Current and Clinically Relevant Echocardiographic Parameters to Analyze Left Atrial Function
Abstract
:1. Introduction
2. Left Atrial Function: An Introduction
3. Left Atrial Ejection Fraction (LAEF)
Author | Population | Principal Findings |
---|---|---|
Welles et al., 2012 [47] | 855 patients with CAD and EF > 50% | LA dysfunction predicts HF hospitalization |
Olsen et al., 2017 [48] | 1951 patients without prior AF | Lower LAEF (45 ± 15%) in patients who developed AF |
Henriksen et al., 2018 [53] | 320 patients hospitalized for AMI | LAEF reduced in response to elevated LV end-diastolic pressure |
Walek et al., 2020 [51] | 146 patients with persistent AF underwent CVE | LAEF, measured during AF, was superior to predicting SR maintenance after CVE (30.8 ± 8.3 vs. 24.6 ± 10.4%) |
Darweesh et al., 2021 [49] | 84 patients hospitalized for CABG | LAEF mean of 43% was found in patients developing postoperative AF |
Inciardi et al., 2021 [46] | 4901 without prevalent HF | LAEF 51.6 ± 11.45% in patients with incident HF or death associated with NT-proBNP levels |
Larsen et al., 2022 [50] | 1866 patients without known AF or prior ischemic stroke | LAEF decrease was associated with ischemic stroke (mean value 46.4 ± 14.5%) |
Khan et al., 2023 [52] | 83 patients undergoing AF ablation | Lower LAEF (27.9 ± 9.9% vs. 36.3 ± 10.6%) in patients with AF recurrence after 3 months |
4. Peak Atrial Longitudinal Strain
5. Tissue Doppler Imaging and LA Function: A Simplified, Complementary Approach
6. TDI-a’ and Outcome
7. TDI-a’ Integrated Echocardiographic Indices
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Douglas, P.S. The left atrium: A biomarker of chronic diastolic dysfunction and cardiovascular disease risk. J. Am. Coll. Cardiol. 2003, 42, 1206–1207. [Google Scholar] [CrossRef] [PubMed]
- Tsang, T.S.; Barnes, M.E.; Gersh, B.J.; Takemoto, Y.; Rosales, A.G.; Bailey, K.R.; Seward, J.B. Prediction of risk for first age-related cardiovascular events in an elderly population: The incremental value of echocardiography. J. Am. Coll. Cardiol. 2003, 42, 1199–1205. [Google Scholar] [CrossRef] [PubMed]
- Abhayaratna, W.P.; Seward, J.B.; Appleton, C.P.; Douglas, P.S.; Oh, J.K.; Tajik, A.J.; Tsang, T.S. Left atrial size: Physiologic determinants and clinical applications. J. Am. Coll. Cardiol. 2006, 47, 2357–2363. [Google Scholar] [CrossRef] [PubMed]
- Hoit, B.D. Left atrial size and function: Role in prognosis. J. Am. Coll. Cardiol. 2014, 63, 493–505. [Google Scholar] [CrossRef] [PubMed]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 1-39.e14. [Google Scholar] [CrossRef] [PubMed]
- Pieske, B.; Tschöpe, C.; de Boer, R.A.; Fraser, A.G.; Anker, S.D.; Donal, E.; Edelmann, F.; Fu, M.; Guazzi, M.; Lam, C.S.P.; et al. How to diagnose heart failure with preserved ejection fraction: The HFA-PEFF diagnostic algorithm: A consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur. Heart J. 2019, 40, 3297–3317, Erratum in Eur. Heart J. 2021, 42, 1274. [Google Scholar] [CrossRef] [PubMed]
- Thomas, L.; Muraru, D.; Popescu, B.A.; Sitges, M.; Rosca, M.; Pedrizzetti, G.; Henein, M.Y.; Donal, E.; Badano, L.P. Evaluation of Left Atrial Size and Function: Relevance for Clinical Practice. J. Am. Soc. Echocardiogr. 2020, 33, 934–952. [Google Scholar] [CrossRef] [PubMed]
- Blume, G.G.; Mcleod, C.J.; Barnes, M.E.; Seward, J.B.; Pellikka, P.A.; Bastiansen, P.M.; Tsang, T.S. Left atrial function: Physiology, assessment, and clinical implications. Eur. J. Echocardiogr. 2011, 12, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Hoit, B.D. Assessment of Left Atrial Function by Echocardiography: Novel Insights. Curr. Cardiol. Rep. 2018, 20, 96. [Google Scholar] [CrossRef] [PubMed]
- Lindström, L.; Wranne, B. Pulsed tissue Doppler evaluation of mitral annulus motion: A new window to assessment of diastolic function. Clin. Physiol. 1999, 19, 1–10. [Google Scholar] [CrossRef]
- Hesse, B.; Schuele, S.U.; Thamilasaran, M.; Thomas, J.; Rodriguez, L. A rapid method to quantify left atrial contractile function: Doppler tissue imaging of the mitral annulus during atrial systole. Eur. J. Echocardiogr. 2004, 5, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Brinker, S.K.; Pandey, A.; Ayers, C.R.; Barlow, C.E.; DeFina, L.F.; Willis, B.L.; Radford, N.B.; Farzaneh-Far, R.; de Lemos, J.A.; Drazner, M.H.; et al. Association of cardiorespiratory fitness with left ventricular remodeling and diastolic function: The Cooper Center Longitudinal Study. JACC Heart Fail. 2014, 2, 238–246. [Google Scholar] [CrossRef] [PubMed]
- Setti, M.; Benfari, G.; Mele, D.; Rossi, A.; Ballo, P.; Galderisi, M.; Henein, M.; Nistri, S. Discrepancies in Assessing Diastolic Function in Pre-Clinical Heart Failure Using Different Algorithms-A Primary Care Study. Diagnostics 2020, 10, 850. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nistri, S.; Galderisi, M.; Ballo, P.; Olivotto, I.; D’Andrea, A.; Pagliani, L.; Santoro, A.; Papesso, B.; Innelli, P.; Cecchi, F.; et al. Determinants of echocardiographic left atrial volume: Implications for normalcy. Eur. J. Echocardiogr. 2011, 12, 826–833. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Carvalho Singulane, C.; Miyoshi, T.; Prado, A.D.; Addetia, K.; Bellino, M.; Daimon, M.; Gutierrez Fajardo, P.; Kasliwal, R.R.; Kirkpatrick, J.N.; et al. Normal Values of Left Atrial Size and Function and the Impact of Age: Results of the World Alliance Societies of Echocardiography Study. J. Am. Soc. Echocardiogr. 2022, 35, 154–164.e3. [Google Scholar] [CrossRef] [PubMed]
- Eriksen-Volnes, T.; Grue, J.F.; Hellum Olaisen, S.; Letnes, J.M.; Nes, B.; Løvstakken, L.; Wisløff, U.; Dalen, H. Normalized Echocardiographic Values from Guideline-Directed Dedicated Views for Cardiac Dimensions and Left Ventricular Function. JACC Cardiovasc. Imaging 2023, 16, 1501–1515. [Google Scholar] [CrossRef] [PubMed]
- Ballo, P.; Nistri, S.; Galderisi, M.; Mele, D.; Rossi, A.; Dini, F.L.; Olivotto, I.; Losi, M.A.; D’Andrea, A.; Zuppiroli, A.; et al. Determinants of discrepancies between two-dimensional echocardiographic methods for assessment of maximal left atrial volume. Eur. Heart J. Cardiovasc. Imaging 2017, 18, 584–602. [Google Scholar] [CrossRef] [PubMed]
- Nagueh, S.F.; Smiseth, O.A.; Appleton, C.P.; Byrd, B.F., 3rd; Dokainish, H.; Edvardsen, T.; Flachskampf, F.A.; Gillebert, T.C.; Klein, A.L.; Lancellotti, P.; et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2016, 29, 277–314. [Google Scholar] [CrossRef] [PubMed]
