Alejos, J.; Menteer, J. A multicenter survey on post-transplant lymphoproliferative disorders in pediatric heart transplant recipients: A case for development of consensus guidelines for screening, surveillance, and treatment? Pediatr. Transplant. 2020, 24, e13730. [Google Scholar] [CrossRef]
- A Webber, S.; Naftel, D.C.; Parker, J.; Mulla, N.; Balfour, I.; Kirklin, J.K.; Morrow, R. Late rejection episodes more than 1 year after pediatric heart transplantation: Risk factors and outcomes. J. Heart Lung Transplant. 2003, 22, 869–875. [Google Scholar] [CrossRef]
- Sica, A.; De Rimini, M.L.; Sagnelli, C.; Casale, B.; Spada, A.; Reginelli, A.; Amarelli, C.; Maiello, C.; Belfiore, M.P.; Creta, M.; et al. Post-heart transplantation lymphoproliferative diseases (PTLDs) and the diagnostic role of [18f] FDG-PET/CT. Minerva Med. 2021, 112, 338–345. [Google Scholar] [CrossRef]
- Aparici, C.M.; Narula, J.; Puig, M.; Camprecios, M.; Martín, J.C.; Tembl, A.; Flotats, A.; Estorch, M.; Catafau, A.M.; Bernà, L.; et al. Somatostatin receptor scintigraphy predicts impending cardiac allograft rejection before endomyocardial biopsy. Eur. J. Nucl. Med. 2000, 27, 1754–1759. [Google Scholar] [CrossRef]
- Buchmann, I.; Henze, M.; Engelbrecht, S.; Eisenhut, M.; Runz, A.; Schäfer, M.; Schilling, T.; Haufe, S.; Herrmann, T.; Haberkorn, U. Comparison of 68Ga-DOTATOC PET and 111In-DTPAOC (Octreoscan) SPECT in patients with neuroendocrine tumours. Eur. J. Nucl. Med. 2007, 34, 1617–1626. [Google Scholar] [CrossRef]
- Di Carli, M.F.; Tobes, M.C.; Mangner, T.; Levine, A.B.; Muzik, O.; Chakroborty, P.; Levine, T.B. Effects of Cardiac Sympathetic Innervation on Coronary Blood Flow. N. Engl. J. Med. 1997, 336, 1208–1216. [Google Scholar] [CrossRef]
- Pizzi, M.N.; Franquet, E.; Aguadé-Bruix, S.; Manso, B.; Casaldáliga, J.; Cuberas-Borrós, G.; Romero-Farina, G.; Pinar, J.; Castell-Conesa, J.; García-Dorado, D.; et al. Long-Term Follow-up Assessment After the Arterial Switch Operation for Correction of Dextro-Transposition of the Great Arteries by Means of Exercise Myocardial Perfusion-Gated SPECT. Pediatr. Cardiol. 2013, 35, 197–207. [Google Scholar] [CrossRef]
- Grupper, A.; Gewirtz, H.; Kushwaha, S. Reinnervation post-Heart transplantation. Eur. Heart J. 2017, 39, 1799–1806. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Shuke, N.; Yamamoto, W.; Okizaki, A.; Sato, J.; Kajino, H.; Fujieda, K.; Aburano, T. Impaired Cardiac Sympathetic Nerve Function in Patients with Kawasaki Disease: Comparison with Myocardial Perfusion. Pediatr. Res. 2005, 57, 744–748. [Google Scholar] [CrossRef] [PubMed]
- Ono, S.; Ohuchi, H.; Miyazaki, A.; Abe, T.; Kiso, K.; Yamada, O. Heterogeneity of Ventricular Sympathetic Nervous Activity is Associated with Clinically Relevant Ventricular Arrhythmia in Postoperative Patients with Tetralogy of Fallot. Pediatr. Cardiol. 2015, 36, 1515–1522. [Google Scholar] [CrossRef]
- Kondo, C.; Nakazawa, M.; Momma, K.; Kusakabe, K. Sympathetic Denervation and Reinnervation After Arterial Switch Operation for Complete Transposition. Circulation 1998, 97, 2414–2419. [Google Scholar] [CrossRef] [PubMed]
- Ciofetta, G.; Piepsz, A.; Roca, I.; Fisher, S.; Hahn, K.; Sixt, R.; Biassoni, L.; De Palma, D.; Zucchetta, P. Paediatric Committee of the European Association of Nuclear Medicine. Guidelines for lung scintigraphy in children. Eur. J. Nucl. Med. Mol. Imaging 2007, 34, 1518–1526. [Google Scholar] [CrossRef] [PubMed]