- Thomas, L.; Marwick, T.H.; Popescu, B.A.; Donal, E.; Badano, L.P. Left Atrial Structure and Function, and Left Ventricular Diastolic Dysfunction: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2019, 73, 1961–1977. [Google Scholar] [CrossRef] [PubMed]
- Boyd, A.C.; Richards, D.A.; Marwick, T.; Thomas, L. Atrial strain rate is a sensitive measure of alterations in atrial phasic function in healthy ageing. Heart 2011, 97, 1513–1519. [Google Scholar] [CrossRef] [PubMed]
- Inoue, K.; Kawakami, H.; Akazawa, Y.; Higashi, H.; Higaki, T.; Yamaguchi, O. Echocardiographic Assessment of Atrial Function: From Basic Mechanics to Specific Cardiac Diseases. J. Cardiovasc. Dev. Dis. 2022, 9, 68. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Thomas, L.; Hoy, M.; Byth, K.; Schiller, N.B. The left atrial function index: A rhythm independent marker of atrial function. Eur. J. Echocardiogr. 2008, 9, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Leung, D.Y.; Boyd, A.; Ng, A.A.; Chi, C.; Thomas, L. Echocardiographic evaluation of left atrial size and function: Current understanding, pathophysiologic correlates, and prognostic implications. Am. Heart J. 2008, 156, 1056–1064. [Google Scholar] [CrossRef] [PubMed]
- Fadel, B.M.; Pibarot, P.; Kazzi, B.E.; Al-Admawi, M.; Galzerano, D.; Alhumaid, M.; Alamro, B.; Mahjoub, H.; Echahidi, N.; Mohty, D. Spectral Doppler Interrogation of the Pulmonary Veins for the Diagnosis of Cardiac Disorders: A Comprehensive Review. J. Am. Soc. Echocardiogr. 2021, 34, 223–236. [Google Scholar] [CrossRef] [PubMed]
- Manning, W.J.; Silverman, D.I.; Katz, S.E.; Douglas, P.S. Atrial ejection force: A noninvasive assessment of atrial systolic function. J. Am. Coll. Cardiol. 1993, 22, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Triposkiadis, F.; Harbas, C.; Sitafidis, G.; Skoularigis, J.; Demopoulos, V.; Kelepeshis, G. Echocardiographic assessment of left atrial ejection force and kinetic energy in chronic heart failure. Int. J. Cardiovasc. Imaging 2008, 24, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Vasan, R.S.; Larson, M.G.; Levy, D.; Galderisi, M.; Wolf, P.A.; Benjamin, E.J. Doppler transmitral flow indexes and risk of atrial fibrillation (the Framingham Heart Study). Am. J. Cardiol. 2003, 91, 1079–1083. [Google Scholar] [CrossRef] [PubMed]
- Choong, C.Y.; Herrmann, H.C.; Weyman, A.E.; Fifer, M.A. Preload dependence of Doppler-derived indexes of left ventricular diastolic function in humans. J. Am. Coll. Cardiol. 1987, 10, 800–808. [Google Scholar] [CrossRef] [PubMed]
- Miyatake, K.; Okamoto, M.; Kinoshita, N.; Owa, M.; Nakasone, I.; Sakakibara, H.; Nimura, Y. Augmentation of atrial contribution to left ventricular inflow with aging as assessed by intracardiac Doppler flowmetry. Am. J. Cardiol. 1984, 53, 586–589. [Google Scholar] [CrossRef] [PubMed]
- Marwick, T.H. Measurement of strain and strain rate by echocardiography: Ready for prime time? J. Am. Coll. Cardiol. 2006, 47, 1313–1327. [Google Scholar] [CrossRef] [PubMed]
- Gorcsan, J., 3rd; Tanaka, H. Echocardiographic assessment of myocardial strain. J. Am. Coll. Cardiol. 2011, 58, 1401–1413. [Google Scholar] [CrossRef] [PubMed]
- Sirbu, C.; Herbots, L.; D’hooge, J.; Claus, P.; Marciniak, A.; Langeland, T.; Bijnens, B.; Rademakers, F.E.; Sutherland, G.R. Feasibility of strain and strain rate imaging for the assessment of regional left atrial deformation: A study in normal subjects. Eur. J. Echocardiogr. 2006, 7, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Mondillo, S.; Galderisi, M.; Mele, D.; Cameli, M.; Lomoriello, V.S.; Zacà, V.; Ballo, P.; D’Andrea, A.; Muraru, D.; Losi, M.; et al. Speckle-tracking echocardiography: A new technique for assessing myocardial function. J. Ultrasound Med. 2011, 30, 71–83. [Google Scholar] [CrossRef] [PubMed]
- Benfari, G.; Mandoli, G.E.; Magne, J.; Miglioranza, M.H.; Ancona, R.; Luksic, V.R.; Pastore, M.C.; Santoro, C.; Michalski, B.; Malagoli, A.; et al. Left atrial strain determinants and clinical features according to the heart failure stages. New insight from EACVI MASCOT registry. Int. J. Cardiovasc. Imaging 2022, 38, 2635–2644. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Smiseth, O.A.; Morris, D.A.; Cardim, N.; Cikes, M.; Delgado, V.; Donal, E.; Flachskampf, F.A.; Galderisi, M.; Gerber, B.L.; Gimelli, A.; et al. Reviewers: This document was reviewed by members of the 2018–2020 EACVI Scientific Documents Committee. Multimodality imaging in patients with heart failure and preserved ejection fraction: An expert consensus document of the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2022, 23, e34–e61. [Google Scholar] [CrossRef] [PubMed]
- Morris, D.A.; Takeuchi, M.; Krisper, M.; Köhncke, C.; Bekfani, T.; Carstensen, T.; Hassfeld, S.; Dorenkamp, M.; Otani, K.; Takigiku, K.; et al. Normal values and clinical relevance of left atrial myocardial function analysed by speckle-tracking echocardiography: Multicentre study. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Pathan, F.; D’Elia, N.; Nolan, M.T.; Marwick, T.H.; Negishi, K. Normal Ranges of Left Atrial Strain by Speckle-Tracking Echocardiography: A Systematic Review and Meta-Analysis. J. Am. Soc. Echocardiogr. 2017, 30, 59–70.e8. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, T.; Robinet, S.; Dulgheru, R.; Bernard, A.; Ilardi, F.; Contu, L.; Addetia, K.; Caballero, L.; Kacharava, G.; Athanassopoulos, G.D.; et al. Echocardiographic reference ranges for normal left atrial function parameters: Results from the EACVI NORRE study. Eur. Heart J. Cardiovasc. Imaging 2018, 19, 630–638. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, M.; Kitano, T.; Nabeshima, Y.; Otsuji, Y.; Otani, K. Left ventricular and left atrial volume ratio assessed by three-dimensional echocardiography: Novel indices for evaluating age-related change in left heart chamber size. Physiol. Rep. 2019, 7, e14300. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sun, B.J.; Park, J.H.; Lee, M.; Choi, J.O.; Lee, J.H.; Shin, M.S.; Kim, M.J.; Jung, H.O.; Park, J.R.; Sohn, I.S.; et al. Normal Reference Values for Left Atrial Strain and Its Determinants from a Large Korean Multicenter Registry. J. Cardiovasc. Imaging 2020, 28, 186–198. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nielsen, A.B.; Skaarup, K.G.; Hauser, R.; Johansen, N.D.; Lassen, M.C.H.; Jensen, G.B.; Schnohr, P.; Møgelvang, R.; Biering-Sørensen, T. Normal values and reference ranges for left atrial strain by speckle-tracking echocardiography: The Copenhagen City Heart Study. Eur. Heart, J. Cardiovasc. Imaging 2021, 23, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, Y.; Yao, G.; Tang, H.; Chen, L.; Yin, L.; Zhu, T.; Yuan, J.; Han, W.; Yang, J.; et al. Echocardiographic Measurements in Normal Chinese Adults (EMINCA) II focusing on left ventricular and left atrial size and function by three-dimensional echocardiography. Front Med. 2024; epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Yafasov, M.; Olsen, F.J.; Skaarup, K.G.; Lassen, M.C.H.; Johansen, N.D.; Lindgren, F.L.; Jensen, G.B.; Schnohr, P.; Møgelvang, R.; Søgaard, P.; et al. Normal values for left atrial strain, volume, and function derived from 3D echocardiography: The Copenhagen City Heart Study. Eur. Heart J. Cardiovasc. Imaging 2024, 25, 602–612. [Google Scholar] [CrossRef] [PubMed]
- Almeida, J.; Paiva, P.; Ribeiro, N.; Ferreira, M.; António, N.; Martins, R.; Gonçalves, L. Left atrial ejection fraction is an indicator of left ventricular diastolic function. Int. J. Cardiovasc. Imaging 2022, 38, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Anthony, C.M.; Wang, T.K.M.; Salam, D.; Obuchowski, N.; Turkmani, M.; Al-Deiri, D.; Popovic, Z.; Griffin, B.; Flamm, S.; Chen, D.; et al. Impact of Cardiac Magnetic Resonance Left Atrial Ejection Fraction in Advanced Ischemic Cardiomyopathy. JACC Adv. 2024, 3, 100796. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Inciardi, R.M.; Claggett, B.; Minamisawa, M.; Shin, S.H.; Selvaraj, S.; Gonçalves, A.; Wang, W.; Kitzman, D.; Matsushita, K.; Prasad, N.G.; et al. Association of Left Atrial Structure and Function with Heart Failure in Older Adults. J. Am. Coll. Cardiol. 2022, 79, 1549–1561. [Google Scholar] [CrossRef] [PubMed]
- Welles, C.C.; Ku, I.A.; Kwan, D.M.; Whooley, M.A.; Schiller, N.B.; Turakhia, M.P. Left atrial function predicts heart failure hospitalization in subjects with preserved ejection fraction and coronary heart disease: Longitudinal data from the Heart and Soul Study. J. Am. Coll. Cardiol. 2012, 59, 673–680. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Olsen, F.J.; Møgelvang, R.; Jensen, G.B.; Jensen, J.S.; Biering-Sørensen, T. Relationship Between Left Atrial Functional Measures and Incident Atrial Fibrillation in the General Population: The Copenhagen City Heart Study. JACC Cardiovasc. Imaging 2019, 12, 981–989. [Google Scholar] [CrossRef] [PubMed]
- Darweesh, R.M.; Baghdady, Y.K.; El Hossary, H.; Khaled, M. Importance of left atrial mechanical function as a predictor of atrial fibrillation risk following cardiac surgery. Int. J. Cardiovasc. Imaging 2021, 37, 1863–1872. [Google Scholar] [CrossRef] [PubMed]
- Larsen, B.S.; Olsen, F.J.; Andersen, D.M.; Madsen, C.V.; Møgelvang, R.; Jensen, G.B.; Schnohr, P.; Aplin, M.; Høst, N.B.; Christensen, H.; et al. Left Atrial Volumes and Function, and Long-Term Incidence of Ischemic Stroke in the General Population. J. Am. Heart Assoc. 2022, 11, e027031. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wałek, P.; Gorczyca, I.; Sielski, J.; Wożakowska-Kapłon, B. Left atrial emptying fraction determined during atrial fibrillation predicts maintenance of sinus rhythm after direct current cardioversion in patients with persistent atrial fibrillation. PLoS ONE 2020, 15, e0238002. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Khan, H.R.; Yakupoglu, H.Y.; Kralj-Hans, I.; Haldar, S.; Bahrami, T.; Clague, J.; De Souza, A.; Hussain, W.; Jarman, J.; Jones, D.G.; et al. Left Atrial Function Predicts Atrial Arrhythmia Recurrence Following Ablation of Long-Standing Persistent Atrial Fibrillation. Circ. Cardiovasc. Imaging 2023, 16, e015352. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Henriksen, E.; Selmeryd, J.; Hedberg, P. Associations of left atrial volumes and Doppler filling indices with left atrial function in acute myocardial infarction. Clin. Physiol. Funct. Imaging 2019, 39, 85–92. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hauser, R.; Nielsen, A.B.; Skaarup, K.G.; Lassen, M.C.H.; Duus, L.S.; Johansen, N.D.; Sengeløv, M.; Marott, J.L.; Jensen, G.; Schnohr, P.; et al. Left atrial strain predicts incident atrial fibrillation in the general population: The Copenhagen City Heart Study. Eur. Heart J. Cardiovasc. Imaging 2021, 23, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Reddy, Y.N.V.; Obokata, M.; Egbe, A.; Yang, J.H.; Pislaru, S.; Lin, G.; Carter, R.; Borlaug, B.A. Left atrial strain and compliance in the diagnostic evaluation of heart failure with preserved ejection fraction. Eur. J. Heart Fail. 2019, 21, 891–900. [Google Scholar] [CrossRef] [PubMed]
- Nagueh, S.F.; Khan, S.U. Left Atrial Strain for Assessment of Left Ventricular Diastolic Function: Focus on Populations with Normal LVEF. JACC Cardiovasc. Imaging 2023, 16, 691–707. [Google Scholar] [CrossRef] [PubMed]
- Meel, R.; Khandheria, B.K.; Peters, F.; Libhaber, E.; Nel, S.; Essop, M.R. Effects of age on left atrial volume and strain parameters using echocardiography in a normal black population. Echo Res. Pract. 2016, 3, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, K.; Obokata, M.; Kurosawa, K.; Sorimachi, H.; Kurabayashi, M.; Negishi, K. Effect of Sex Differences on the Association Between Stroke Risk and Left Atrial Anatomy or Mechanics in Patients with Atrial Fibrillation. Circ. Cardiovasc. Imaging 2016, 9, e004999. [Google Scholar] [CrossRef] [PubMed]
- Cameli, M.; Lisi, M.; Righini, F.M.; Massoni, A.; Natali, B.M.; Focardi, M.; Tacchini, D.; Geyer, A.; Curci, V.; Di Tommaso, C.; et al. Usefulness of atrial deformation analysis to predict left atrial fibrosis and endocardial thickness in patients undergoing mitral valve operations for severe mitral regurgitation secondary to mitral valve prolapse. Am. J. Cardiol. 2013, 111, 595–601. [Google Scholar] [CrossRef]