- Murakami, T.; Ueno, M. Predictors of hemodynamically successful left pulmonary artery stent implantation in patients after repair of tetralogy of Fallot. J. Cardiol. 2005, 45, 149–154. [Google Scholar] [PubMed]
- Chien, K.-J.; Huang, H.-W.; Huang, T.-C.; Lee, C.-L.; Weng, K.-P.; Lin, C.-C.; Shieh, P.-C.; Wu, M.-T.; Hsieh, K.-S. Assessment of branch pulmonary artery stenosis in children after repair of tetralogy of Fallot using lung perfusion scintigraphy comparison with echocardiography. Ann. Nucl. Med. 2015, 30, 49–59. [Google Scholar] [CrossRef]
- Sanchez-Crespo, A. Lung Ventilation/Perfusion Single Photon Emission Computed Tomography (SPECT) in Infants and Children with Nonembolic Chronic Pulmonary Disorders. Semin. Nucl. Med. 2019, 49, 37–46. [Google Scholar] [CrossRef]
- Drubach, L.A.; Jenkins, K.J.; Stamoulis, C.; Palmer, E.L., 3rd; Lee, E.Y. Evaluation of Primary Pulmonary Vein Stenosis in Children: Comparison of Radionuclide Perfusion Lung Scan and Angiography. AJR Am. J. Roentgenol. 2015, 205, 873–877. [Google Scholar] [CrossRef] [PubMed]
- Werner, R.A.; Chen, X.; Rowe, S.P.; Lapa, C.; Javadi, M.S.; Higuchi, T. Moving into the next era of PET myocardial perfusion imaging: Introduction of novel 18F-labeled tracers. Int. J. Cardiovasc. Imaging 2019, 35, 569–577. [Google Scholar] [CrossRef] [PubMed]
Radiopharmaceutical | Advantages | Drawbacks |
---|---|---|
99mTc-MIBI 99mTc-Tetrofosmin | Availability in the majority of the nuclear medicine centers. 99mTc has a better gamma energy emission in comparison to 201Tl. | The exam requires two injections. Poor spatial resolution: imaging needs to be optimized in order to improve spatial resolution. |
201Tl chloride | The exam requires only one injection. | High physical half-life of 201Tl. High radiation burden for children. 201Tl has a suboptimal gamma energy emission. |
[13N]NH3 | PET with [13N]NH3 has a higher spatial resolution in comparison to SPECT. | Need for an on-site cyclotron. Reports on MPI in pediatric patients are limited. |
82Rb | PET with 82Rb has a higher spatial resolution in comparison to SPECT. Short duration of the exam (35–45 min) due to its half-life of 1.16 min. | Need for its generator and CARDIOGEN-82 ® infusion system. Reports on MPI in pediatric patients are very limited. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perrone, M.A.; Cimini, A.; Ricci, M.; Pizzoferro, M.; Garganese, M.C.; Raponi, M.; Schillaci, O. Myocardial Functional Imaging in Pediatric Nuclear Cardiology. J. Cardiovasc. Dev. Dis. 2023, 10, 361. https://doi.org/10.3390/jcdd10090361
Perrone MA, Cimini A, Ricci M, Pizzoferro M, Garganese MC, Raponi M, Schillaci O. Myocardial Functional Imaging in Pediatric Nuclear Cardiology. Journal of Cardiovascular Development and Disease. 2023; 10(9):361. https://doi.org/10.3390/jcdd10090361
Chicago/Turabian StylePerrone, Marco Alfonso, Andrea Cimini, Maria Ricci, Milena Pizzoferro, Maria Carmen Garganese, Massimiliano Raponi, and Orazio Schillaci. 2023. "Myocardial Functional Imaging in Pediatric Nuclear Cardiology" Journal of Cardiovascular Development and Disease 10, no. 9: 361. https://doi.org/10.3390/jcdd10090361
APA StylePerrone, M. A., Cimini, A., Ricci, M., Pizzoferro, M., Garganese, M. C., Raponi, M., & Schillaci, O. (2023). Myocardial Functional Imaging in Pediatric Nuclear Cardiology. Journal of Cardiovascular Development and Disease, 10(9), 361. https://doi.org/10.3390/jcdd10090361