- Cameli, M.; Lisi, M.; Mondillo, S.; Padeletti, M.; Ballo, P.; Tsioulpas, C.; Bernazzali, S.; Maccherini, M. Left atrial longitudinal strain by speckle tracking echocardiography correlates well with left ventricular filling pressures in patients with heart failure. Cardiovasc. Ultrasound 2010, 8, 14. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cameli, M.; Sparla, S.; Losito, M.; Righini, F.M.; Menci, D.; Lisi, M.; D’Ascenzi, F.; Focardi, M.; Favilli, R.; Pierli, C.; et al. Correlation of Left Atrial Strain and Doppler Measurements with Invasive Measurement of Left Ventricular End-Diastolic Pressure in Patients Stratified for Different Values of Ejection Fraction. Echocardiography 2016, 33, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Medvedofsky, D.; Mediratta, A.; Balaney, B.; Kruse, E.; Ciszek, B.; Shah, A.P.; Blair, J.E.; Maffessanti, F.; Addetia, K.; et al. Peak left atrial strain as a single measure for the non-invasive assessment of left ventricular filling pressures. Int. J. Cardiovasc. Imaging 2019, 35, 23–32. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Inoue, K.; Khan, F.H.; Remme, E.W.; Ohte, N.; García-Izquierdo, E.; Chetrit, M.; Moñivas-Palomero, V.; Mingo-Santos, S.; Andersen, Ø.S.; Gude, E.; et al. Determinants of left atrial reservoir and pump strain and use of atrial strain for evaluation of left ventricular filling pressure. Eur. Heart J. Cardiovasc. Imaging 2021, 23, 61–70, Erratum in: Eur. Heart J. Cardiovasc. Imaging 2021, 23, 136. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, A.; Johnson, J.; Hage, C.; Bäck, M.; Merkely, B.; Venkateshvaran, A.; Lund, L.H.; Nagy, A.I.; Manouras, A. Left atrial strain improves estimation of filling pressures in heart failure: A simultaneous echocardiographic and invasive haemodynamic study. Clin. Res. Cardiol. 2019, 108, 703–715. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Singh, A.; Addetia, K.; Maffessanti, F.; Mor-Avi, V.; Lang, R.M. LA Strain for Categorization of LV Diastolic Dysfunction. JACC Cardiovasc. Imaging 2017, 10, 735–743. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mondillo, S.; Cameli, M.; Caputo, M.L.; Lisi, M.; Palmerini, E.; Padeletti, M.; Ballo, P. Early detection of left atrial strain abnormalities by speckle-tracking in hypertensive and diabetic patients with normal left atrial size. J. Am. Soc. Echocardiogr. 2011, 24, 898–908. [Google Scholar] [CrossRef] [PubMed]
- Kadappu, K.K.; Boyd, A.; Eshoo, S.; Haluska, B.; Yeo, A.E.; Marwick, T.H.; Thomas, L. Changes in left atrial volume in diabetes mellitus: More than diastolic dysfunction? Eur. Heart J. Cardiovasc. Imaging 2012, 13, 1016–1023. [Google Scholar] [CrossRef] [PubMed]
- Kadappu, K.K.; Abhayaratna, K.; Boyd, A.; French, J.K.; Xuan, W.; Abhayaratna, W.; Thomas, L. Independent Echocardiographic Markers of Cardiovascular Involvement in Chronic Kidney Disease: The Value of Left Atrial Function and Volume. J. Am. Soc. Echocardiogr. 2016, 29, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Madsen, A.R.; Skaarup, K.G.; Iversen, A.Z.; Jørgensen, P.G.; Pedersson, P.R.; Biering-Sørensen, T. Echocardiographic Measures of Left Atrial Structure and Function and the Association with Atrial Fibrillation following Acute Coronary Syndrome. Cardiology 2023, 148, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Antoni, M.L.; ten Brinke, E.A.; Atary, J.Z.; Marsan, N.A.; Holman, E.R.; Schalij, M.J.; Bax, J.J.; Delgado, V. Left atrial strain is related to adverse events in patients after acute myocardial infarction treated with primary percutaneous coronary intervention. Heart 2011, 97, 1332–1337. [Google Scholar] [CrossRef]
- Ersbøll, M.; Andersen, M.J.; Valeur, N.; Mogensen, U.M.; Waziri, H.; Møller, J.E.; Hassager, C.; Søgaard, P.; Køber, L. The prognostic value of left atrial peak reservoir strain in acute myocardial infarction is dependent on left ventricular longitudinal function and left atrial size. Circ. Cardiovasc. Imaging 2013, 6, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Pastore, M.C.; Degiovanni, A.; Grisafi, L.; Renda, G.; Sozzani, M.; Giordano, A.; Salvatici, C.; Lorenz, V.; Pierfelice, F.; Cappelli, C.; et al. Left Atrial Strain to Predict Postoperative Atrial Fibrillation in Patients Undergoing Coronary Artery Bypass Grafting. Circ. Cardiovasc. Imaging 2024, 17, e015969. [Google Scholar] [CrossRef] [PubMed]
- Park, J.J.; Park, J.H.; Hwang, I.C.; Park, J.B.; Cho, G.Y.; Marwick, T.H. Left Atrial Strain as a Predictor of New-Onset Atrial Fibrillation in Patients with Heart Failure. JACC Cardiovasc. Imaging 2020, 13, 2071–2081. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Hwang, I.C.; Park, J.J.; Park, J.B.; Cho, G.Y. Prognostic power of left atrial strain in patients with acute heart failure. Eur. Heart J. Cardiovasc. Imaging 2021, 22, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Aimo, A.; Fabiani, I.; Giannoni, A.; Mandoli, G.E.; Pastore, M.C.; Vergaro, G.; Spini, V.; Chubuchny, V.; Pasanisi, E.M.; Petersen, C.; et al. Multi-chamber speckle tracking imaging and diagnostic value of left atrial strain in cardiac amyloidosis. Eur. Heart J. Cardiovasc. Imaging 2022, 24, 130–141. [Google Scholar] [CrossRef] [PubMed]
- Essayagh, B.; Resseguier, N.; Michel, N.; Casalta, A.C.; Renard, S.; Donghi, V.; Carbone, A.; Piazzai, C.; Ambrosi, P.; Levy, F.; et al. Left atrial dysfunction as marker of poor outcome in patients with hypertrophic cardiomyopathy. Arch. Cardiovasc. Dis. 2021, 114, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Molnár, A.Á.; Sánta, A.; Pásztor, D.T.; Merkely, B. Atrial Cardiomyopathy in Valvular Heart Disease: From Molecular Biology to Clinical Perspectives. Cells 2023, 12, 1796. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Thellier, N.; Altes, A.; Layec, J.; Castel, A.L.; Delelis, F.; Hubert, T.; Outerryck, F.; Appert, L.; Tribouilloy, C.; Maréchaux, S. Impact of left atrial and diastolic ventricular dysfunction on mortality in patients with aortic stenosis. Arch. Cardiovasc. Dis. 2023, 116, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Cameli, M.; Lisi, M.; Giacomin, E.; Caputo, M.; Navarri, R.; Malandrino, A.; Ballo, P.; Agricola, E.; Mondillo, S. Chronic mitral regurgitation: Left atrial deformation analysis by two dimensional speckle tracking echocardiography. Echocardiography 2011, 28, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Gomes, D.A.; Lopes, P.M.; Freitas, P.; Albuquerque, F.; Reis, C.; Guerreiro, S.; Abecasis, J.; Trabulo, M.; Ferreira, A.M.; Ferreira, J.; et al. Peak left atrial longitudinal strain is associated with all-cause mortality in patients with ventricular functional mitral regurgitation. Cardiovasc. Ultrasound 2023, 6, 9. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Anagnostopoulos, I.; Kousta, M.; Kossyvakis, C.; Paraskevaidis, N.T.; Schizas, N.; Vrachatis, D.; Deftereos, S.; Giannopoulos, G. Atrial strain and occult atrial fibrillation in cryptogenic stroke patients: A systematic review and meta-analysis. Clin. Res. Cardiol. 2023, 112, 1600–1609. [Google Scholar] [CrossRef] [PubMed]
- Pagola, J.; Juega, J.; Francisco-Pascual, J.; Bustamante, A.; Penalba, A.; Pala, E.; Rodriguez, M.; De Lera-Alfonso, M.; Arenillas, J.F.; Cabezas, J.A.; et al. Crypto-AF study group. Predicting Atrial Fibrillation with High Risk of Embolization with Atrial Strain and NT-proBNP. Transl. Stroke Res. 2021, 12, 735–741. [Google Scholar] [CrossRef] [PubMed]
- Alhakak, A.S.; Biering-Sørensen, S.R.; Møgelvang, R.; Modin, D.; Jensen, G.B.; Schnohr, P.; Iversen, A.Z.; Svendsen, J.H.; Jespersen, T.; Gislason, G.; et al. Usefulness of left atrial strain for predicting incident atrial fibrillation and ischaemic stroke in the general population. Eur. Heart J. Cardiovasc. Imaging 2022, 23, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Takagi, T.; Hosomi, T. Peak atrial longitudinal strain represents atrial fibrillation burden in daily practice: Clinical implication of routine left atrial strain measurements. J. Echocardiogr. 2023, 21, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Cameli, M.; Lisi, M.; Focardi, M.; Reccia, R.; Natali, B.M.; Sparla, S.; Mondillo, S. Left atrial deformation analysis by speckle tracking echocardiography for prediction of cardiovascular outcomes. Am. J. Cardiol. 2012, 110, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Freed, B.H.; Daruwalla, V.; Cheng, J.Y.; Aguilar, F.G.; Beussink, L.; Choi, A.; Klein, D.A.; Dixon, D.; Baldridge, A.; Rasmussen-Torvik, L.J.; et al. Prognostic Utility and Clinical Significance of Cardiac Mechanics in Heart Failure with Preserved Ejection Fraction: Importance of Left Atrial Strain. Circ. Cardiovasc. Imaging 2016, 9, 003754. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Santos, A.B.; Roca, G.Q.; Claggett, B.; Sweitzer, N.K.; Shah, S.J.; Anand, I.S.; Fang, J.C.; Zile, M.R.; Pitt, B.; Solomon, S.D.; et al. Prognostic Relevance of Left Atrial Dysfunction in Heart Failure with Preserved Ejection Fraction. Circ. Heart Fail. 2016, 9, e002763. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Morris, D.A.; Belyavskiy, E.; Aravind-Kumar, R.; Kropf, M.; Frydas, A.; Braunauer, K.; Marquez, E.; Krisper, M.; Lindhorst, R.; Osmanoglou, E.; et al. Potential Usefulness and Clinical Relevance of Adding Left Atrial Strain to Left Atrial Volume Index in the Detection of Left Ventricular Diastolic Dysfunction. JACC Cardiovasc. Imaging 2018, 11, 1405–1415. [Google Scholar] [CrossRef] [PubMed]
- Cameli, M.; Pastore, M.C.; Righini, F.M.; Mandoli, G.E.; D’Ascenzi, F.; Lisi, M.; Nistor, D.; Sparla, S.; Curci, V.; Di Tommaso, C.; et al. Prognostic value of left atrial strain in patients with moderate asymptomatic mitral regurgitation. Int. J. Cardiovasc. Imaging 2019, 35, 1597–1604. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, A.B.; Skaarup, K.G.; Lassen, M.C.H.; Djernæs, K.; Hansen, M.L.; Svendsen, J.H.; Johannessen, A.; Hansen, J.; Sørensen, S.K.; Gislason, G.; et al. Usefulness of left atrial speckle tracking echocardiography in predicting recurrence of atrial fibrillation after radiofrequency ablation: A systematic review and meta-analysis. Int. J. Cardiovasc. Imaging 2020, 36, 1293–1309. [Google Scholar] [CrossRef] [PubMed]
- Nistri, S.; Mazzone, C.; Cioffi, G.; Barbati, G.; Gentile, P.; Ballo, P.; Borca, E.C.; Faganello, G.; Cherubini, A.; Bussani, R.; et al. Tissue Doppler indices of diastolic function as prognosticator in patients without heart failure in primary care. J. Cardiol. 2020, 76, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.N.; Olsen, N.T.; Taraldsen, I.A.; Mogelvang, R. Whole-cycle analysis of echocardiographic tissue Doppler velocities as a marker of biological age. Front. Cardiovasc. Med. 2023, 9, 1040647. [Google Scholar] [CrossRef] [PubMed]
- Dokainish, H.; Sengupta, R.; Pillai, M.; Bobek, J.; Lakkis, N. Correlation of tissue Doppler and two-dimensional speckle myocardial velocities and comparison of derived ratios with invasively measured left ventricular filling pressures. J. Am. Soc. Echocardiogr. 2009, 22, 284–289. [Google Scholar] [CrossRef] [PubMed]
- Donal, E.; Raud-Raynier, P.; De Place, C.; Gervais, R.; Rosier, A.; Roulaud, M.; Ingels, A.; Carre, F.; Daubert, J.C.; Denjean, A. Resting echocardiographic assessments of left atrial function and filling pressure interest in the understanding of exercise capacity in patients with chronic congestive heart failure. J. Am. Soc. Echocardiogr. 2008, 21, 703–710. [Google Scholar] [CrossRef] [PubMed]
- Bruch, C.; Stypmann, J.; Gradaus, R.; Breithardt, G.; Wichter, T. Stroke volume and mitral annular velocities. Insights from tissue Doppler imaging. Z. Kardiol. 2004, 93, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Khankirawatana, B.; Khankirawatana, S.; Peterson, B.; Mahrous, H.; Porter, T.R. Peak atrial systolic mitral annular velocity by Doppler tissue reliably predicts left atrial systolic function. J. Am. Soc. Echocardiogr. 2004, 17, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Gulel, O.; Yuksel, S.; Soylu, K.; Kaplan, O.; Yilmaz, O.; Kahraman, H.; Sahin, M. Evaluation of left atrial functions by color tissue Doppler imaging in adults with body mass indexes >or = 30 kg/m2 versus those < 30 kg/m2. Int. J. Cardiovasc. Imaging 2009, 25, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Dalen, H.; Thorstensen, A.; Vatten, L.J.; Aase, S.A.; Stoylen, A. Reference values and distribution of conventional echocardiographic Doppler measures and longitudinal tissue Doppler velocities in a population free from cardiovascular disease. Circ. Cardiovasc. Imaging 2010, 3, 614–622. [Google Scholar] [CrossRef] [PubMed]
- Bukachi, F.; Waldenström, A.; Mörner, S.; Lindqvist, P.; Henein, M.Y.; Kazzam, E. Age dependency in the timing of mitral annular motion in relation to ventricular filling in healthy subjects: Umea General Population Heart Study. Eur. J. Echocardiogr. 2008, 9, 522–529. [Google Scholar] [CrossRef] [PubMed]
- Lassen, M.C.H.; Lind, J.N.; Sengeløv, M.; Skaarup, K.G.; Johansen, N.D.; Qasim, A.N.; Jensen, M.T.; Jensen, G.B.; Schnohr, P.; Møgelvang, R.; et al. Changes in Myocardial Tissue Velocities over a Decade: The Copenhagen City Heart Study. J. Am. Soc. Echocardiogr. 2023, 36, 672–675. [Google Scholar] [CrossRef] [PubMed]
- Thomas, L.; Levett, K.; Boyd, A.; Leung, D.Y.; Schiller, N.B.; Ross, D.L. Changes in regional left atrial function with aging: Evaluation by Doppler tissue imaging. Eur. J. Echocardiogr. 2003, 4, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, P.M.; Burrell, L.M.; Calafiore, P. Lateral vs. medial mitral annular tissue Doppler in the echocardiographic assessment of diastolic function and filling pressures: Which should we use? Eur. J. Echocardiogr. 2005, 6, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Nikitin, N.P.; Witte, K.K.; Thackray, S.D.; de Silva, R.; Clark, A.L.; Cleland, J.G. Longitudinal ventricular function: Normal values of atrioventricular annular and myocardial velocities measured with quantitative two-dimensional color Doppler tissue imaging. J. Am. Soc. Echocardiogr. 2003, 16, 906–921. [Google Scholar] [CrossRef] [PubMed]
- Mogelvang, R.; Sogaard, P.; Pedersen, S.A.; Olsen, N.T.; Schnohr, P.; Jensen, J.S. Tissue Doppler echocardiography in persons with hypertension, diabetes, or ischaemic heart disease: The Copenhagen City Heart Study. Eur. Heart J. 2009, 30, 731–739. [Google Scholar] [CrossRef] [PubMed]
- Melenovsky, V.; Borlaug, B.A.; Rosen, B.; Hay, I.; Ferruci, L.; Morell, C.H.; Lakatta, E.G.; Najjar, S.S.; Kass, D.A. Cardiovascular features of heart failure with preserved ejection fraction versus nonfailing hypertensive left ventricular hypertrophy in the urban Baltimore community: The role of atrial remodeling/dysfunction. J. Am. Coll. Cardiol. 2007, 49, 198–207. [Google Scholar] [CrossRef] [PubMed]
- Farias, C.A.; Rodriguez, L.; Garcia, M.J.; Sun, J.P.; Klein, A.L.; Thomas, J.D. Assessment of diastolic function by tissue Doppler echocardiography: Comparison with standard transmitral and pulmonary venous flow. J. Am. Soc. Echocardiogr. 1999, 12, 609–617. [Google Scholar] [CrossRef] [PubMed]
- Biering-Sørensen, T.; Olsen, F.J.; Storm, K.; Fritz-Hansen, T.; Olsen, N.T.; Jøns, C.; Vinther, M.; Søgaard, P.; Risum, N. Prognostic value of tissue Doppler imaging for predicting ventricular arrhythmias and cardiovascular mortality in ischaemic cardiomyopathy. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 722–731. [Google Scholar] [CrossRef] [PubMed]
- Nagueh, S.F.; Rao, L.; Soto, J.; Middleton, K.J.; Khoury, D.S. Haemodynamic insights into the effects of ischaemia and cycle length on tissue Doppler-derived mitral annulus diastolic velocities. Clin. Sci. 2004, 106, 147–154. [Google Scholar] [CrossRef]
- Nagueh, S.F.; Sun, H.; Kopelen, H.A.; Middleton, K.J.; Khoury, D.S. Hemodynamic determinants of the mitral annulus diastolic velocities by tissue Doppler. J. Am. Coll. Cardiol. 2001, 37, 278–285. [Google Scholar] [CrossRef]
- Rivas-Gotz, C.; Khoury, D.S.; Manolios, M.; Rao, L.; Kopelen, H.A.; Nagueh, S.F. Time interval between onset of mitral inflow and onset of early diastolic velocity by tissue Doppler: A novel index of left ventricular relaxation: Experimental studies and clinical application. J. Am. Coll. Cardiol. 2003, 42, 1463–1470. [Google Scholar] [CrossRef]
- Johansson, B.; Fengsrud, E.; Lundin, F.; Bojö, L.; Poci, D. The a’velocity by tissue-Doppler echocardiography correlates to invasive mean left atrial pressure in patients with normal ejection fraction. Scand. Cardiovasc. J. 2022, 56, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Oki, T.; Tabata, T.; Yamada, H.; Wakatsuki, T.; Mishiro, Y.; Abe, M.; Onose, Y.; Iuchi, A.; Ito, S. Left ventricular diastolic properties of hypertensive patients measured by pulsed tissue Doppler imaging. J. Am. Soc. Echocardiogr. 1998, 11, 1106–1112. [Google Scholar] [CrossRef] [PubMed]
- Saraiva, R.M.; Demirkol, S.; Buakhamsri, A.; Greenberg, N.; Popović, Z.B.; Thomas, J.D.; Klein, A.L. Left atrial strain measured by two-dimensional speckle tracking represents a new tool to evaluate left atrial function. J. Am. Soc. Echocardiogr. 2010, 23, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Masuda, M.; Iwakura, K.; Inoue, K.; Okamura, A.; Koyama, Y.; Toyoshima, Y.; Tanaka, N.; Nakanishi, H.; Sotomi, Y.; Komuro, I.; et al. Estimation of left atrial blood stasis using diastolic late mitral annular velocity. Eur. Heart J. Cardiovasc. Imaging 2013, 14, 752–757. [Google Scholar] [CrossRef] [PubMed]
- Johansson, B.; Lundin, F.; Tegeback, R.; Bojö, L. The a’ velocity in the tissue Doppler predicts S/D ratio <1 in patients with a normal ejection fraction. Scand. Cardiovasc. J. 2018, 52, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Masuda, M.; Iwakura, K.; Inoue, K.; Okamura, A.; Koyama, Y.; Kimura, R.; Doi, A.; Toyoshima, Y.; Komuro, I.; Fujii, K. Estimation of left atrial pump function by mitral annular velocity. Circ. J. 2012, 76, 1430–1435. [Google Scholar] [CrossRef] [PubMed]
- Obokata, M.; Negishi, K.; Kurosawa, K.; Arima, H.; Tateno, R.; Ui, G.; Tange, S.; Arai, M.; Kurabayashi, M. Incremental diagnostic value of la strain with leg lifts in heart failure with preserved ejection fraction. JACC Cardiovasc. Imaging 2013, 6, 749–758. [Google Scholar] [CrossRef] [PubMed]
- Oike, F.; Yamamoto, E.; Sueta, D.; Tokitsu, T.; Usuku, H.; Nishihara, T.; Takae, M.; Fujisue, K.; Arima, Y.; Kanazawa, H.; et al. Clinical significance of diastolic late mitral annular velocity in heart failure with preserved ejection fraction. Int. J. Cardiol. 2020, 316, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Daimon, M.; Watanabe, H.; Abe, Y.; Hirata, K.; Hozumi, T.; Ishii, K.; Ito, H.; Iwakura, K.; Izumi, C.; Matsuzaki, M.; et al. Normal values of echocardiographic parameters in relation to age in a healthy Japanese population: The JAMP study. Circ. J. 2008, 72, 1859–1866. [Google Scholar] [CrossRef] [PubMed]
- Ruohonen, S.; Koskenvuo, J.W.; Wendelin-Saarenhovi, M.; Savontaus, M.; Kähönen, M.; Laitinen, T.; Lehtimäki, T.; Jokinen, E.; Viikari, J.; Juonala, M.; et al. Reference Values for Echocardiography in Middle-Aged Population: The Cardiovascular Risk in Young Finns Study. Echocardiography 2016, 33, 193–206. [Google Scholar] [CrossRef] [PubMed]
- Caballero, L.; Kou, S.; Dulgheru, R.; Gonjilashvili, N.; Athanassopoulos, G.D.; Barone, D.; Baroni, M.; Cardim, N.; Gomez de Diego, J.J.; Oliva, M.J.; et al. Echocardiographic reference ranges for normal cardiac Doppler data: Results from the NORRE Study. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 1031–1041. [Google Scholar] [CrossRef] [PubMed]
- Yao, G.H.; Zhang, M.; Yin, L.X.; Zhang, C.; Xu, M.J.; Deng, Y.; Liu, Y.; Deng, Y.B.; Ren, W.D.; Li, Z.A.; et al. Doppler Echocardiographic Measurements in Normal Chinese Adults (EMINCA): A prospective, nationwide, and multicentre study. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 512–522. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, T.; Oki, T.; Yamada, H.; Tanaka, H.; Ishimoto, T.; Wakatsuki, T.; Tabata, T.; Ito, S. Prognostic value of the atrial systolic mitral annular motion velocity in patients with left ventricular systolic dysfunction. J. Am. Soc. Echocardiogr. 2003, 16, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Yip, G.W.; Wang, A.Y.; Zhang, Y.; Ho, P.Y.; Tse, M.K.; Lam, P.K.; Sanderson, J.E. Peak early diastolic mitral annulus velocity by tissue Doppler imaging adds independent and incremental prognostic value. J. Am. Coll. Cardiol. 2003, 41, 820–826. [Google Scholar] [CrossRef] [PubMed]
- Tarsia, C.; Gaspardone, C.; Sgueglia, G.A.; De Santis, A.; D’Ascoli, E.; Piccioni, F.; Iamele, M.; Posteraro, G.A.; Cinque, A.; Gaspardone, A. Atrial function analysis after percutaneous umbrella device and suture-mediated patent fossa ovalis closure. Minerva Cardiol. Angiol. 2023, 71, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Mogelvang, R.; Biering-Sørensen, T.; Jensen, J.S. Tissue Doppler echocardiography predicts acute myocardial infarction, heart failure, and cardiovascular death in the general population. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 1331–1337. [Google Scholar] [CrossRef] [PubMed]
- Stahrenberg, R.; Edelmann, F.; Haase, B.; Lahno, R.; Seegers, J.; Weber-Krüger, M.; Mende, M.; Wohlfahrt, J.; Kermer, P.; Vollmann, D.; et al. Transthoracic echocardiography to rule out paroxysmal atrial fibrillation as a cause of stroke or transient ischemic attack. Stroke 2011, 42, 3643–3645. [Google Scholar] [CrossRef] [PubMed]
- Iwahashi, N.; Gohbara, M.; Abe, T.; Kirigaya, J.; Horii, M.; Hanajima, Y.; Takahashi, H.; Minamimoto, Y.; Kimura, Y.; Akiyama, E.; et al. Clinical Significance of Late Diastolic Tissue Doppler Velocity at 24 Hours or 14 Days After Onset of ST-Elevation Acute Myocardial Infarction. Circ. Rep. 2021, 3, 396–404. [Google Scholar] [CrossRef] [PubMed]
- Okura, H.; Kataoka, T.; Yoshida, K. Comparison of Left Ventricular Relaxation and Left Atrial Function in Patients with Heart Failure and Preserved Ejection Fraction Versus Patients With Systemic Hypertension and Healthy Subjects. Am. J. Cardiol. 2016, 118, 1019–1023. [Google Scholar] [CrossRef] [PubMed]
- Müller, P.; Weijs, B.; Bemelmans, N.M.A.A.; Mügge, A.; Eckardt, L.; Crijns, H.J.G.M.; Bax, J.J.; Linz, D.; den Uijl, D.W. Echocardiography-derived total atrial conduction time: Risk stratification and guidance in atrial fibrillation management. Clin. Res. Cardiol. 2021, 110, 1734–1742. [Google Scholar] [CrossRef]
- Huang, F.Q.; Tan, R.S.; Sim, D.; Le, T.T.; Zhong, L. Left ventricular diastolic function assessment using time differences between mitral annular velocities and transmitral inflow velocities in patients with heart failure. Heart Lung Circ. 2015, 24, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Bianco, C.M.; Farjo, P.D.; Ghaffar, Y.A.; Sengupta, P.P. Myocardial Mechanics in Patients With Normal LVEF and Diastolic Dysfunction. JACC Cardiovasc. Imaging 2020, 13 Pt 2, 258–271. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Jung, H.O.; Min, J.; Park, M.W.; Park, C.S.; Shin, D.I.; Shin, W.S.; Kim, P.J.; Youn, H.J.; Seung, K.B. Left atrial volume index over late diastolic mitral annulus velocity (LAVI/A’) is a useful echo index to identify advanced diastolic dysfunction and predict clinical outcomes. Clin Cardiol. 2011, 34, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Toh, N.; Kanzaki, H.; Nakatani, S.; Ohara, T.; Kim, J.; Kusano, K.F.; Hashimura, K.; Ohe, T.; Ito, H.; Kitakaze, M. Left atrial volume combined with atrial pump function identifies hypertensive patients with a history of paroxysmal atrial fibrillation. Hypertension 2010, 55, 1150–1156. [Google Scholar] [CrossRef] [PubMed]
- Matsuura, H.; Yamada, A.; Sugimoto, K.; Sugimoto, K.; Iwase, M.; Ishikawa, T.; Ishii, J.; Ozaki, Y. Clinical implication of LAVI over A’ ratio in patients with acute coronary syndrome. Heart Asia 2018, 10, e011038. [Google Scholar] [CrossRef] [PubMed]
- Benfari, G.; Essayagh, B.; Nistri, S.; Maalouf, J.; Rossi, A.; Thapa, P.; Michelena, H.I.; Enriquez-Sarano, M. Left Atrial Volumetric/Mechanical Coupling Index: A Novel Predictor of Outcome in Heart Failure with Reduced Ejection Fraction. Circ. Cardiovasc. Imaging 2021, 14, e011608. [Google Scholar] [CrossRef] [PubMed]
- Essayagh, B.; Benfari, G.; Antoine, C.; Maalouf, J.; Pislaru, S.; Thapa, P.; Michelena, H.I.; Enriquez-Sarano, M. Incremental Prognosis by Left Atrial Functional Assessment: The Left Atrial Coupling Index in Patients with Floppy Mitral Valves. J. Am. Heart Assoc. 2022, 11, e024814. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Benfari, G.; Skaarup, K.G.; Johansen, N.D.; Jensen, G.; Schnohr, P.; Møgelvang, R.; Nistri, S.; Biering-Sørensen, T. Left Atrial Volumetric/Mechanical Coupling Index in the General Population: Distribution and Prediction of Incident Atrial Fibrillation: From the Copenhagen City Heart Study. J. Am. Soc. Echocardiogr. 2023, 36, 339–341. [Google Scholar] [CrossRef] [PubMed]
- Tabata, T.; Thomas, J.D.; Klein, A.L. Pulmonary venous flow by doppler echocardiography: Revisited 12 years later. J. Am. Coll. Cardiol. 2003, 41, 1243–1250. [Google Scholar] [CrossRef] [PubMed]
- Kadappu, K.K.; Thomas, L. Tissue Doppler imaging in echocardiography: Value and limitations. Heart Lung Circ. 2015, 24, 224–233. [Google Scholar] [CrossRef] [PubMed]
- Soeki, T.; Fukuda, N.; Shinohara, H.; Sakabe, K.; Onose, Y.; Sawada, Y.; Tamura, Y. Mitral inflow and mitral annular motion velocities in patients with mitral annular calcification: Evaluation by pulsed Doppler echocardiography and pulsed Doppler tissue imaging. Eur. J. Echocardiogr. 2002, 3, 128–134. [Google Scholar] [CrossRef] [PubMed]
LA Function | Functional Parameter | Calculation |
---|---|---|
Global function | LA EF | (LAmax − LAmin)/LAmax |
Reservoir function | Expansion index | (LAmax − LAmin)/LAmin |
Conduit function | Passive EF | (LAmax − LApreA)/LAmax |
Booster pump | Active EF | (LApreA − LAmin)/LApreA |
Method | Measurement | Clinical Applicability |
---|---|---|
E/A ratio | E/A ratio, E-VTI/A-VTI | diastolic function |
Atrial filling fraction | A-VTI/(E-VTI+A-VTI) | atrial contribution |
S/D ratio | S-VTI/D-VTI | relative reservoir to conduit contribution |
pulmonary vein atrial reversal wave (Ar) | Ar velocity and duration | atrial contractility |
LA ejection force | 0.5 × blood density × mitral orifice area × A velocity | LA systolic function |
LA kinetic energy | 0.5 × blood density × (LAVIpreA-LAVImin) × A velocity | LA work |
Study | N. Patients | LA EF 2D (%) Mean (IQR) or ± SD | LA EF 3D (%) Mean (IQR) or ± SD | PALS (%) Mean (IQR) or ± SD |
---|---|---|---|---|
Morris et al., 2015 [36] | 329 | 65.8 ± 7.5 LLN 51.1 | - | 45.5 ± 11.4 LLN 23.1 |
Pathan et al., 2016 [37] | meta-analysis 40 studies 2542 | - | - | 39 (95% CI 38–41) |
Sugimoto et al., 2018 [38] | 371 | 68.5 (63.2 to 73.2) LLN 48.7 ± 1.9 | 57.3 (52.4 to 61.9) LLN 41.4 ± 1.1 | 42.5 (36.1 to 48.0) LLN 26.1 |
Takeuchi et al., 2019 [39] | 313 | - | M 48 ± 9 F 48 ± 11 | - |
Sun et al., 2020 [40] | 324 | - | - | 35.9 ± 10.6 |
Singh et al., 2021 [15] | 1765 | 65.7 ± 8.4 | 62.2 ± 7.7 | 42.1 ± 10.0 |
Nielsen et al., 2021 [41] | 1641 | - | - | 39.4 (33.2–46.6) |
Wang et al., 2024 [42] | 783 | - | M 57.3 ± 5.7 F 57.5 ± 6.4 LLN M 46; F 44 | - |
Yafasov et al., 2024 [43] | 979 | - | 61 ± 6 | 31.2 ± 6.3 |
Author | Population | Principal Findings Regarding LA Function, Measured by PALS |
---|---|---|
Cameli et al., 2012 [85] | 312 adults in SR | PALS < 18.8% is associated with the development of the first CV event (sens. 78.2%, spec 85.2%, AUC 0.83) |
Freed et al., 2016 [86] | 308 HFpEF longitudinally followed | 1-SD decrease in PALS is associated with composite outcome of hospitalization or death (HR 1.54) |
Santos et al., 2016 [87] | 357 HFpEF enrolled in the TOPCAT study | Unit reduction in PALS is associated with an increased risk of CV events |
Morris et al., 2017 [88] | 517 patients in SR and risk factors for LVDD | Adding LA strain (cut-off < 23%) to LAVI significantly improves the detection of LVDD in indeterminate LV diastolic function |
Cameli et al., 2019 [89] | 276 patients with asymptomatic moderate MR | PALS < 35% is associated with the development of CV events (AUC 0.87) |
Park et al., 2020 [73] | 2461 patients with AHF and SR | PALS < 18% predicts new-onset AF at 5 years (AUC 0.53) |
Nielsen et al., 2020 [90] | Meta-analysis of 1025 patients undergoing RFA for AF | PALS significantly predicts AF recurrence (multivariate OR 1.16 CI95% [1.09–1.24], p < 0.001, per 1% decrease) |
Park et al., 2021 [74] | 3818 AHF patients | PALS is a significant predictor of events regardless of HF phenotype (multivariate PALS < 8.8%: HR 1.637, p = 0.001, PALS 8.8-16.5%: HR 1.416, p = 0.004) |
Inoue et al., 2021 [63] | 322 patients with CV disease of different etiologies | PALS < 18.0% predicts elevated LV falling pressure |
Pagola et al., 2021 [82] | 253 patients with cryptogenic stroke followed for 2 years | PALS < 25.3% predicted HpAF with a sensitivity of 70% and specificity of 60% (AUC 0.73) |
Hauser et al., 2021 [55] | 3590 general population in SR | Patients with PALS < 23% have a 6.8 increased risk of developing AF; with multivariate, PALS remained an independent predictor of AF [HR 1.05, 95% CI (1.03–1.07), p < 0.001, per 1% decrease] |
Alhakak et al., 2022 [83] | 400 general population in SR | PALS independently predicts AF in participants < 65 years (HR 1.46; 95% CI (1.06–2.02), p = 0.021, per 5% decrease) |
Aimo et al., 2022 [75] | 423 patients screened for cardiac amyloidosis | PALS < 6.65% gives 3.6-fold risk of cardiac amyloidosis |
Thellier et al., 2023 [78] | 387 patients with severe aortic stenosis | PALS < 14% improves mortality risk stratification over diastolic dysfunction grades |
Madsen et al., 2023 [69] | 381 patients with ACS | With univariate analysis, PALS predicts new onset of AF (HR: 1.05, p < 0.01, per 1% decrease) |
Gomes et al., 2023 [80] | 307 HFrEF with functional MR | PALS predicts all-cause mortality with HR: 1.05 per each 1% decrease |
Takagi et al., 2023 [84] | 335 patients | PALS < 22% predicts new-onset AF (AUC: 0.89) |
Anagnostopoulos et al., 2023 [81] | Meta-analysis of 2081 patients with cryptogenic stroke | PALS < 20% presents 71% sensitivity and 71% specificity for the diagnosis of occult AF |
Pastore et al., 2024 [72] | 310 patients undergoing isolated CABG | multivariate analysis, PALS < 28% carries a 3.6-fold higher risk of postoperative AF |
Study | N. Patients | Age (Years) | TDI-a’ Septal Mean (IQR) or ± SD | TDI-a’ Lateral Mean (IQR) or ± SD | TDI-a’ Average Mean (IQR) or ± SD |
---|---|---|---|---|---|
Daimon et al., 2008 [120] | M 383 F 317 | 20–79 | M 9.2 ± 2.1 F 8.2 ± 2.4 | M 9.0 ± 3.0 F 8.3 ± 2.7 | - |
Ruohonen et al., 2015 [121] | M 444 F 635 | 34–49 | M 12.9 ± 2.2 * F 12.4 ± 2.1 * | M 14.0 ± 3.0 * F 13.7 ± 3.0 * | - |
Caballero et al., 2015 [122] | 444 | 20–75 | 9.4 ± 2.0 IQR 8.0–11.0 | 9.2 ± 2.7 IQR 7.0–11.0 | 11.9 ± 3.3 IQR 9.25–14.0 |
Yao et al., 2016 [123] | M 678 F 716 | 18–79 | M 9.4 ± 2.1 F 8.9 ± 2.1 | M 9.9 ± 2.6 F 9.8 ± 2.8 | M 9.6 ± 2.1 F 9.3 + 2.1 |
Ballo et al., 2017 [17] | 282 | 7–84 | - | - | 10.1 ± 2.4 |
Study | Population | Study Design | Cut-Off | Aims/ End-Point |
---|---|---|---|---|
Studies with TDI-a’ | ||||
Yamamoto et al., 2003 [124] | HFrEF | Prospective | TDI-a’ ≤ 5 cm/s | Cardiac mortality |
Wang et al., 2003 [125] | Patients with and without cardiovascular disease | Retrospective | TDI-a’ < 4 cm/s | Cardiac death |
Mogelvang et al., 2015 [127] | General population | Prospective | HR 1.17 for 1 cm/s decrease in TDI-a’ | Acute myocardial infarction, HF, CV death |
Biering-Sorensen et al., 2016 [107] | Ischemic cardiomyopathy | Prospective | Multivariate TDI-a’ HR 1.25 | Arrhythmic events, CV death |
Oike et al., 2020 [119] | HFpEF | Prospective | TDI-a’ > 7.45 cm/s | CV and HF events |
Iwahashi et al., 2021 [129] | ST-elevation myocardial infarction | Prospective | TDI-a’ < 9.4 cm/s at 24 h | Major adverse CV events |
Studies with LAVI/a’ (LACI) | ||||
Stahrenberg et al., 2011 [128] | Cerebral ischemia | Prospective | LAVI/a’ < 2.5 to rule out AF | AF onset |
Park et al., 2011 [134] | Patients with dyspnea (NYHA II-IV) | Prospective | LAVI/a’ ≥ 4 higher incidence of outcome | Cardiac death/ rehospitalization HF |
Benfari et al., 2021 [137] | HFrEF in sinus rhythm with MR | Prospective | LAVI/a’ ≥ 6 excess mortality | Survival |
Essayagh et al., 2022 [138] | Patients with floppy mitral valve in sinus rhythm | Prospective | LAVI/a’ ≥ 5 excess mortality | Survival |
Benfari et al., 2023 [139] | General population | Prospective | LAVI/a’ > 3.9 | AF onset independently from CHARGE-AF and CHA2DS2-Vasc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mangia, M.; D’Andrea, E.; Cecchetto, A.; Beccari, R.; Mele, D.; Nistri, S. Current and Clinically Relevant Echocardiographic Parameters to Analyze Left Atrial Function. J. Cardiovasc. Dev. Dis. 2024, 11, 241. https://doi.org/10.3390/jcdd11080241
Mangia M, D’Andrea E, Cecchetto A, Beccari R, Mele D, Nistri S. Current and Clinically Relevant Echocardiographic Parameters to Analyze Left Atrial Function. Journal of Cardiovascular Development and Disease. 2024; 11(8):241. https://doi.org/10.3390/jcdd11080241
Chicago/Turabian StyleMangia, Mario, Emilio D’Andrea, Antonella Cecchetto, Riccardo Beccari, Donato Mele, and Stefano Nistri. 2024. "Current and Clinically Relevant Echocardiographic Parameters to Analyze Left Atrial Function" Journal of Cardiovascular Development and Disease 11, no. 8: 241. https://doi.org/10.3390/jcdd11080241
APA StyleMangia, M., D’Andrea, E., Cecchetto, A., Beccari, R., Mele, D., & Nistri, S. (2024). Current and Clinically Relevant Echocardiographic Parameters to Analyze Left Atrial Function. Journal of Cardiovascular Development and Disease, 11(8), 241. https://doi.org/10.3390/jcdd11080241